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Preface

The purpose of this textbook is to present an array of topics that are found in
the syllabus of the typical second lecture course in Calculus, as offered in many
universities. Conceptually, it follows our previous book Mathematical Analysis I,
published by Springer, which will be referred to throughout as Vol. I.

While the subject matter known as ‘Calculus 1’ concerns real functions of real
variables, and as such is more or less standard, the choices for a course on ‘Calculus
2’ can vary a lot, and even the way the topics can be taught is not so rigid. Due
to this larger flexibility we tried to cover a wide range of subjects, reflected in
the fact that the amount of content gathered here may not be comparable to the
number of credits conferred to a second Calculus course by the current programme
specifications. The reminders disseminated in the text render the sections more
independent from one another, allowing the reader to jump back and forth, and
thus enhancing the book’s versatility.

The succession of chapters is what we believe to be the most natural. With
the first three chapters we conclude the study of one-variable functions, begun in
Vol. I, by discussing sequences and series of functions, including power series and
Fourier series. Then we pass to examine multivariable and vector-valued functions,
investigating continuity properties and developing the corresponding integral and
differential calculus (over open measurable sets of Rn first, then on curves and
surfaces). In the final part of the book we apply some of the theory learnt to the
study of systems of ordinary differential equations.

Continuing along the same strand of thought of Vol. I, we wanted the present-
ation to be as clear and comprehensible as possible. Every page of the book con-
centrates on very few essential notions, most of the time just one, in order to
keep the reader focused. For theorems’ statements, we chose the form that hastens
an immediate understanding and guarantees readability at the same time. Hence,
they are as a rule followed by several examples and pictures; the same is true for
the techniques of computation.

The large number of exercises, gathered according to the main topics at the
end of each chapter, should help the student test his improvements. We provide
the solution to all exercises, and very often the procedure for solving is outlined.
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Some graphical conventions are adopted: definitions are displayed over grey
backgrounds, while statements appear on blue; examples are marked with a blue
vertical bar at the side; exercises with solutions are boxed (e.g., 12. ).

This second edition is enriched by two appendices, devoted to differential and
integral calculus, respectively. Therein, the interested reader may find the rigorous
explanation of many results that are merely stated without proof in the previous
chapters, together with useful additional material. We completely omitted the
proofs whose technical aspects prevail over the fundamental notions and ideas.
These may be found in other, more detailed, texts, some of which are explicitly
suggested to deepen relevant topics.

All figures were created with MATLABTM and edited using the freely-available
package psfrag.

This volume originates from a textbook written in Italian, itself an expanded
version of the lecture courses on Calculus we have taught over the years at the
Politecnico di Torino. We owe much to many authors who wrote books on the
subject: A. Bacciotti and F. Ricci, C. Pagani and S. Salsa, G. Gilardi to name a
few. We have also found enduring inspiration in the Anglo-Saxon-flavoured books
by T. Apostol and J. Stewart.

Special thanks are due to Dr. Simon Chiossi, for the careful and effective work
of translation.

Finally, we wish to thank Francesca Bonadei – Executive Editor, Mathem-
atics and Statistics, Springer Italia – for her encouragement and support in the
preparation of this textbook.

Torino, August 2014 Claudio Canuto, Anita Tabacco
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1

Numerical series

This is the first of three chapters dedicated to series. A series formalises the idea of
adding infinitely many terms of a sequence which can involve numbers (numerical
series) or functions (series of functions). Using series we can represent an irrational
number by the sum of an infinite sequence of increasingly smaller rational numbers,
for instance, or a continuous map by a sum of infinitely many piecewise-constant
functions defined over intervals of decreasing size. Since the definition itself of
series relies on the notion of limit of a sequence, the study of a series’ behaviour
requires all the instruments used for such limits.

In this chapter we will consider numerical series: beside their unquestionable
theoretical importance, they serve as a warm-up for the ensuing study of series
of functions. We begin by recalling their main properties. Subsequently we will
consider the various types of convergence conditions of a numerical sequence and
identify important classes of series, to study which the appropriate tools will be
provided.

1.1 Round-up on sequences

We briefly recall here the definition and main properties of sequences, whose full
treatise is present in Vol. I.

A real sequence is a function from N to R whose domain contains a set
{n ∈ N : n ≥ n0} for some integer n0 ≥ 0. If one calls a the sequence, it is
common practice to denote the image of n by an instead of a(n); in other words
we will write a : n �→ an. A standardised way to indicate a sequence is {an}n≥n0

(ignoring the terms with n < n0), or even more concisely {an}.
The behaviour of a sequence as n tends to ∞ can be classified as follows. The

sequence {an}n≥n0 converges (to �) if the limit lim
n→∞ an = � exists and is finite.

When the limit exists but is infinite, the sequence is said to diverge to +∞ or
−∞. If the sequence is neither convergent nor divergent, i.e., if lim

n→∞
an does not

exist, the sequence is indeterminate.

C. Canuto, A. Tabacco:Mathematical Analysis II, 2nd Ed.,
UNITEXT – La Matematica per il 3+2 85, DOI 10.1007/978-3-319-12757-6_1,
© Springer International Publishing Switzerland 2015



2 1 Numerical series

The fact that the behaviour of the first terms is completely irrelevant justifies
the following definition. A sequence {an}n≥n0 satisfies a certain property even-
tually, if there is an integer N ≥ n0 such that the sequence {an}n≥N satisfies the
property.

The main theorems governing the limit behaviour of sequences are recalled
below.

Theorems on sequences

1. Uniqueness of the limit: if the limit of a sequence exists, it is unique.
2. Boundedness: a converging sequence is bounded.
3. Existence of the limit for monotone sequences: an eventually-monotone

sequence is convergent if bounded, divergent if unbounded (divergent to
+∞ if increasing, to −∞ if decreasing).

4. First Comparison Theorem: let {an}, {bn} be sequences with finite or
infinite limits lim

n→∞
an = � and lim

n→∞
bn = m. If an ≤ bn eventually, then

� ≤ m.
5a. Second Comparison Theorem - finite case: let {an}, {bn} and {cn} be

sequences with lim
n→∞

an = lim
n→∞

cn = � ∈ R. If an ≤ bn ≤ cn eventually,

then lim
n→∞

bn = �.

5b. Second Comparison Theorem - infinite case: let {an}, {bn} be sequences
such that lim

n→∞ an = +∞. If an ≤ bn eventually, then lim
n→∞ bn = +∞. A

similar result holds if the limit is −∞: lim
n→∞ bn = −∞ implies lim

n→∞ an =

−∞.
6. Property: a sequence {an} is infinitesimal, that is lim

n→∞
an = 0, if and only

if the sequence of absolute values {|an|} is infinitesimal.
7. Theorem: if {an} is infinitesimal and {bn} bounded, {anbn} is infinitesimal.
8. Algebra of limits: let {an}, {bn} be such that lim

n→∞
an = � and lim

n→∞
bn = m

(�, m finite or infinite). Then

lim
n→∞

(an ± bn) = �±m,

lim
n→∞

an bn = �m ,

lim
n→∞

an
bn

=
�

m
, if bn �= 0 eventually,

whenever the right-hand sides are defined.
9. Substitution Theorem: let {an} be a sequence with lim

n→∞
an = � and sup-

pose g is a function defined on a neighbourhood of �:
a) if � ∈ R and g is continuous at �, then lim

n→∞
g(an) = g(�);

b) if � /∈ R and lim
x→�

g(x) = m exists, then lim
n→∞ g(an) = m.
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10. Ratio Test: let {an} be a sequence for which an > 0 eventually, and suppose
the limit

lim
n→∞

an+1

an
= q

exists, finite or infinite. If q < 1 then lim
n→∞

an = 0; if q > 1 then lim
n→∞

an =

+∞.

Let us review some cases of particular relevance.

Examples 1.1

i) Consider the geometric sequence an = qn, where q is a fixed number in R. In
Vol. I, Example 5.18, we proved

lim
n→∞

qn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if |q| < 1,

1 if q = 1,

+∞ if q > 1,

does not exist if q ≤ −1.

(1.1)

ii) Let p > 0 be a given number and consider the sequence n
√
p. Using the

Substitution Theorem with g(x) = px we have

lim
n→∞

n
√
p = lim

n→∞
p1/n = p0 = 1 .

iii) Consider now n
√
n; again using the Substitution Theorem,

lim
n→∞

n
√
n = lim

n→∞
exp

logn

n
= e0 = 1.

iv) The number e may be defined as the limit of the sequence an =
(
1 +

1

n

)n
,

which converges since it is strictly increasing and bounded from above.

v) At last, look at the sequences, all tending to +∞,

log n , nα , qn , n! , nn (α > 0, q > 1) .

In Vol. I, Sect. 5.4, we proved that each of these is infinite of order bigger than
the preceding one. This means that for n→∞, with α > 0 and q > 1, we have

logn = o(nα) , nα = o(qn) ,

qn = o(n!) , n! = o(nn) .
�
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1.2 Numerical series

To introduce the notion of numerical series, i.e., of “sum of infinitely many num-
bers”, we examine a simple yet instructive situation borrowed from geometry.

Consider a segment of length � = 2 (Fig. 1.1). The middle point splits it into two
parts of length a0 = �/2 = 1. While keeping the left half fixed, we subdivide the
right one in two parts of length a1 = �/4 = 1/2. Iterating the process indefinitely
one can think of the initial segment as the union of infinitely many segments of
lengths 1, 1

2 ,
1
4 ,

1
8 ,

1
16 , . . . Correspondingly, the total length of the starting segment

can be thought of as sum of the lengths of all sub-segments, in other words

2 = 1 +
1

2
+
1

4
+
1

8
+

1

16
+ . . . (1.2)

On the right we have a sum of infinitely many terms. This infinite sum can be
defined properly using sequences, and leads to the notion of a numerical series.

Given the sequence {ak}k≥0, one constructs the so-called sequence of partial
sums {sn}n≥0 in the following manner:

s0 = a0 , s1 = a0 + a1 , s2 = a0 + a1 + a2,

and in general,

sn = a0 + a1 + . . .+ an =

n∑
k=0

ak .

Note that sn = sn−1 + an. Then it is natural to study the limit behaviour of such
a sequence. Let us (formally) define

∞∑
k=0

ak = lim
n→∞

n∑
k=0

ak = lim
n→∞

sn .

The symbol
∞∑
k=0

ak is called (numerical) series, and ak is the general term of

the series.

0 21 3
2

7
4

15
8

1 1
2

1
4

1
8

1
16

Figure 1.1. Successive splittings of the interval [0, 2]. The coordinates of the subdivision
points are indicated below the blue line, while the lengths of sub-intervals lie above it
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Definition 1.2 Given the sequence {ak}k≥0 and sn =

n∑
k=0

ak, consider the

limit lim
n→∞

sn.

i) If the limit exists (finite or infinite), its value s is called sum of the
series and one writes

∞∑
k=0

ak = s = lim
n→∞

sn .

- If s is finite, one says that the series

∞∑
k=0

ak converges.

- If s is infinite, the series
∞∑
k=0

ak diverges, to either +∞ or −∞.

ii) If the limit does not exist, the series

∞∑
k=0

ak is indeterminate.

Examples 1.3

i) Let us go back to the interval split infinitely many times. The length of the
shortest segment obtained after k + 1 subdivisions is ak =

1
2k
, k ≥ 0. Thus, we

consider the series

∞∑
k=0

1

2k
. Its partial sums read

s0 = 1 , s1 = 1 +
1

2
=

3

2
, s2 = 1 +

1

2
+
1

4
=

7

4
,

...

sn = 1 +
1

2
+ . . .+

1

2n
.

Using the fact that an+1 − bn+1 = (a − b)(an + an−1b + . . .+ abn−1 + bn), and
choosing a = 1 and b = x arbitrary but different from one, we obtain the identity

1 + x+ . . .+ xn =
1− xn+1

1− x
. (1.3)

Therefore

sn = 1+
1

2
+ . . .+

1

2n
=

1− 1
2n+1

1− 1
2

= 2

(
1− 1

2n+1

)
= 2− 1

2n
,

and so

lim
n→∞

sn = lim
n→∞

(
2− 1

2n

)
= 2 .

The series converges and its sum is 2, which eventually justifies formula (1.2).



6 1 Numerical series

ii) The partial sums of the series
∞∑
k=0

(−1)k satisfy

s0 = 1 , s1 = 1− 1 = 0 ,

s2 = s1 + 1 = 1 , s3 = s2 − 1 = 0 ,

...
s2n = 1 , s2n+1 = 0 .

The terms with even index are all equal to 1, whereas the odd ones are 0.
Therefore lim

n→∞
sn cannot exist and the series is indeterminate.

iii) The two previous examples are special cases of the following series, called
geometric series,

∞∑
k=0

qk ,

where q is a fixed number in R. The geometric series is particularly important.
If q = 1, then sn = a0+a1+ . . .+an = 1+1+ . . .+1 = n+1 and lim

n→∞
sn = +∞.

Hence the series diverges to +∞.

If q �= 1 instead, (1.3) implies

sn = 1 + q + q2 + . . .+ qn =
1− qn+1

1− q
.

Recalling Example 1.1 i), we obtain

lim
n→∞

sn = lim
n→∞

1− qn+1

1− q
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1− q
if |q| < 1 ,

+∞ if q > 1 ,

does not exist if q ≤ −1 .
In conclusion

∞∑
k=0

qk

⎧⎪⎪⎪⎨⎪⎪⎪⎩
converges to

1

1− q
if |q| < 1 ,

diverges to +∞ if q ≥ 1 ,

is indeterminate if q ≤ −1 .
�

Sometimes the sequence {ak} is only defined for k ≥ k0: Definition 1.2 then
modifies in the obvious way. Moreover, the following fact holds, whose easy proof
is left to the reader.

Property 1.4 A series’ behaviour does not change by adding, modifying or
eliminating a finite number of terms.
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Note that this property, in case of convergence, is saying nothing about the
sum of the series, which generally changes when the series is altered. For instance,

∞∑
k=1

1

2k
=

∞∑
k=0

1

2k
− 1 = 2− 1 = 1 .

Examples 1.5

i) The series

∞∑
k=2

1

(k − 1)k
is called series of Mengoli. As

ak =
1

(k − 1)k
=

1

k − 1
− 1

k
,

it follows that

s2 = a2 =
1

1 · 2 = 1− 1

2

s3 = a2 + a3 =

(
1− 1

2

)
+

(
1

2
− 1

3

)
= 1− 1

3
,

and in general

sn = a2 + a3 + . . .+ an =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ . . .+

(
1

n− 1
− 1

n

)
=1− 1

n
.

Thus

lim
n→∞

sn = lim
n→∞

(
1− 1

n

)
= 1

and the series converges to 1.

ii) For the series
∞∑
k=1

log
(
1 +

1

k

)
we have

ak = log
(
1 +

1

k

)
= log

k + 1

k
= log(k + 1)− log k ,

so
s1 = log 2 , s2 = log 2 + (log 3− log 2) = log 3 ,

...
sn = log 2 + (log 3− log 2) + . . .+

(
log(n+ 1)− logn

)
= log(n+ 1) .

Hence
lim
n→∞

sn = lim
n→∞

log(n+ 1) = +∞
and the series diverges (to +∞). �

The two instances just considered belong to the larger class of telescopic
series. These are defined by ak = bk+1 − bk for a suitable sequence {bk}k≥k0 .
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Since sn = bn+1 − bk0 , the behaviour of a telescopic series is the same as that of
the sequence {bk}.

There is a simple yet useful necessary condition for a numerical series to con-
verge.

Property 1.6 Let

∞∑
k=0

ak be a converging series. Then

lim
k→∞

ak = 0 . (1.4)

Proof. Let s = lim
n→∞

sn. Since ak = sk − sk−1,

lim
k→∞

ak = lim
k→∞

(sk − sk−1) = s− s = 0 . �

Observe that condition (1.4) is not sufficient to guarantee convergence. The
general term of a series may tend to 0 without the series having to converge.

For example we saw that

∞∑
k=1

log
(
1 +

1

k

)
diverges (Example 1.5 ii)), while the

continuity of the logarithm implies that lim
k→∞

log
(
1 +

1

k

)
= 0.

Example 1.7

It is easy to see that

∞∑
k=1

(
1− 1

k

)k
does not converge, because the general term

ak =
(
1− 1

k

)k
tends to e−1 �= 0. �

If a series

∞∑
k=0

ak converges to s, the quantity

rn = s− sn =
∞∑

k=n+1

ak

is called nth remainder.
Now comes another necessary condition for convergence.

Property 1.8 Let

∞∑
k=0

ak be a convergent series. Then

lim
n→∞

rn = 0 .

Proof. Just note lim
n→∞

rn = lim
n→∞

(s− sn) = s− s = 0 . �
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It is not always possible to predict the behaviour of a series
∞∑
k=0

ak using merely

the definition. It may well happen that the sequence of partial sums cannot be com-
puted explicitly, so it becomes important to have other ways to establish whether
the series converges or not. In case of convergence it could also be necessary to
determine the actual sum explicitly. This may require using more sophisticated
techniques, which go beyond the scopes of this text.

1.3 Series with positive terms

We deal with series

∞∑
k=0

ak for which ak ≥ 0 for any k ∈ N.

Proposition 1.9 A series

∞∑
k=0

ak with positive terms either converges or di-

verges to +∞.

Proof. The sequence sn is monotonically increasing since

sn+1 = sn + an+1 ≥ sn , ∀n ≥ 0 .

It is then sufficient to use Theorem 3 on p. 2 to conclude that lim
n→∞

sn

exists, and is either finite or +∞. �

We list a few tools for studying the convergence of positive-term series.

Theorem 1.10 (Comparison Test) Let
∞∑
k=0

ak and
∞∑
k=0

bk be positive-term

series such that 0 ≤ ak ≤ bk, for any k ≥ 0.

i) If

∞∑
k=0

bk converges, also

∞∑
k=0

ak converges and

∞∑
k=0

ak ≤
∞∑
k=0

bk .

ii) If

∞∑
k=0

ak diverges, then

∞∑
k=0

bk diverges as well.
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Proof. i) Denote by {sn} and {tn} the sequences of partial sums of
∞∑
k=0

ak,
∞∑
k=0

bk

respectively. Since ak ≤ bk for all k,

sn ≤ tn , ∀n ≥ 0 .

By assumption, the series

∞∑
k=0

bk converges, so lim
n→∞

tn = t ∈ R. Propos-

ition 1.9 implies that lim
n→∞

sn = s exists, finite or infinite. By the First

Comparison Theorem (Theorem 4, p. 2) we have

s = lim
n→∞ sn ≤ lim

n→∞ tn = t ∈ R .

Therefore s ∈ R, and the series

∞∑
k=0

ak converges. Furthermore s ≤ t.

ii) By contradiction, if

∞∑
k=0

bk converged, part i) would force

∞∑
k=0

ak to

converge too. �

Examples 1.11

i) Consider
∞∑
k=1

1

k2
. As

1

k2
<

1

(k − 1)k
, ∀k ≥ 2 ,

and the series of Mengoli

∞∑
k=2

1

(k − 1)k
converges (Example 1.5 i)), we conclude

that the given series converges to a sum ≤ 2. One can prove the sum is precisely
π2

6
(see Example 3.18).

ii) The series
∞∑
k=1

1

k
is known as harmonic series. Since log(1+x) ≤ x , ∀x > −1 ,

(Vol. I, Ch. 6, Exercise 12), it follows

log
(
1 +

1

k

) ≤ 1

k
, ∀k ≥ 1 ;

but since
∞∑
k=1

log
(
1 +

1

k

)
diverges (Example 1.5 ii)), we conclude that the har-

monic series diverges.

iii) Subsuming the previous two examples we have
∞∑
k=1

1

kα
, α >0 , (1.5)
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called generalised harmonic series. Because
1

kα
>

1

k
for 0 < α < 1 ,

1

kα
<

1

k2
for α > 2 ,

the Comparison Test tells us the generalised harmonic series diverges for 0 < α <
1 and converges for α > 2. The case 1 < α < 2 will be examined in Example 1.19.

�

Here is a useful criterion that generalises the Comparison Test.

Theorem 1.12 (Asymptotic Comparison Test) Let

∞∑
k=0

ak and

∞∑
k=0

bk be

positive-term series and suppose the sequences {ak}k≥0 and {bk}k≥0 have the
same order of magnitude for k →∞. Then the series have the same behaviour.

Proof. Having the same order of magnitude for k →∞ is equivalent to

lim
k→∞

ak
bk

= � ∈ R \ {0} .

Therefore the sequences

{
ak
bk

}
k≥0

and

{
bk
ak

}
k≥0

are both convergent,

hence both bounded (Theorem 2, p. 2). There must exist constants
M1,M2 > 0 such that∣∣∣∣akbk

∣∣∣∣ ≤M1 and

∣∣∣∣ bkak
∣∣∣∣ ≤M2

for any k > 0, i.e.,

|ak| ≤M1|bk| and |bk| ≤M2|ak| .
Now it suffices to use Theorem 1.10 to finish the proof. �

Examples 1.13

i) Consider
∞∑
k=0

ak =
∞∑
k=0

k + 3

2k2 + 5
and let bk =

1

k
. Then

lim
k→∞

ak
bk

=
1

2

and the given series behaves as the harmonic series, hence diverges.

ii) Take the series

∞∑
k=1

ak =

∞∑
k=1

sin
1

k2
. As sin

1

k2
∼ 1

k2
for k →∞, the series has

the same behaviour of

∞∑
k=1

1

k2
, so it converges. �
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Eventually, here are two results – of algebraic flavour and often easy to employ –
which prescribe sufficient conditions for a series to converge or diverge.

Theorem 1.14 (Ratio Test) Let the series

∞∑
k=0

ak have ak > 0, ∀k ≥ 0.

Assume the limit
lim
k→∞

ak+1

ak
= �

exists, finite or infinite. If � < 1 the series converges; if � > 1 it diverges.

Proof. First, suppose � finite. By definition of limit we know that for any ε > 0,
there is an integer kε ≥ 0 such that

∀k > kε ⇒
∣∣∣∣ak+1

ak
− �

∣∣∣∣ < ε i.e., �− ε <
ak+1

ak
< �+ ε .

Assume � < 1. Choose ε = 1−�
2 and set q = 1+�

2 , so

0 <
ak+1

ak
< �+ ε = q , ∀k > kε .

Repeating the argument we obtain

ak+1 < qak < q2ak−1 < . . . < qk−kεakε+1

hence
ak+1 <

akε+1

qkε
qk , ∀k > kε .

The claim follows by Theorem 1.10 and from the fact that the geometric
series, with q < 1, converges (Example 1.3).
Now consider � > 1. Choose ε = �− 1, and notice

1 = �− ε <
ak+1

ak
, ∀k > kε .

Thus ak+1 > ak > . . . > akε+1 > 0, so the necessary condition for conver-
gence fails, for lim

k→∞
ak �= 0.

Eventually, if � = +∞, we put A = 1 in the condition of limit, and there
exists kA ≥ 0 with ak > 1, for any k > kA. Once again the necessary
condition to have convergence does not hold. �

Theorem 1.15 (Root Test) Given a series

∞∑
k=0

ak with ak ≥ 0, ∀k ≥ 0,

suppose lim
k→∞

k
√
ak = �

exists, finite or infinite. If � < 1 the series converges, if � > 1 it diverges.

Proof. This proof is essentially identical to the previous one, so we leave it to the
reader. �
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Examples 1.16

i) For

∞∑
k=0

k

3k
we have ak =

k

3k
and ak+1 =

k + 1

3k+1
, therefore

lim
k→∞

ak+1

ak
= lim

k→∞
1

3

k + 1

k
=

1

3
< 1 .

The given series converges by the Ratio Test 1.14.

ii) The series

∞∑
k=1

1

kk
has

lim
k→∞

k
√
ak = lim

k→∞
1

k
= 0 < 1 .

The Root Test 1.15 ensures that the series converges. �

We remark that the Ratio and Root Tests do not allow to conclude anything

if � = 1. For example,

∞∑
k=1

1

k
diverges and

∞∑
k=1

1

k2
converges, yet they both satisfy

Theorems 1.14 and 1.15 with � = 1.

In certain situations it may be useful to think of the general term ak as the value
at x = k of a function f defined on the half-line [k0,+∞). Under the appropriate
assumptions, we can relate the behaviour of the series to that of the integral of f
over [k0,+∞). In fact,

Theorem 1.17 (Integral Test) Let f be continuous, positive and decreasing
on [k0,+∞), for k0 ∈ N. Then

∞∑
k=k0+1

f(k) ≤
∫ +∞

k0

f(x) dx ≤
∞∑

k=k0

f(k) . (1.6)

Therefore the integral and the series share the same behaviour:

a)

∫ +∞

k0

f(x) dx converges ⇐⇒
∞∑

k=k0

f(k) converges;

b)

∫ +∞

k0

f(x) dx diverges ⇐⇒
∞∑

k=k0

f(k) diverges.

Proof. Since f decreases, for any k ≥ k0 we have

f(k + 1) ≤ f(x) ≤ f(k) , ∀x ∈ [k, k + 1] ,

and as the integral is monotone,

f(k + 1) ≤
∫ k+1

k

f(x) dx ≤ f(k) .
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Then for all n ∈ N with n > k0 we obtain

n+1∑
k=k0+1

f(k) ≤
∫ n+1

k0

f(x) dx ≤
n∑

k=k0

f(k)

(after re-indexing the first series). Passing to the limit for n → +∞ and
recalling f is positive and continuous, we conclude. �

From inequalities (1.6) it follows easily that∫ +∞

k0

f(x) dx ≤
∞∑

k=k0

f(k) ≤ f(k0) +

∫ +∞

k0

f(x) dx .

Comparing with the improper integral of f allows to estimate, often accurately,
the remainder and the sum of the series, and use this to estimate numerically these
values:

Property 1.18 Under the assumptions of Theorem 1.17, if

∞∑
k=k0

f(k)

converges then for all n ≥ k0∫ +∞

n+1

f(x) dx ≤ rn ≤
∫ +∞

n

f(x) dx , (1.7)

and

sn +

∫ +∞

n+1

f(x) dx ≤ s ≤ sn +

∫ +∞

n

f(x) dx . (1.8)

Proof. If

∞∑
k=k0

f(k) converges, (1.6) can we re-written substituting k0 with any

integer n ≥ k0. Using the first inequality,

rn = s− sn =

∞∑
k=n+1

f(k) ≤
∫ +∞

n

f(x) dx ,

while changing k0 to n+ 1 in the second one yields∫ +∞

n+1

f(x) dx ≤ rn .

This gives formula (1.7), from which (1.8) follows by adding sn to each
side. �
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Examples 1.19

i) The Integral Test is used to study the generalised harmonic series (1.5) for all

admissible values of the parameter α. Note in fact that the function
1

xα
, α> 0,

fulfills the hypotheses and its integral over [1,+∞) converges if and only if α > 1.
In conclusion,

∞∑
k=1

1

kα

{
converges if α > 1 ,

diverges if 0 < α ≤ 1 .

ii) In order to study
∞∑
k=2

1

k log k

we take the map f(x) =
1

x log x
; its integral over [2,+∞) diverges, since∫ +∞

2

1

x log x
dx =

∫ +∞

log 2

1

t
dt = +∞.

Consequently, the series

∞∑
k=2

1

k log k
is divergent.

iii) Suppose we want to estimate the precision of the sum of

∞∑
k=1

1

k3
computed

up to the first 10 terms.

We need to calculate

∫ +∞

n

f(x) dx with f(x) =
1

x3
:∫ +∞

n

1

x3
dx = lim

c→+∞

[
− 1

2x2

]c
n

=
1

2n2
.

By (1.7) we obtain

r10 = s− s10 ≤
∫ +∞

10

1

x3
dx =

1

2 (10)2
= 0.005

and

r10 ≥
∫ +∞

11

1

x3
dx =

1

2 (11)2
= 0.004132 . . .

The sum may be estimated with the help of (1.8):

s10 +
1

2 (11)2
≤ s ≤ s10 +

1

2 (10)2
.

Since

s10 = 1 +
1

23
+ . . .+

1

103
= 1.197532 . . . ,

we find 1.201664 ≤ s ≤ 1.202532 . The exact value for s is 1.202057 . . . �
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1.4 Alternating series

These are series of the form

∞∑
k=0

(−1)kbk with bk > 0 , ∀k ≥ 0.

For them the following result due to Leibniz holds.

Theorem 1.20 (Leibniz’s Alternating Series Test) An alternating

series

∞∑
k=0

(−1)kbk converges if the following conditions hold

i) lim
k→∞

bk = 0 ;

ii) the sequence {bk}k≥0 decreases monotonically .

Denoting by s its sum, for all n ≥ 0 one has

|rn| = |s− sn| ≤ bn+1 and s2n+1 ≤ s ≤ s2n .

Proof. As {bk}k≥0 is a decreasing sequence,

s2n = s2n−2 − b2n−1 + b2n = s2n−2 − (b2n−1 − b2n) ≤ s2n−2

and s2n+1 = s2n−1 + b2n − b2n+1 ≥ s2n−1 .

Thus the subsequence of partial sums made by the terms with even index
decreases, whereas the subsequence of odd indexes increases. For any n ≥
0, moreover,

s2n = s2n−1 + b2n ≥ s2n−1 ≥ . . . ≥ s1

and s2n+1 = s2n − b2n+1 ≤ s2n ≤ . . . ≤ s0 .

Thus {s2n}n≥0 is bounded from below and {s2n+1}n≥0 from above. By
Theorem 3 on p. 2 both sequences converge, so let us put

lim
n→∞

s2n = inf
n≥0

s2n = s∗ and lim
n→∞

s2n+1 = sup
n≥0

s2n+1 = s∗ .

Since
s∗ − s∗ = lim

n→∞
(
s2n − s2n+1

)
= lim

n→∞
b2n+1 = 0 ,

we conclude that the series
∞∑
k=0

(−1)kbk has sum s = s∗ = s∗. In addition,

s2n+1 ≤ s ≤ s2n , ∀n ≥ 0 ,
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in other words the sequence {s2n}n≥0 approximates s from above, while
{s2n+1}n≥0 approximates s from below. For any n ≥ 0 we have

0 ≤ s− s2n+1 ≤ s2n+2 − s2n+1 = b2n+2

and
0 ≤ s2n − s ≤ s2n − s2n+1 = b2n+1 ,

so |rn| = |s− sn| ≤ bn+1. �

Examples 1.21

i) Consider the generalised alternating harmonic series

∞∑
k=1

(−1)k 1

kα
, where

α > 0. As lim
k→∞

bk = lim
k→∞

1
kα = 0 and the sequence

{
1
kα

}
k≥1

is strictly decreasing,

the series converges.

ii) Condition i) in Leibniz’s Test is also necessary, whereas ii) is only sufficient.
In fact, for k ≥ 2 let

bk =

{
1/k k even ,

(k − 1)/k2 k odd .

It is straightforward that bk > 0 and bk is infinitesimal. The sequence is not
monotone decreasing since bk > bk+1 for k even, bk < bk+1 for k odd. Neverthe-
less, ∞∑

k=2

bk =

∞∑
k=2

(−1)k 1
k
+
∑
k ≥ 3
k odd

1

k2

converges, for the two series on the right converge.

iii) We want to approximate the sum of

∞∑
k=0

(−1)k
k!

to the third digit, meaning

with a margin less than 10−3. The series, alternating for bk = 1
k! , converges by

Leibniz’s Test. From |s− sn| ≤ bn+1 we see that for n = 6

0 < s6 − s ≤ b7 =
1

5040
<

1

5000
= 0.0002 < 10−3 .

As s6 = 0.368056 . . . , the estimate s ∼ 0.368 is correct up to the third place. �

To study series with arbitrary signs the notion of absolute convergence is useful.

Definition 1.22 The series

∞∑
k=0

ak converges absolutely if the positive-

term series

∞∑
k=0

|ak| converges.
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Example 1.23

The series

∞∑
k=0

(−1)k 1

k2
converges absolutely because

∞∑
k=0

1

k2
converges. �

The next fact ensures that absolute convergence implies convergence.

Theorem 1.24 (Absolute Convergence Test) If

∞∑
k=0

ak converges abso-

lutely then it also converges, and∣∣∣∣∣
∞∑
k=0

ak

∣∣∣∣∣ ≤
∞∑
k=0

|ak| .

Proof. The proof is similar to that of the Absolute Convergence Test for improper
integrals.
Define sequences

a+k =

{
ak if ak ≥ 0

0 if ak < 0
and a−k =

{
0 if ak ≥ 0

−ak if ak < 0 .

Note a+k , a
−
k ≥ 0 for all k ≥ 0, and

ak = a+k − a−k , |ak| = a+k + a−k .

As 0 ≤ a+k , a
−
k ≤ |ak|, for any k ≥ 0, the Comparison Test (Theorem 1.10)

tells us that

∞∑
k=0

a+k and

∞∑
k=0

a−k converge. But for any n ≥ 0,

n∑
k=0

ak =
n∑

k=0

(
a+k − a−k

)
=

n∑
k=0

a+k −
n∑

k=0

a−k ,

so also the series

∞∑
k=0

ak =

∞∑
k=0

a+k −
∞∑
k=0

a−k converges.

Passing now to the limit for n→∞ in∣∣∣∣∣
n∑

k=0

ak

∣∣∣∣∣ ≤
n∑

k=0

|ak| ,

we obtain the desired inequality. �
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Remark 1.25 There are series that converge, but not absolutely. The alternating

harmonic series

∞∑
k=1

(−1)k 1
k
is one such example, for it has a finite sum, but does not

converge absolutely, since the harmonic series
∞∑
k=1

1

k
diverges. In such a situation

one speaks about conditional convergence. �

The previous criterion allows one to study alternating series by their absolute
convergence. As the series of absolute values has positive terms, all criteria seen
in Sect 1.3 apply.

1.5 The algebra of series

Two series

∞∑
k=0

ak,

∞∑
k=0

bk can be added, multiplied by numbers and multiplied

between themselves. The sum is defined in the obvious way as the series whose
formal general term reads ck = ak + bk:

∞∑
k=0

ak +

∞∑
k=0

bk =

∞∑
k=0

(ak + bk) .

Assume the series both converge or diverge, and write s =

∞∑
k=0

ak, t =

∞∑
k=0

bk

(s, t ∈ R ∪ {±∞ }). The sum is determinate (convergent or divergent) whenever
the expression s+ t is defined. If so,

∞∑
k=0

(ak + bk) = s+ t

and the sum converges if s+ t ∈ R, diverges if s+ t = ±∞.
If one series converges and the other is indeterminate the sum is necessarily

indeterminate.
Apart from these cases, the nature of the sum cannot be deduced directly from

the behaviour of the two summands, and must be studied case by case.

Let now λ ∈ R \ {0}; the series λ

∞∑
k=0

ak is by definition the series with gen-

eral term λak. Its behaviour coincides with that of

∞∑
k=0

ak. Anyhow, in case of

convergence or divergence,
∞∑
k=0

λak = λs .
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In order to define the product some thinking is needed. If two series converge
respectively to s, t ∈ R we would like the product series to converge to st. This
cannot happen if one defines the general term ck of the product simply as the
product of the corresponding terms, by setting ck = akbk. An example will clarify
the issue: consider the two geometric series with terms ak =

1
2k and bk =

1
3k . Then

∞∑
k=0

1

2k
=

1

1− 1
2

= 2 ,

∞∑
k=0

1

3k
=

1

1− 1
3

=
3

2

while ∞∑
k=0

1

2k
1

3k
=

∞∑
k=0

1

6k
=

1

1− 1
6

=
6

5
�= 2

3

2
= 3 .

One way to multiply series and preserve the above property is the so-called
Cauchy product, defined by its general term

ck =

k∑
j=0

ajbk−j = a0bk + a1bk−1 + · · ·+ ak−1b1 + akb0 . (1.9)

By arranging the products a�bm (�,m ≥ 0) in a matrix

b0 b1 b2 . . .

a0 a0b0 a0b1 a0b2 . . .

a1 a1b0 a1b1 a1b2 . . .

a2 a2b0 a2b1 a2b2 . . .
...

each term ck becomes the sum of the entries on the kth anti-diagonal.
The reason for this particular definition will become clear when we will discuss

power series (Sect. 2.4.1).

It is possible to prove that the absolute convergence of

∞∑
k=0

ak and

∞∑
k=0

bk is

sufficient to guarantee the convergence of
∞∑
k=0

ck, in which case

∞∑
k=0

ck =

( ∞∑
k=0

ak

)( ∞∑
k=0

bk

)
= st .
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1.6 Exercises

1. Find the general term an of the following sequences, and compute lim
n→∞ an:

a)
1

2
,
2

3
,
3

4
,
4

5
, . . . b) −2

3
,
3

9
, − 4

27
,
5

81
, . . . c) 0, 1,

√
2,
√
3,
√
4, . . .

2. Study the behaviour of the sequences below and compute the limit if this
exists:

a) an = n(n− 1) , n ≥ 0 b) an =
n+ 5

2n− 1
, n ≥ 0

c) an =
2 + 6n2

3n+ n2
, n ≥ 1 d) an =

3
√
n

1 + 3
√
n
, n ≥ 0

e) an =
5n

3n+1
, n ≥ 0 f) an =

(−1)n−1n2

n2 + 1
, n ≥ 0

g) an = arctan5n , n ≥ 0 h) an = 3 + cosnπ , n ≥ 0

i) an = 1 + (−1)n sin 1

n
, n ≥ 1 �) an =

n cosn

n3 + 1
, n ≥ 0

m) an =
√
n+ 3−√

n , n ≥ 0 n) an =
log(2 + en)

4n
, n ≥ 1

o) an = −3n+ log(n+ 1)− logn , n ≥ 1 p) an =
(−3)n
n!

, n ≥ 1

3. Study the behaviour of the following sequences:

a) an = n−√
n b) an = (−1)n n2 + 1√

n2 + 2

c) an =
3n − 4n

1 + 4n
d) an =

(2n)!

n!

e) an =
(2n)!

(n!)2
f) an =

(
n

3

)
6

n3

g) an =

(
n2 − n+ 1

n2 + n+ 2

)√
n2+2

h) an = 2n sin(2−nπ)

i) an = n cos
n+ 1

n

π

2
�) an = n!

(
cos

1√
n!
− 1

)
4. Tell whether the following series converge; if they do, calculate their sum:

a)

∞∑
k=1

4

(
1

3

)k−1

b)

∞∑
k=1

2k

k + 5
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c)
∞∑
k=0

tan k d)
∞∑
k=1

(
sin

1

k
− sin

1

k + 1

)

e)

∞∑
k=0

3k + 2k

6k
f)

∞∑
k=1

1

2 + 3−k

5. Using the geometric series, write the number 2.317 = 2.3171717 . . . as a ratio
of integers.

6. Determine the values of the real number x for which the series below converge.
Then compute the sum:

a)
∞∑
k=2

xk

5k
b)

∞∑
k=1

3k(x+ 2)k

c)

∞∑
k=1

1

xk
d)

∞∑
k=0

tank x

7. Find the real numbers c such that

∞∑
k=2

(1 + c)−k = 2 .

8. Suppose

∞∑
k=1

ak (ak �= 0) converges. Show that

∞∑
k=1

1

ak
cannot converge.

9. Study the convergence of the following positive-term series:

a)
∞∑
k=0

3

2k2 + 1
b)

∞∑
k=2

2k

k5 − 3

c)

∞∑
k=0

3k

k!
d)

∞∑
k=1

k!

kk

e)
∞∑
k=1

k arcsin
7

k2
f)

∞∑
k=1

log

(
1 +

5

k2

)

g)

∞∑
k=1

log k

k
h)

∞∑
k=1

1

2k − 1

i)
∞∑
k=1

sin
1

k
�)

∞∑
k=0

2 + 3k

2k

m)

∞∑
k=1

k + 3
3
√
k9 + k2

n)

∞∑
k=1

cos2 k

k
√
k
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10. Find the real numbers p such that
∞∑
k=2

1

k(log k)p
converges.

11. Estimate the sum s of the series

∞∑
k=0

1

k2 + 4
using the first six terms.

12. Study the convergence of the following alternating series:

a)

∞∑
k=1

(−1)k log
(
1

k
+ 1

)
b)

∞∑
k=0

(−1)k
√

k3 + 3

2k3 − 5

c)

∞∑
k=1

sin

(
kπ +

1

k

)
d)

∞∑
k=1

(−1)k
((

1 +
1

k2

)√
2

− 1

)

e)

∞∑
k=1

(−1)k3k
4k − 1

f)

∞∑
k=1

(−1)k+1 k2

k3 + 1

13. Check that the series below converge. Determine the minimum number n of
terms necessary for the nth partial sum sn to approximate the sum with the
given margin:

a)

∞∑
k=1

(−1)k+1

k4
, |rn| < 10−3

b)

∞∑
k=1

(−2)k
k!

, |rn| < 10−2

c)

∞∑
k=1

(−1)kk
4k

, |rn| < 2 · 10−3

14. Study the absolute convergence of the following series:

a)

∞∑
k=1

(−1)k−1

3
√
k

b)

∞∑
k=1

(−4)k
k4

c)

∞∑
k=1

(−2)k
k!

d)

∞∑
k=1

cos 3k

k3

e)

∞∑
k=1

(−1)k k

k2 + 3
f)

∞∑
k=1

sin k π
6

k
√
k

g)

∞∑
k=1

(−1)k+15k−1

(k + 1)2 4k+2
h)

∞∑
k=1

10k

(k + 2) 52k+1
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15. Study the convergence of the series:

a)

∞∑
k=1

(
1− cos

1

k3

)
b)

∞∑
k=1

sink

k2

c)
∞∑
k=1

1

k3

(
k

2

)
d)

∞∑
k=1

(−1)k
(

k
√
2− 1

)

e)

∞∑
k=1

(−1)k−1k!

1 · 3 · 5 · · · (2k − 1)
f)

∞∑
k=1

(−1)k 3k − 1

2k + 1

16. Verify the following series converge and then compute the sum:

a)
∞∑
k=1

(−1)k 2
k−1

5k
b)

∞∑
k=1

3k

2 · 42k

c)

∞∑
k=1

2k + 1

k2(k + 1)2
d)

∞∑
k=0

1

(2k + 1)(2k + 3)

1.6.1 Solutions

1. General terms and limits:

a) an =
n

n+ 1
, n ≥ 1 , lim

n→∞
an = 1

b) an = (−1)nn+ 1

3n
, n ≥ 1 , lim

n→∞
an = 0

c) an =
√
n , n ≥ 0 , lim

n→∞
an = +∞

2. Sequences’ behaviour and limit:

a) Diverges to +∞. b) Converges to 1
2 . c) Converges to 6.

d) Converges to 1. e) Diverges to +∞.

f) Since lim
n→∞

n2

n2 + 1
= 1, the sequence is indeterminate because

lim
n→∞

a2n = lim
n→∞

− (2n)2

(2n)2 + 1
= −1 , lim

n→∞
a2n+1 = lim

n→∞
(2n+ 1)2

(2n+ 1)2 + 1
= 1 .

g) Converges to π
2 .

h) Recalling that cosnπ = (−1)n, we conclude immediately that the series is
indeterminate.

i) Since {sin 1
n}n≥1 is infinitesimal and {(−1)n}n≥1 bounded, we have

lim
n→∞

(−1)n sin 1

n
= 0 ,

hence the given sequence converges to 1.
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�) Since ∣∣∣∣n cosnn3 + 1

∣∣∣∣ ≤ n

n3 + 1
≤ n

n3
=

1

n2
, ∀n ≥ 1 ,

by the Comparison Test we have

lim
n→∞

n cosn

n3 + 1
= 0 .

m) Converges to 0.

n) We have

log(2 + en)

4n
=

log en(1 + 2e−n)

4n
=

1

4
+
log(1 + 2e−n)

4n

so lim
n→∞

an =
1

4
.

o) Diverges to −∞. p) Converges to 0.

3. Sequences’ behaviour:

a) Diverges to +∞. b) Indeterminate.

c) Recalling the geometric sequence (Example 1.1 i)), we have

lim
n→∞

an = lim
n→∞

4n
(
(34 )

n − 1
)

4n(4−n + 1)
= −1 ;

and the convergence to −1 follows.
d) Diverges to +∞.

e) Let us write

an =
2n(2n− 1) · · · (n+ 2)(n+ 1)

n(n+ 1) · · · 2 · 1 =
2n

n
· 2n− 1

n− 1
· · · n+ 2

2
· n+ 1

1
> n+ 1 ;

as lim
n→∞

(n+1) = +∞, the Second Comparison Theorem (infinite case), implies

the sequence diverges to +∞.

f) Converges to 1.

g) Since

an = exp

(√
n2 + 2 log

n2 − n+ 1

n2 + n+ 2

)
,

we consider the sequence

bn =
√
n2 + 2 log

n2 − n+ 1

n2 + n+ 2
=
√
n2 + 2 log

(
1− 2n+ 1

n2 + n+ 2

)
.

Note that

lim
n→∞

2n+ 1

n2 + n+ 2
= 0 ,

so

log

(
1− 2n+ 1

n2 + n+ 2

)
∼ − 2n+ 1

n2 + n+ 2
, n→∞ .



26 1 Numerical series

Thus

lim
n→∞ bn = − lim

n→∞

√
n2 + 2 (2n+ 1)

n2 + n+ 2
= − lim

n→∞
2n2

n2
= −2 ;

and the sequence {an} converges to e−2.

h) Setting x = 2−nπ, we have x→ 0+ for n→∞, so

lim
n→∞

an = lim
x→0+

π
sinx

x
= π

and {an} tends to π.

i) Observe

cos
n+ 1

n

π

2
= cos

(π
2
+

π

2n

)
= − sin

π

2n
;

therefore, setting x = π
2n , we have

lim
n→∞

an = − lim
n→∞

n sin
π

2n
= − lim

x→0+

π

2

sinx

x
= −π

2

so {an} converges to −π/2.
�) Converges to −1/2.

4. Series’ convergence and computation of the sum:

a) Converges with sum 6.

b) Note

lim
k→∞

ak = lim
k→∞

2k

k + 5
= 2 �= 0 .

Hence the series does not converge, in fact it diverges to +∞.

c) Does not converge.

d) The series is telescopic; we have

sn = (sin 1− sin
1

2
) + (sin

1

2
− sin

1

3
) + · · ·+ (sin

1

n
− sin

1

n+ 1
)

= sin 1− sin
1

n+ 1
.

As lim
n→∞

sn = sin 1, the series converges with sum sin 1.

e) Because

∞∑
k=0

3k + 2k

6k
=

∞∑
k=0

(
3

6

)k

+

∞∑
k=0

(
2

6

)k

=
1

1− 1
2

+
1

1− 1
3

=
7

2
,

the series converges to 7/2.

f) Does not converge.
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5. Write

2.317 = 2.3 +
17

103
+

17

105
+

17

107
+ . . . = 2.3 +

17

103

(
1 +

1

102
+

1

104
+ . . .

)

= 2.3 +
17

103

∞∑
k=0

1

102k
= 2.3 +

17

103
1

1− 1
102

=
23

10
+

17

1000

100

99

=
23

10
+

17

990
=

1147

495
.

6. Series’ convergence and computation of the sum:

a) Converges for |x| < 5 and the sum is s = x2

5(5−x) .

b) This geometric series has q = 3(x+ 2), so it converges if |3(x+ 2)| < 1, i.e., if
x ∈ (− 7

3 ,− 5
3 ). For x in this range the sum is

s =
1

1− 3(x+ 2)
− 1 = −3x+ 6

3x+ 5
.

c) Converges for x ∈ (−∞,−1) ∪ (1,+∞) with sum s = 1
x−1 .

d) This is a geometric series where q = tanx: it converges if | tanx| < 1, that is
if x ∈ ⋃k∈Z

(−π
4 + kπ, π

4 + kπ
)
. For such x, the sum is s = 1

1−tan x .

7. This is a geometric series with q = 1
1+c , which converges for |1+ c| > 1, i.e., for

c < −2 or c > 0. If so,

∞∑
k=2

(1 + c)−k =
1

1− 1
1−c

− 1− 1

1− c
=

1

c(1 + c)
.

Imposing 1
c(1+c) = 2, we obtain c = −1±√

3
2 . But as the parameter c varies within

(−∞,−2) ∪ (0,+∞), the only admissible value is c = −1+
√
3

2 .

8. As

∞∑
k=1

ak converges, the necessary condition lim
k→∞

ak = 0 must hold. Therefore

lim
k→∞

1

ak
is not allowed to be 0, so the series

∞∑
k=1

1

ak
cannot converge.

9. Convergence of positive-term series:

a) Converges.

b) The general term ak tends to +∞ as k → ∞. By Property 1.6 the series
diverges to +∞. Alternatively, one could invoke the Root Test 1.15.
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c) By the Ratio Test 1.14:

lim
k→∞

ak+1

ak
= lim

k→∞
3k+1

(k + 1)!

k!

3k
;

writing (k + 1)! = (k + 1)k! and simplifying, we get

lim
k→∞

ak+1

ak
= lim

k→∞
3

k + 1
= 0 .

The series then converges.

d) Using again the Ratio Test 1.14:

lim
k→∞

ak+1

ak
= lim

k→∞
(k + 1)!

(k + 1)k+1
· k

k

k!
= lim

k→∞

(
k

k + 1

)k

=
1

e
< 1

tells that the series converges.

e) As

ak ∼ k
7

k2
=

7

k
for k →∞ ,

we conclude that the series diverges, by the Asymptotic Comparison Test 1.12
and the fact that the harmonic series diverges.

f) Converges.

g) Note log k > 1 for k ≥ 3, so that

log k

k
>

1

k
, k ≥ 3 .

The Comparison Test 1.10 guarantees divergence.
Alternatively, we may observe that the function f(x) = log x

x is positive and
continuous for x > 1. The sign of the first derivative shows f is decreasing
when x > e. We can therefore use the Integral Test 1.17:∫ +∞

3

log x

x
dx = lim

c→+∞

∫ c

3

log x

x
dx = lim

c→+∞
(log x)2

2

∣∣∣∣c
3

= lim
c→+∞

(log c)2

2
− (log 3)2

2
= +∞ ,

then conclude that the given series diverges.

h) Converges by the Asymptotic Comparison Test 1.12, because

1

2k − 1
∼ 1

2k
, k → +∞ ,

and the geometric series

∞∑
k=1

1

2k
converges.
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i) Diverges by the Asymptotic Comparison Test 1.12, because

sin
1

k
∼ 1

k
, k → +∞ ,

and the harmonic series

∞∑
k=1

1

k
diverges.

�) Diverges. m) Converges.

n) Converges by the Comparison Test 1.10, as

cos2 k

k
√
k
≤ 1

k
√
k
, k → +∞

and the generalised harmonic series

∞∑
k=1

1

k3/2
converges.

10. Converges for p > 1.

11. Compute

∫ +∞

n

f(x) dx where f(x) = 1
x2+4 is a positive, decreasing and con-

tinuous map on [0,+∞):∫ +∞

n

1

x2 + 4
dx =

1

2

[
arctan

x

2

]+∞

n
=

π

4
− 1

2
arctan

n

2
.

Since

s6 =
1

4
+
1

5
+ . . .+

1

40
= 0.7614 ,

using (1.8)

s6 +

∫ +∞

7

f(x) dx ≤ s ≤ s6 +

∫ +∞

6

f(x) dx ,

and we find 0.9005 ≤ s ≤ 0.9223 .

12. Convergence of alternating series:

a) Converges conditionally. b) Does not converge.

c) Since

sin
(
kπ +

1

k

)
= cos(kπ) sin

1

k
= (−1)k sin 1

k
,

the series is alternating, with bk = sin 1
k . Then

lim
k→∞

bk = 0 and bk+1 < bk .

By Leibniz’s Test 1.20, the series converges. It does not converge absolutely
since sin 1

k ∼ 1
k for k → ∞, so the series of absolute values is like a harmonic

series, which diverges.
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d) Converges absolutely: by the relationship (1 + x)α − 1 ∼ αx, for x → 0, it
follows ∣∣∣∣(−1)k((1 + 1

k2
)√2 − 1

)∣∣∣∣ ∼
√
2

k2
, k →∞ .

Bearing in mind Example 1.11 i), we may apply the Asymptotic Comparison
Test 1.12 to the series of absolute values.

e) Does not converges.

f) This is an alternating series with bk =
k2

k3 + 1
. It is straightforward to check

lim
k→∞

bk = 0 .

That the sequence bk is decreasing eventually is, instead, far from obvious. To
show this fact, consider the map

f(x) =
x2

x3 + 1
,

and consider its monotonicity. Since

f ′(x) =
x(2 − x3)

(x3 + 1)2

and we are only interested in x positive, we have f ′(x) < 0 if 2 − x3 < 0,
i.e., x > 3

√
2. Therefore, f decreases on the interval ( 3

√
2,+∞). This means

f(k+1) < f(k), so bk+1 < bk for k ≥ 2. In conclusion, the series converges by
Leibniz’s Test 1.20.

13. Series’ approximation:

a) n = 5.

b) The series is alternating with bk = 2k

k! . Immediately we see lim
k→∞

bk = 0, and

bk+1 < bk for any k > 1 since

bk+1 =
2k+1

(k + 1)!
<

2k

k!
= bk ⇐⇒ 2

k + 1
< 1 ⇐⇒ k > 1 .

Imposing bn+1 < 10−2 = 0.01, one may check that

b7 =
8

315
= 0.02 , b8 =

2

315
= 0.006 < 0.01 .

The minimum number of terms needed is n = 7.

c) n = 5.
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14. Absolute convergence:

a) There is convergence but not absolute convergence. In fact, the alternating
series converges by Leibnitz’s Test 1.20, whereas the series of absolute values
is generalised harmonic with exponent α = 1

3 < 1.

b) Does not converge.

c) The series converges absolutely, as one sees easily by the Ratio Test 1.14, for
example, since

lim
k→∞

bk+1

bk
= lim

k→∞
2k+1

(k + 1)!
· k!
2k

= lim
k→∞

2

k + 1
= 0 < 1 .

d) Convergence is absolute, since the series of absolute values converges by the
Comparison Test 1.10: ∣∣∣∣cos 3kk3

∣∣∣∣ ≤ 1

k3
, ∀k ≥ 1 .

e) Converges, but not absolutely.

f) Converges absolutely.

g) Does not converge since its general term does not tend to 0.

h) Converges absolutely.

15. Convergence of series:

a) Converges.

b) Observe ∣∣∣∣sin kk2

∣∣∣∣ ≤ 1

k2
, for all k > 0 ;

the series

∞∑
k=1

1

k2
converges, so the Comparison Test 1.10 forces the series of

absolute values to converge, too. Thus the given series converges absolutely.

c) Diverges.

d) This is an alternating series, with bk =
k
√
2−1. The sequence {bk}k≥1 decreases,

as k
√
2 > k+1

√
2 for any k ≥ 1. Thus we can use Leibniz’s Test 1.20 to infer

convergence. The series does not converge absolutely, for

k
√
2− 1 = elog 2/k − 1 ∼ log 2

k
, k →∞ ,

just like the harmonic series, which diverges.
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e) Note

bk =
k!

1 · 3 · 5 · · · (2k − 1)
= 1 · 2

3
· 3
5
· · · k

2k − 1
<

(
2

3

)k−1

since k

2k − 1
<

2

3
, ∀k ≥ 2 .

The convergence is then absolute, because

∞∑
k=1

bk converges by the Comparison

Test 1.10 (it is bounded by a geometric series with q = 2
3 < 1).

f) Does not converge.

16. Checking series’ convergence and computing the sum:

a) −1/7 .
b) Up to a factor this is a geometric series; by Example 1.3 iii) we have

∞∑
k=1

3k

2 · 42k =
1

2

∞∑
k=1

(
3

16

)k

=
1

2

(
1

1− 3
16

− 1

)
=

3

26

(notice that the sum starts from index 1).

c) It is a telescopic series because

2k + 1

k2(k + 1)2
=

1

k2
− 1

(k + 1)2
;

so

sn = 1− 1

(n+ 1)2
,

and then s = lim
n→∞

sn = 1.

d) 1/2 .
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Series of functions and power series

The idea of approximating a function by a sequence of simple functions, or known
ones, lies at the core of several mathematical techniques, both theoretical and
practical. For instance, to prove that a differential equation has a solution one
can construct recursively a sequence of approximating functions and show they
converge to the required solution. At the same time, explicitly finding the values
of such a solution may not be possible, not even by analytical methods, so one idea
is to adopt numerical methods instead, which can furnish approximating functions
with a particularly simple form, like piecewise polynomials. It becomes thus crucial
to be able to decide when a sequence of maps generates a limit function, what sort
of convergence towards the limit we have, and which features of the functions in
the sequence are inherited by the limit. All this will be the content of the first part
of this chapter.

The recipe for passing from a sequence of functions to the corresponding series
is akin to what we have seen for a sequence of real numbers; the additional com-
plication consists in the fact that now different kinds of convergence can occur.
Expanding a function in series represents one of the most important tools of
Mathematical Analysis and its applications, again both from the theoretical and
practical point of view. Fundamental examples of series of functions are given by
power series, discussed in the second half of this chapter, and by Fourier series, to
which the whole subsequent chapter is dedicated. Other instances include series of
the classical orthogonal functions, like the expansions in Legendre, Chebyshev or
Hermite polynomials, Bessel functions, and so on.

In contrast to the latter cases, which provide a global representation of a func-
tion over an interval of the real line, power series have a more local nature; in fact,
a power series that converges on an interval (x0 −R, x0 +R) represents the limit
function therein just by using information on its behaviour on an arbitrarily small
neighbourhood of x0. The power series of a functions may actually be thought of
as a Taylor expansion of infinite order, centred at x0. This fact reflects the intu-
itive picture of a power series as an algebraic polynomial of infinite degree, that
is a sum of infinitely many monomials of increasing degree. In the final sections
we will address the problem of rigorously determining the convergence set of a

C. Canuto, A. Tabacco:Mathematical Analysis II, 2nd Ed.,
UNITEXT – La Matematica per il 3+2 85, DOI 10.1007/978-3-319-12757-6_2,
© Springer International Publishing Switzerland 2015
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power series; then we will study the main properties of power series and of series
of functions, called analytic functions, that can be expanded in series on a real
interval that does not reduce to a point.

2.1 Sequences of functions

Let X be an arbitrary subset of the real line. Suppose that there is a real map
defined on X , which we denote fn : X → R, for any n larger or equal than a
certain n0 ≥ 0. The family {fn}n≥n0 is said sequence of functions. Examples
are the families fn(x) = sin(x+ 1

n ), n ≥ 1 or fn(x) = xn, n ≥ 0, on X = R.
As for numerical sequences, we are interested in the study of the behaviour of

a sequence of maps as n→∞. The first step is to analyse the numerical sequence
given by the values of the maps fn at each point of X .

Definition 2.1 The sequence {fn}n≥n0 converges pointwise at x ∈ X if
the numerical sequence {fn(x)}n≥n0 converges as n→∞. The subset A ⊆ X
of such points x is called set of pointwise convergence of the sequence
{fn}n≥n0 . This defines a map f : A→ R by

f(x) = lim
n→∞

fn(x) , ∀x ∈ A .

We shall write fn → f pointwise on A, and speak of the limit function f of
the sequence.

Note f is the limit function of the sequence if and only if

lim
n→∞

|fn(x)− f(x)| = 0 , ∀x ∈ A .

Examples 2.2

i) Let fn(x) = sin
(
x + 1

n

)
, n ≥ 1, on X = R. Observing that x + 1

n → x as
n→∞, and using the sine’s continuity, we have

f(x) = lim
n→∞

sin
(
x+

1

n

)
= sinx , ∀x ∈ R ,

hence A = X = R.

ii) Consider fn(x) = xn, n ≥ 0, on X = R; recalling (1.1) we have

f(x) = lim
n→∞

xn =

{
0 if −1 < x < 1 ,

1 if x = 1 .
(2.1)

The sequence converges for no other value x, so A = (−1, 1]. �

The notion of pointwise convergence is not sufficient, in many cases, to transfer
the properties of the single maps fn onto the limit function f . Continuity (but also
differentiability, or integrability) is one such case. In the above examples the maps
fn(x) are continuous, but the limit function is continuous in case i), not for ii).
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A more compelling convergence requirement, that warrants continuity is passed
onto the limit, is the so-called uniform convergence. To understand the difference
with pointwise convergence, let us make Definition 2.1 explicit. This states that
for any point x ∈ A and any ε > 0 there is an integer n such that

∀n ≥ n0 , n > n =⇒ |fn(x)− f(x)| < ε .

In general n depends not only upon ε but also on x, i.e., n = n(ε, x). In other
terms the index n, after which the values fn(x) approximate f(x) with a margin
smaller than ε, may vary from point to point. For example consider fn(x) = xn,
with 0 < x < 1; then the condition

|fn(x) − f(x)| = |xn − 0| = xn < ε

holds for any n > log ε
log x . Therefore the smallest n for which the condition is valid

tends to infinity as x approaches 1. Hence there is no n depending on ε and not
on x.

The convergence is said uniform whenever the index n can be chosen inde-
pendently of x. This means that, for any ε > 0, there must be an integer n such
that

∀n ≥ n0 , n > n =⇒ |fn(x)− f(x)| < ε , ∀x ∈ A .

Using the notion of supremum and infimum, and recalling ε is arbitrary, we can
reformulate as follows: for any ε > 0 there is an integer n such that

∀n ≥ n0 , n > n =⇒ sup
x∈A

|fn(x) − f(x)| < ε .

Definition 2.3 The sequence {fn}n≥n0 converges uniformly on A to the
limit function f if

lim
n→∞

sup
x∈A

|fn(x)− f(x)| = 0 .

Otherwise said, for any ε > 0 there is an n = n(ε) such that

∀n ≥ n0 , n > n =⇒ |fn(x) − f(x)| < ε , ∀x ∈ A . (2.2)

We will write fn → f uniformly on A.

Let us introduce the symbol

‖g‖∞,A = sup
x∈A

|g(x)| ,
for a bounded map g : A → R; this quantity is variously called infinity norm,
supremum norm, or sup-norm for short (see Appendix A.2.1, p. 521, for a compre-
hensive presentation of the concept of norm of a function). An alternative definition
of uniform convergence is thus

lim
n→∞

‖fn − f‖∞,A = 0 . (2.3)
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Clearly, the uniform convergence of a sequence is a stronger condition than
pointwise convergence. By definition of sup-norm in fact,

∀x ∈ A , |fn(x)− f(x)| ≤ ‖fn − f‖∞,A

so if the norm on the right tends to 0, so does the absolute value on the left.
Therefore

Proposition 2.4 If the sequence {fn}n≥n0 converges to f uniformly on A,
it converges pointwise on A.

The converse is false, as some examples show.

Examples 2.5

i) The sequence fn(x) = sin
(
x+ 1

n

)
, n ≥ 1, converges uniformly to f(x) = sinx

on R. In fact, using known trigonometric identities, we have, for any x ∈ R,∣∣∣ sin(x+ 1

n

)
− sinx

∣∣∣ = 2
∣∣∣ sin 1

2n

∣∣∣∣∣∣ cos(x+ 1

2n

)∣∣∣ ≤ 2 sin
1

2n
;

moreover, equality is attained for x = − 1
2n , for example. Therefore

‖fn − f‖∞,R = sup
x∈R

∣∣∣ sin(x+ 1

n

)
− sinx

∣∣∣ = 2 sin
1

2n

and passing to the limit for n→∞ we obtain the result (see Fig. 2.1, left).

ii) As already seen, fn(x) = xn, n ≥ 0, does not converge uniformly on I = [0, 1]
to f defined in (2.1). For any n ≥ 0 in fact, ‖fn−f‖∞,I = sup

0≤x<1
xn = 1 (Fig. 2.1,

right). Nevertheless, the convergence is uniform on every sub-interval Ia = [0, a],
0 < a < 1, for

‖fn − f‖∞,Ia = sup
x∈[0,a]

|xn − 0| = an → 0 as n→∞ .

Therefore the sequence converges to zero uniformly on Ia. More generally one can
show the sequence converges uniformly to zero on any interval [−a, a], 0 < a < 1.

�

The following criterion is immediate to check, and useful for verifying uniform
convergence.

Proposition 2.6 Let the sequence {fn}n≥n0 converge pointwise on A to a
function f . Take a numerical sequence {Mn}n≥n0 , infinitesimal for n → ∞,
such that

|fn(x)− f(x)| ≤Mn , ∀x ∈ A .

Then fn → f uniformly on A.

The property has been used in the previous examples, with Mn = 2 sin 1
2n for

case i), and Mn = an for ii).
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x

y

f10
f2

f1

sin x

x

y

f1

f2
f10

f100

1f

Figure 2.1. Graphs of the functions fn and their limit f relative to Examples 2.5 i)
(left) and ii) (right)

2.2 Properties of uniformly convergent sequences

As announced earlier, under uniform convergence the limit function inherits con-
tinuity from the sequence.

Theorem 2.7 Let the sequence of continuous maps {fn}n≥n0 converge uni-
formly to f on the real interval I. Then f is continuous on I.

Proof. By uniform convergence, given ε > 0, there is an n = n(ε) ≥ n0 such that
for any n > n and any x ∈ I

|fn(x)− f(x)| < ε

3
.

Fix x0 ∈ I and take n > n. As fn is continuous at x0, there is a δ > 0 such
that, for each x ∈ I with |x− x0| < δ,

|fn(x) − fn(x0)| < ε

3
.

Let therefore x ∈ I with |x− x0| < δ. Then

|f(x)− f(x0)| ≤ |f(x)− fn(x)| + |fn(x)− fn(x0)|+

+|fn(x0)− f(x0)| < ε

3
+

ε

3
+

ε

3
= ε ,

so f is continuous at x0 . �

This result can be used to say that pointwise convergence is not always uniform.
In fact if the limit function is not continuous while the single terms in the sequence
are, the convergence cannot be uniform.
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2.2.1 Interchanging limits and integrals

Suppose fn → f pointwise on I = [a, b]. If the maps are integrable, it is not true,
in general, that ∫ b

a

fn(x) dx →
∫ b

a

f(x) dx .

Example 2.8

Let fn(x) = xn2e−nx on I = [0, 1]. Then fn(x)→ 0 = f(x), as n→∞, pointwise

on I. Therefore

∫ 1

0

f(x) dx = 0; on the other hand, setting ϕ(t) = te−t we have∫ 1

0

fn(x) dx =

∫ 1

0

ϕ(nx)n dx =

∫ n

0

ϕ(t) dt = −ne−n +
[−e−t

]n
0

= −ne−n − e−n + 1→ 1 for n→∞ . �

Uniform convergence is a sufficient condition for transferring integrability to
the limit.

Theorem 2.9 Let I = [a, b] be a closed, bounded interval and {fn}n≥n0 a
sequence of integrable functions over I such that fn → f uniformly on I.
Then f is integrable on I, and∫ b

a

fn(x) dx→
∫ b

a

f(x) dx as n→∞ . (2.4)

Proof. The integrability of the limit function is immediate if each fn is continuous,
for in that case f itself is continuous by the previous theorem. In general,
one needs to approximate the functions by means of step functions, as
prescribed by the definition of an integrable map; the details are left to
the reader’s good will.
In order to prove (2.4), let us fix ε > 0; then there exists an n = n(ε) ≥ n0

such that, for any n > n and any x ∈ I,

|fn(x) − f(x)| < ε

b− a
.

Therefore, for all n > n, we have∣∣∣∣∣
∫ b

a

fn(x) dx −
∫ b

a

f(x) dx

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

(
fn(x)− f(x)

)
dx

∣∣∣∣∣
≤
∫ b

a

|fn(x)− f(x)| dx <

∫ b

a

ε

b− a
dx = ε . �
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Note that (2.4) can be written as

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

lim
n→∞

fn(x) dx ,

showing that uniform convergence allows to exchange the operations of limit and
integration.

2.2.2 Interchanging limits and derivatives

When considering limits of differentiable functions, certain assumptions on uniform
convergence guarantee the differentiability of the limit.

Theorem 2.10 Let {fn}n≥n0 be a sequence of C1 functions over the interval
I = [a, b]. Suppose there exist maps f and g on I such that

i) fn → f pointwise on I;
ii) f ′

n → g uniformly on I.

Then f is C1 on I, and f ′ = g. Moreover, fn → f uniformly on I (and clearly,
f ′
n → f ′ uniformly on I).

Proof. Fix an arbitrary x0 ∈ I and set

f̃(x) = f(x0) +

∫ x

x0

g(t) dt . (2.5)

We show first that fn → f̃ uniformly on I. For this, let ε > 0 be given. By
i), there exists n1 = n1(ε;x0) ≥ n0 such that for any n > n1 we have

|fn(x0)− f(x0)| < ε

2
.

By ii), there is n2 = n2(ε) ≥ n0 such that, for any n > n2 and any t ∈ [a, b],

|f ′
n(t)− g(t)| < ε

2(b− a)
.

Note we may write each map fn as

fn(x) = fn(x0) +

∫ x

x0

f ′
n(t) dt ,

because of the Fundamental Theorem of Integral Calculus (see Vol. I,
Cor. 9.42). Thus, for any n > n = max(n1, n2) and any x ∈ [a, b], we have

|fn(x) − f̃(x)| =
∣∣∣∣fn(x0)− f(x0) +

∫ x

x0

(
f ′
n(t)− g(t)

)
dt

∣∣∣∣
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≤ |fn(x0)− f(x0)|+
∫ x

x0

|f ′
n(t)− g(t)| dt

<
ε

2
+

ε

2(b− a)

∫ b

a

dt =
ε

2
+

ε

2
= ε .

Therefore fn → f̃ uniformly on I, hence also pointwise, by Proposition
2.4. But fn → f pointwise on I by assumption; by the uniqueness of the
limit then, f̃ coincides with f . From (2.5) and the Fundamental Theorem
of Integral Calculus it follows that f is differentiable with first derivative g.

�

Under the theorem’s assumptions then,

lim
n→∞

f ′
n(x) =

(
lim
n→∞

fn(x)
)′

, ∀x ∈ I ,

so the uniform convergence (of the first derivatives) allows to exchange the limit
and the derivative.

Remark 2.11 A more general result, with similar proof, states that if a sequence
{fn}n≥n0 of C1 maps satisfies these two properties:
i) there is an x0 ∈ [a, b] such that lim

n→∞
fn(x0) = � ∈ R;

ii) the sequence {f ′
n}n≥n0 converges uniformly on I to a map g (necessarily con-

tinuous on I),

then, setting

f(x) = �+

∫ x

x0

g(t) dt ,

fn converges uniformly to f on I. Furthermore, f ∈ C1 and f ′(x) = g(x) for any
x ∈ [a, b]. �

Remark 2.12 An example will explain why mere pointwise convergence of the
derivatives is not enough to conclude as in the theorem, even in case the sequence
of functions converges uniformly. Consider the sequence fn(x) = x − xn/n; it
converges uniformly on I = [0, 1] to f(x) = x because

|fn(x) − f(x)| =
∣∣∣∣xn

n

∣∣∣∣ ≤ 1

n
, ∀x ∈ I ,

and hence

‖fn − f‖∞,I ≤ 1

n
→ 0 as n→∞ .

Yet the derivatives f ′
n(x) = 1− xn−1 converge to the discontinuous function
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g(x) =

{
1 if x ∈ [0, 1) ,

0 if x = 1 .

So {f ′
n}n≥0 converges only pointwise to g on [0, 1], not uniformly, and the latter

does not coincide on I with the derivative of f . �

2.3 Series of functions

Starting with a sequence of functions {fk}k≥k0 defined on a set X ⊆ R, we can

build a series of functions

∞∑
k=k0

fk in a similar fashion to numerical sequences and

series. Precisely, we consider how the sequence of partial sums

sn(x) =

n∑
k=k0

fk(x)

behaves as n→∞. Different types of convergence can occur.

Definition 2.13 The series of functions

∞∑
k=k0

fk converges pointwise at x

if the sequence of partial sums {sn}n≥k0 converges pointwise at x; equivalently,

the numerical series

∞∑
k=k0

fk(x) converges. Let A ⊆ X be the set of such points

x, called the set of pointwise convergence of

∞∑
k=k0

fk; we have thus defined

the function s : A→ R, called sum, by

s(x) = lim
n→∞

sn(x) =

∞∑
k=k0

fk(x) , ∀x ∈ A .

The pointwise convergence of a series of functions can be studied using at each
point x ∈ X what we already know about numerical series. In particular, the
sequence {fk(x)}k≥k0 must be infinitesimal, as k → ∞, in order for x to belong
to A. What is more, the convergence criteria seen in the previous chapter can be
applied, at each point.

Definition 2.14 The series of functions
∞∑

k=k0

fk converges absolutely on

A if for any x ∈ A the series

∞∑
k=k0

|fk(x)| converges.
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Definition 2.15 The series of functions

∞∑
k=k0

fk converges uniformly to

the function s on A if the sequence of partial sums {sn}n≥k0 converges uni-
formly to s on A.

Both the absolute convergence (due to Theorem 1.24) and the uniform conver-
gence (Proposition 2.4) imply the pointwise convergence of the series. There are
no logical implications between uniform and absolute convergence, instead.

Example 2.16

The series

∞∑
k=0

xk is nothing but the geometric series of Example 1.3 where

q is taken as independent variable and re-labelled x. Thus, the series converges
pointwise to the sum s(x) = 1

1−x on A = (−1, 1); on the same set there is absolute
convergence as well. As for uniform convergence, it holds on every closed interval
[−a, a] with 0 < a < 1. In fact,

|sn(x)− s(x)| =
∣∣∣∣1− xn+1

1− x
− 1

1− x

∣∣∣∣ = |x|n+1

1− x
≤ an+1

1− a
,

where we have used the fact that |x| ≤ a implies 1 − a ≤ 1 − x. Moreover,

the sequence Mn = an+1

1−a tends to 0 as n → ∞, and the result follows from
Proposition 2.6. �

It is clear from the definitions just given that Theorems 2.7, 2.9 and 2.10 can
be formulated for series of functions, so we re-phrase them for completeness’ sake.

Theorem 2.17 Let {fk}k≥k0 be a sequence of continuous maps on a real

interval I such that the series

∞∑
k=k0

fk converges uniformly to a function s on

I. Then s is continuous on I.

Theorem 2.18 (Integration by series) Let I = [a, b] be a closed bounded

interval and {fk}k≥k0 a sequence of integrable functions on I such that
∞∑

k=k0

fk

converges uniformly to a function s on I. Then s is integrable on I, and∫ b

a

s(x) dx =

∫ b

a

∞∑
k=k0

fk(x) dx =
∞∑

k=k0

∫ b

a

fk(x) dx . (2.6)
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This is worded alternatively by saying that the series is integrable term by term.

Theorem 2.19 (Differentiation of series) Let {fk}k≥k0 be a sequence of
C1 maps on I = [a, b]. Suppose there are maps s and t on I such that

i)

∞∑
k=k0

fk(x) = s(x) , ∀x ∈ I;

ii)

∞∑
k=k0

f ′
k(x) = t(x) , ∀x ∈ I and the convergence is uniform on I.

Then s ∈ C1(I) and s′ = t. Furthermore,
∞∑

k=k0

fk converges uniformly to s on

I (and

∞∑
k=k0

f ′
k converges uniformly to s′).

That is to say,

∞∑
k=k0

f ′
k(x) =

( ∞∑
k=k0

fk(x)

)′

, ∀x ∈ I ,

and the series is differentiable term by term.

The importance of uniform convergence should be clear by now. But checking
uniform convergence is another matter, often far from easy. Using the definition
requires knowing the sum, and as we have seen with numerical series, the sum is not
always computable explicitly. For this reason we will prove a condition sufficient
to guarantee the uniform convergence of a series, even without knowing its sum in
advance.

Theorem 2.20 (Weierstrass’ M-test) Let {fk}k≥k0 be a sequence of maps
on X and {Mk}k≥k0 a sequence of real numbers such that, for any k ≥ k0,

|fk(x)| ≤Mk , ∀x ∈ X .

Assume the numerical series

∞∑
k=k0

Mk converges. Then the series

∞∑
k=k0

fk con-

verges uniformly on X.
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Proof. Fix x ∈ X , so that the numerical series
∞∑

k=k0

|fk(x)| converges by the

Comparison Test, and hence the sum

s(x) =

∞∑
k=k0

fk(x) , ∀x ∈ X ,

is well defined. It suffices to check whether the partial sums {sn}n≥k0

converge uniformly to s on X . But for any x ∈ X ,

|sn(x)− s(x)| =
∣∣∣∣∣

∞∑
k=n+1

fk(x)

∣∣∣∣∣ ≤
∞∑

k=n+1

|fk(x)| ≤
∞∑

k=n+1

Mk ,

i.e.,

sup
x∈X

|sn(x)− s(x)| ≤
∞∑

k=n+1

Mk .

As the series
∞∑

k=k0

Mk converges, the right-hand side is just the nth re-

mainder of a converging series, which goes to 0 as n→∞.
In conclusion,

lim
n→∞

sup
x∈X

|sn(x)− s(x)| = 0

so

∞∑
k=k0

fk converges uniformly on X . �

Example 2.21

We want to understand the uniform and pointwise convergence of
∞∑
k=1

sin k4x

k
√
k

, x ∈ R .

Note ∣∣∣∣ sin k4xk
√
k

∣∣∣∣ ≤ 1

k
√
k
, ∀x ∈ R ;

we may then use the M-test with Mk =
1

k
√
k
, since the series

∞∑
k=1

1

k3/2
converges

(it is generalised harmonic of exponent 3/2). Therefore the given series converges
uniformly, hence also pointwise, on R. �

2.4 Power series

Power series are very special series in which the maps fk are polynomials. More
precisely,
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Definition 2.22 Fix x0 ∈ R and let {ak}k≥0 be a numerical sequence. One
calls power series a series of the form

∞∑
k=0

ak(x− x0)
k = a0 + a1(x− x0) + a2(x− x0)

2 + · · · (2.7)

The point x0 is said centre of the series and the numbers {ak}k≥0 are the
series’ coefficients.

The series converges at its centre, irrespective of the coefficients.

The next three examples exhaust the possible types of convergence set of a
series. We will show that such set is always an interval (possibly shrunk to the
centre).

Examples 2.23

i) The series
∞∑
k=1

kkxk = x+ 4x2 + 27x3 + · · ·

converges only at x = 0; in fact at any other x �= 0 the general term kkxk

is not infinitesimal, so the necessary condition for convergence is not fulfilled
(Property 1.6).

ii) Consider
∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+

x3

3!
+ · · · ; (2.8)

it is known as exponential series, because it sums to the function s(x) = ex.
This fact will be proved later in Example 2.46 i).

The exponential series converges for any x ∈ R. Indeed, with a given x �= 0, the
Ratio Test for numerical series (Theorem 1.14) guarantees convergence:

lim
k→∞

∣∣∣∣ xk+1

(k + 1)!
· k!
xk

∣∣∣∣ = lim
k→∞

|x|
k + 1

= 0 , ∀x ∈ R \ {0} .

iii) Another familiar example is the geometric series
∞∑
k=0

xk = 1 + x+ x2 + x3 + · · ·

(recall Example 2.16). We already know it converges, for x ∈ (−1, 1), to the
function s(x) = 1

1−x . �

In all examples the series converge (absolutely) on a symmetric interval with
respect to the centre (the origin, in the specific cases). We will see that the con-
vergence set A of any power series, independently of the coefficients, is either a
bounded interval (open, closed or half-open) centered at x0, or the whole R.
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We start by series centered at the origin; this is no real restriction, because the
substitution y = x− x0 allows to reduce to that case.

Before that though, we need a technical result, direct consequence of the Com-
parison Test for numerical series (Theorem 1.10), which will be greatly useful for
power series.

Proposition 2.24 If the series

∞∑
k=0

akx
k, x �= 0, has bounded terms, in par-

ticular if it converges, then the power series

∞∑
k=0

akx
k converges absolutely for

any x such that |x| < |x|.

Proof. As akxk is bounded, there is a constant M > 0 such that

|akxk| ≤M , ∀k ≥ 0 .

For any x with |x| < |x| then,

|akxk| =
∣∣∣∣akxk

(x
x

)k∣∣∣∣ ≤M
∣∣∣x
x

∣∣∣k , ∀k ≥ 0 .

But |x| < |x|, so the geometric series
∞∑
k=0

(x
x

)k
converges absolutely and,

by the Comparison Test,

∞∑
k=0

akx
k converges absolutely. �

Example 2.25

The series

∞∑
k=0

k − 1

k + 1
xk has bounded terms when x = ±1, since

∣∣∣∣k − 1

k + 1

∣∣∣∣ ≤ 1 for

any k ≥ 0. The above proposition forces convergence when |x| < 1. The series
does not converge when |x| ≤ 1 because, in case x = ±1, the general term is not
infinitesimal. �

Proposition 2.24 has an immediate, yet crucial, consequence.

Corollary 2.26 If a power series

∞∑
k=0

akx
k converges at x1 �= 0, it con-

verges absolutely on the open interval (−|x1|, |x1|); if it does not converge
at x2 �= 0, it does not converge anywhere along the half-lines (|x2|,+∞) and
(−∞,−|x2|).
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0 x1 −x2−x1x2

no convergence

convergence

Figure 2.2. Illustration of Corollary 2.26

The statement is depicted in Fig. 2.2, for x1 > 0 and x2 < 0.

Now we are in a position to prove that the convergence set of a power series is
a symmetric interval, end-points excluded.

Theorem 2.27 Given a power series
∞∑
k=0

akx
k, only one of the following

holds:

a) the series converges at x = 0 only;

b) the series converges pointwise and absolutely for any x ∈ R; moreover, it
converges uniformly on every closed and bounded interval [a, b];

c) there is a unique real number R > 0 such that the series converges
pointwise and absolutely for any |x| < R, and uniformly on all intervals
[a, b] ⊂ (−R,R). Furthermore, the series does not converge on |x| > R.

Proof. Let A denote the set of convergence of

∞∑
k=0

akx
k.

If A = {0}, we have case a).
Case b) occurs if A = R. In fact, Corollary 2.26 tells the series converges
pointwise and absolutely for any x ∈ R. As for the uniform convergence
on [a, b], set L = max(|a|, |b|). Then

|fk(x)| = |akxk| ≤ |akLk| , ∀x ∈ [a, b] ;

and we may use Weierstrass’ M-test 2.20 with Mk = |ak|Lk.
Now suppose A contains points other than 0 but is smaller that the whole
line, so there is an x /∈ A. Corollary 2.26 says A cannot contain any x with
|x| > |x|, meaning that A is bounded. Set R = supA, so R > 0 because A
is larger than {0}. Consider an arbitrary x with |x| < R: by definition of

supremum there is an x1 such that |x| < x1 < R and
∞∑
k=0

akx
k
1 converges.

Hence Corollary 2.26 tells the series converges pointwise and absolutely at
x. For uniform convergence we proceed exactly as in case b). At last, by
definition of sup the set A cannot contain values x > R, but neither values
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x < −R (again by Corollary 2.26). Thus if |x| > R the series
∞∑
k=0

akx
k does

not converge. �

Definition 2.28 One calls convergence radius of the series

∞∑
k=0

akx
k the

number
R = sup

{
x ∈ R :

∞∑
k=0

akx
k converges

}
.

Going back to Theorem 2.27, we remark that R = 0 in case a); in case b),
R = +∞, while in case c), R is precisely the strictly-positive real number of the
statement.

Examples 2.29

Let us return to Examples 2.23.

i) The series
∞∑
k=1

kkxk has convergence radius R = 0.

ii) For

∞∑
k=0

xk

k!
the radius is R = +∞.

iii) The series
∞∑
k=0

xk has radius R = 1. �

Beware that the theorem says nothing about the behaviour at x = ±R: the
series might converge at both end-points, at one only, or at none, as in the next
examples.

Examples 2.30

i) The series
∞∑
k=1

xk

k2

converges at x = ±1 (generalised harmonic of exponent 2 for x = 1, alternat-
ing for x = −1). It does not converge on |x| > 1, as the general term is not
infinitesimal. Thus R = 1 and A = [−1, 1].
ii) The series

∞∑
k=1

xk

k

converges at x = −1 (alternating harmonic series) but not at x = 1 (harmonic
series). Hence R = 1 and A = [−1, 1).
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iii) The geometric series
∞∑
k=1

xk

converges only on A = (−1, 1) with radius R = 1. �

Convergence at one end-point ensures the series converges uniformly on closed
intervals containing that end-point. Precisely, we have

Theorem 2.31 (Abel) Suppose R > 0 is finite. If the series converges at
x = R, then the convergence is uniform on every interval [a,R] ⊂ (−R,R].
The analogue statement holds if the series converges at x = −R.

If we now center a power series at a generic x0, the previous results read as

follows. The radius R is 0 if and only if

∞∑
k=0

ak(x−x0)
k converges only at x0, while

R = +∞ if and only if the series converges at any x in R. In the remaining case
R is positive and finite, and Theorem 2.27 says the set A of convergence satisfies

{x ∈ R : |x− x0| < R} ⊆ A ⊆ {x ∈ R : |x− x0| ≤ R} .

The importance of determining the radius of convergence is evident. The next
two criteria, easy consequences of the analogous Ratio and Root Tests for numerical
series, give a rather simple yet useful answer.

Theorem 2.32 (Ratio Test) Given the power series

∞∑
k=0

ak(x − x0)
k

with ak �= 0 for all k ≥ 0, if the limit

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = �

exists, the radius of convergence R is given by

R =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if � = +∞ ,

+∞ if � = 0 ,

1

�
if 0 < � < +∞ .

(2.9)
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Proof. For simplicity suppose x0 = 0, and let x �= 0. The claim follows by the
Ratio Test 1.14 since

lim
k→∞

∣∣∣∣ak+1x
k+1

akxk

∣∣∣∣ = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ |x| = �|x| .

When � = +∞, we have �|x| > 1 and the series does not converge for any
x �= 0, so R = 0; when � = 0, �|x| = 0 < 1 and the series converges for any
x, so R = +∞. At last, when � is finite and non-zero, the series converges
for all x such that �|x| < 1, so for |x| < 1/�, and not for |x| > 1/�; therefore
R = 1/�. �

Theorem 2.33 (Root Test) Given the power series

∞∑
k=0

ak(x− x0)
k ,

if the limit
lim
k→∞

k
√
|ak| = �

exists, the radius R is given by formula (2.9).

The proof, left to the reader, relies on the Root Test 1.15 and follows the same
lines.

Examples 2.34

i) The series

∞∑
k=0

kxk has radius R = 1, because lim
k→∞

k
√
k = 1; it does not

converge for x = 1 nor for x = −1.
ii) Consider

∞∑
k=0

k!

kk
xk

and use the Ratio Test:

lim
k→∞

(k + 1)!

(k + 1)k+1
· k

k

k!
= lim

k→∞

(
k

k + 1

)k

= lim
k→∞

(
1 +

1

k

)−k

= e−1 .

The radius is thus R = e.

iii) To study
∞∑
k=2

2k + 1

(k − 1)(k + 2)
(x− 2)2k (2.10)
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set y = (x− 2)2 and consider the power series in y
∞∑
k=2

2k + 1

(k − 1)(k + 2)
yk (2.11)

centred at the origin. Since

lim
k→∞

k

√
2k + 1

(k − 1)(k + 2)
= 1

the radius is 1. For y = 1 the series (2.11) reduces to
∞∑
k=2

2k + 1

(k − 1)(k + 2)
,

which diverges like the harmonic series ( 2k+1
(k−1)(k+2) ∼ 2

k , k → ∞), whereas for

y = −1 the series (2.11) converges (by Leibniz’s Test 1.20). In summary, (2.11)
converges for −1 ≤ y < 1.
Going back to the variable x, that means −1 ≤ (x− 2)2 < 1. The left inequality
is always true, while the right one holds for −1 < x− 2 < 1. So, the series (2.10)
has radius R = 1 and converges on the interval (1, 3) (note the centre is x0 = 2).

iv) The series ∞∑
k=0

xk! = x+ x+ x2 + x6 + x24 + · · ·

is a power series where infinitely many coefficients are 0, and we cannot substitute
as we did before; in such cases the aforementioned criteria do not apply, and it
is more convenient to use directly the Ratio or Root Test for numerical series.
In the case at hand

lim
k→∞

∣∣∣∣x(k+1)!

xk!

∣∣∣∣ = lim
k→∞

|x|(k+1)!−k!

= lim
k→∞

|x|k!k =
{
0 if |x| < 1 ,

+∞ if |x| > 1 .

Thus R = 1. The series converges neither for x = 1, nor for x = −1.
v) Consider, for α ∈ R, the binomial series

∞∑
k=0

(
α

k

)
xk .

If α = n ∈ N the series is actually a finite sum, and Newton’s binomial formula
(Vol. I, Eq. (1.13)) tells us that

n∑
k=0

(
n

k

)
xk = (1 + x)n ,

hence the name. Let us then study for α ∈ R \ N and observe∣∣∣( α
k+1

)∣∣∣∣∣(α
k

)∣∣ =
|α(α − 1) · · · (α− k)|

(k + 1)!
· k!

|α(α − 1) · · · (α− k + 1)| =
|α− k|
k + 1

;
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therefore

lim
k→∞

∣∣∣( α
k+1

)∣∣∣∣∣(α
k

)∣∣ = lim
k→∞

|α− k|
k + 1

= 1

and the series has radius R = 1. The behaviour of the series at the endpoints
cannot be studied by one of the criteria presented above; one can prove that the
series converges at x = −1 only for α > 0 and at x = 1 only for α > −1. �

2.4.1 Algebraic operations

The operations of sum and product of two polynomials extend in a natural manner
to power series centred at the same point x0; the problem remains of determining
the radius of convergence of the resulting series. This is addressed in the next
theorems, where x0 will be 0 for simplicity.

Theorem 2.35 Given Σ1 =

∞∑
k=0

akx
k and Σ2 =

∞∑
k=0

bkx
k , of respect-

ive radii R1, R2, their sum Σ =

∞∑
k=0

(ak + bk)x
k has radius R satisfying

R ≥ min(R1, R2). If R1 �= R2, necessarily R = min(R1, R2).

Proof. Suppose R1 �= R2; we may assume R1 < R2. Given any point x such that
R1 < x < R2, if the series Σ converged we would have

Σ1 =

∞∑
k=0

akx
k =

∞∑
k=0

(ak + bk)x
k −

∞∑
k=0

bkx
k = Σ −Σ2 ,

hence also the series Σ1 would have to converge, contradicting the fact
that x > R1. Therefore R = R1 = min(R1, R2).
In case R1 = R2, the radius R is at least equal to such value, since the
sum of two convergent series is convergent (see Sect. 1.5). �

In case R1 = R2, the radius R might be strictly larger than both R1, R2 due
to possible cancellations of terms in the sum.

Example 2.36

The series

Σ1 =

∞∑
k=1

2k + 1

4k − 2k
xk and Σ2 =

∞∑
k=1

1− 2k

4k + 2k
xk

have the same radius R1 = R2 = 2. Their sum

Σ =
∞∑
k=1

4

4k − 1
xk ,

though, has radius R = 4. �
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The product of two series is defined so that to preserve the distributive property
of the sum with respect to the multiplication. In other words,

(a0 + a1x+ a2x
2 + . . .)(b0 + b1x+ b2x

2 + . . .)

= a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x
2 + . . . ,

i.e., ( ∞∑
k=0

akx
k
)( ∞∑

k=0

bkx
k
)
=

∞∑
k=0

ckx
k (2.12)

where

ck =

k∑
j=0

ajbk−j .

This multiplication rule is called Cauchy product: putting x = 1 returns precisely
the Cauchy product (1.9) of numerical series. Then we have the following result.

Theorem 2.37 Given Σ1 =

∞∑
k=0

akx
k and Σ2 =

∞∑
k=0

bkx
k , of respective radii

R1, R2, their Cauchy product has convergence radius R ≥ min(R1, R2).

2.4.2 Differentiation and integration

Let us move on to consider the regularity of the sum of a power series. We have
already remarked that the functions fk(x) = ak(x − x0)

k are C∞ polynomials
over all of R. In particular they are continuous and their sum s(x) is continuous,
where defined (using Theorem 2.17), because the convergence is uniform on closed
intervals in the convergence set (Theorem 2.31). Let us see in detail how term-by-
term differentiation and integration fit with power series. For clarity we assume
x0 = 0 and begin with a little technical fact.

Lemma 2.38 The series
∑

1 =

∞∑
k=0

akx
k and

∑
2 =

∞∑
k=0

kakx
k have the same

radius of convergence.

Proof. CallR1, R2 the radii of
∑

1,
∑

2 respectively. ClearlyR2 ≤ R1 (for |akxk| ≤
|kakxk|). On the other hand if |x| < R1 and x satisfies |x| < x < R1,

the series

∞∑
k=0

akx
k converges and so |ak|xk is bounded from above by a

constant M > 0 for any k ≥ 0. Hence

|kakxk| = k|ak|xk
∣∣∣x
x

∣∣∣k ≤Mk
∣∣∣x
x

∣∣∣k .
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Since
∞∑
k=0

k
(x
x

)k
is convergent (Example 2.34 i)), by the Comparison

Test 1.10 also

∞∑
k=0

kakx
k converges, whence R1 ≤ R2. In conclusion

R1 = R2 and the claim is proved. �

The series

∞∑
k=0

kakx
k−1 =

∞∑
k=1

kakx
k−1 =

∞∑
k=0

(k + 1)ak+1x
k is the derivatives’

series of

∞∑
k=0

akx
k.

Theorem 2.39 Suppose the radius R of the series

∞∑
k=0

akx
k is positive, finite

or infinite. Then

a) the sum s is a C∞ map over (−R,R). Moreover, the nth derivative of s

on (−R,R) can be computed by differentiating

∞∑
k=0

akx
k term by term n

times. In particular, for any x ∈ (−R,R)

s′(x) =
∞∑
k=1

kakx
k−1 =

∞∑
k=0

(k + 1)ak+1x
k ; (2.13)

b) for any x ∈ (−R,R) ∫ x

0

s(t) dt =
∞∑
k=0

ak
k + 1

xk+1 . (2.14)

Proof. a) By the previous lemma a power series and its derivatives’ series have

identical radii, because
∞∑
k=1

kakx
k−1 =

1

x

∞∑
k=1

kakx
k for any x �= 0. The

derivatives’ series converges uniformly on every interval [a, b] ⊂ (−R,R);
thus Theorem 2.19 applies, and we conclude that s is C1 on (−R,R) and
that (2.13) holds. Iterating the argument proves the claim.

b) The result follows immediately by noticing
∞∑
k=0

akx
k is the derivatives’

series of

∞∑
k=0

ak
k + 1

xk+1. These two have same radius and we can use The-

orem 2.18. �
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Example 2.40

Differentiating term by term
∞∑
k=0

xk =
1

1− x
, x ∈ (−1, 1) , (2.15)

we infer that for x ∈ (−1, 1)
∞∑
k=1

kxk−1 =

∞∑
k=0

(k + 1)xk =
1

(1− x)2
. (2.16)

Integrating term by term the series
∞∑
k=0

(−1)kxk =
1

1 + x
, x ∈ (−1, 1) ,

obtained from (2.15) by changing x to −x, we have for all x ∈ (−1, 1)
∞∑
k=0

(−1)k
k + 1

xk+1 =

∞∑
k=1

(−1)k−1

k
xk = log(1 + x) . (2.17)

At last from
∞∑
k=0

(−1)kx2k =
1

1 + x2
, x ∈ (−1, 1) ,

obtained from (2.15) writing −x2 instead of x, and integrating each term separ-
ately, we see that for any x ∈ (−1, 1)

∞∑
k=0

(−1)k
2k + 1

x2k+1 = arctanx . (2.18)

Proposition 2.41 Suppose

∞∑
k=0

ak(x − x0)
k has radius R > 0. The series’

coefficients depend on the derivatives of the sum s(x) as follows:

ak =
1

k!
s(k)(x0) , ∀k ≥ 0 .

Proof. Write the sum as s(x) =
∞∑
h=0

ah(x−x0)
h; differentiating each term k times

gives

s(k)(x) =

∞∑
h=k

h(h− 1) · · · (h− k + 1)ah(x− x0)
h−k

=

∞∑
h=0

(h+ k)(h+ k − 1) · · · (h+ 1)ah+k(x− x0)
h .
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For x = x0 only the term indexed by h = 0 contributes, and the above
expression becomes

s(k)(x0) = k! ak , ∀k ≥ 0 .
�

2.5 Analytic functions

The previous section examined the properties of the sum of a power series, summar-
ised in Theorem 2.39. Now we want to take the opposite viewpoint, and demand
that an arbitrary function (necessarily C∞) be the sum of some power series. Said
better, we take f ∈ C∞(X), X ⊆ R, x0 ∈ X and ask whether, on a suitable interval
(x0− δ, x0+ δ) ⊆ X with δ > 0, it is possible to represent f as the sum of a power
series

f(x) =

∞∑
k=0

ak(x− x0)
k ; (2.19)

by Proposition 2.41 we must necessarily have

ak =
f (k)(x0)

k!
, ∀k ≥ 0 .

In particular when x0 = 0, f is given by

f(x) =

∞∑
k=0

f (k)(0)

k!
xk . (2.20)

Definition 2.42 The series (2.19) is called the Taylor series of f centred
at x0. If the radius is positive and the sum coincides with f around x0 (i.e.,
on some neighbourhood of x0), one says the map f has a Taylor series ex-
pansion, or is an analytic function, at x0. If x0 = 0, one speaks sometimes
of Maclaurin series of f .

The definition is motivated by the fact that not all C∞ functions admit a power
series representation, as in this example.

Example 2.43

Consider

f(x) =

{
e−1/x2

if x �= 0 ,

0 if x = 0 .

It is not hard to check f is C∞ on R with f (k)(0) = 0 for all k ≥ 0. Therefore
the terms of (2.20) all vanish and the sum (the zero function) does not represent
f anywhere around the origin. �
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The partial sums in (2.19) are precisely the Taylor polynomials of f at x0:

sn(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k = Tfn,x0(x) .

Therefore f having a Taylor series expansion is equivalent to the convergence to
f of the sequence of its own Taylor polynomials:

lim
n→∞

sn(x) = lim
n→∞

Tfn,x0(x) = f(x) , ∀x ∈ (x0 − δ, x0 + δ) .

In such a case the nth remainder of the series rn(x) = f(x)−sn(x) is infinitesimal,
as n→∞, for any x ∈ (x0 − δ, x0 + δ):

lim
n→∞

rn(x) = 0 .

There is a sufficient condition for a C∞ map to have a Taylor series expansion
around a point.

Theorem 2.44 Take f ∈ C∞(x0 − δ, x0 + δ), δ > 0. If there are an index
k0 ≥ 0 and a constant M > 0 such that

|f (k)(x)| ≤M
k!

δk
, ∀x ∈ (x0 − δ, x0 + δ) (2.21)

for all k ≥ k0, then f has a Taylor series expansion at x0 whose radius is at
least δ.

Proof. Write the Taylor expansion of f at x0 of order n ≥ k0 with Lagrange
remainder (see Vol. I, Thm 7.2):

f(x) = Tfn,x0(x) +
1

(n+ 1)!
f (n+1)(xn)(x− x0)

n+1 ,

where xn is a certain point between x0 and x. By assumption, for any
x ∈ (x0 − δ, x0 + δ) we have

|rn(x)| = 1

(n+ 1)!
|f (n+1)(xn)| |x− x0|n+1 ≤M

( |x− x0|
δ

)n+1

.

If we assume |x− x0|/δ< 1, then

lim
n→∞

rn(x) = 0

and the claim is proved. �



58 2 Series of functions and power series

Remark 2.45 Condition (2.21) holds in particular if all derivatives f (k)(x) are
uniformly bounded, independently of k: this means there is a constant M > 0 for
which

|f (k)(x)| ≤M , ∀x ∈ (x0 − δ, x0 + δ) . (2.22)

In fact, from Example 1.1 v) we have k!
δk
→ ∞ as k → ∞, so k!

δk
≥ 1 for k bigger

or equal than a certain k0.
A similar argument shows that (2.21) is true more generally if

|f (k)(x)| ≤Mk , ∀x ∈ (x0 − δ, x0 + δ) . (2.23)

Examples 2.46

i) We can eventually prove the earlier claim on the exponential series, that is to
say

ex =

∞∑
k=0

xk

k!
∀x ∈ R . (2.24)

We already know the series converges for any x ∈ R (Example 2.23 ii)); addition-
ally, the map ex is C∞ on R with f (k)(x) = ex, f (k)(0) = 1 . Fixing an arbitrary
δ > 0, inequality (2.22) holds since

|f (k)(x)| = ex ≤ eδ = M , ∀x ∈ (−δ,δ ) .
Hence f has a Maclaurin series and (2.24) is true, as promised.
More generally, ex has a Taylor series at each x0 ∈ R:

ex =

∞∑
k=0

ex0

k!
(x− x0)

k , ∀x ∈ R .

ii) Writing −x2 instead of x in (2.24) yields

e−x2

=

∞∑
k=0

(−1)k x
2k

k!
, ∀x ∈ R .

Integrating term by term we obtain a representation in series of the error func-
tion

erfx =
2√
π

∫ x

0

e−t2 dt =
2√
π

∞∑
k=0

(−1)k
k!

x2k+1

2k + 1
,

which has a role in Probability and Statistics.

iii) The trigonometric functions f(x) = sinx, g(x) = cosx are analytic for any
x ∈ R. Indeed, they are C∞ on R and all derivatives satisfy (2.22) with M = 1.
In the special case x0 = 0,

sinx =

∞∑
k=0

(−1)k
(2k + 1)!

x2k+1 , ∀x ∈ R , (2.25)

cosx =
∞∑
k=0

(−1)k
(2k)!

x2k , ∀x ∈ R . (2.26)
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iv) Let us prove that for α ∈ R \ N

(1 + x)α =

∞∑
k=0

(
α

k

)
xk , ∀x ∈ (−1, 1) . (2.27)

In Example 2.34 v) we found the radius of convergence R = 1 for the right-hand
side. Let f(x) denote the sum of the series:

f(x) =

∞∑
k=0

(
α

k

)
xk , ∀x ∈ (−1, 1) .

Differentiating term-wise and multiplying by (1 + x) gives

(1 + x)f ′(x) = (1 + x)

∞∑
k=1

k

(
α

k

)
xk−1 =

∞∑
k=0

(k + 1)

(
α

k + 1

)
xk +

∞∑
k=1

k

(
α

k

)
xk

=

∞∑
k=0

[
(k + 1)

(
α

k + 1

)
+ k

(
α

k

)]
xk = α

∞∑
k=0

(
α

k

)
xk = αf(x) .

Hence f ′(x) = α(1 + x)−1f(x). Now take the map g(x) = (1 + x)−αf(x) and
note

g′(x) = −α(1 + x)−α−1f(x) + (1 + x)−αf ′(x)

= −α(1 + x)−α−1f(x) + α(1 + x)−α−1f(x) = 0

for any x ∈ (−1, 1). Therefore g(x) is constant and we can write

f(x) = c(1 + x)α .

The value of the constant c is fixed by f(0) = 1, so c = 1.

v) When α = −1, formula (2.27) gives the Taylor series of f(x) = 1
1+x at the

origin:

1

1 + x
=

∞∑
k=0

(−1)kxk .

Actually, f is analytic at all points x0 �= −1 and the corresponding Taylor series’
radius is R = |1 + x0|, i.e., the distance of x0 from the singular point x = −1;
indeed, one has

f (k)(x) = (−1)kk!(1 + x)−(k+1)

and it is not difficult to check estimate (2.21) on a suitable neighbourhood of x0.
Furthermore, the Root Test (Theorem 2.33) gives

R = lim
k→∞

k

√
|1 + x0|k+1 = |1 + x0| > 0 .

vi) One can prove the map f(x) = 1
1+x2 is analytic at each point x0 ∈ R. This

does not mean, though, that the radius of the generic Taylor expansion of f is
+∞. For instance, at x0 = 0,

f(x) =

∞∑
k=0

(−1)kx2k

has radius 1. In general the Taylor series of f at x0 will have radius
√
1 + x2

0

(see the next section).
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vi) The last two instances are, as a matter of fact, rational, and it is known that
rational functions – more generally all elementary functions – are analytic at
every point lying in the interior of their domain. �

2.6 Power series in C

The definition of power series extends easily to the complex numbers. By a power
series in C we mean an expression like

∞∑
k=0

ak(z − z0)
k ,

where {ak}k≥0 is a sequence of complex numbers, z0 ∈ C and z is the complex
variable. The notions of convergence (pointwise, absolute, uniform) carry over
provided we substitute everywhere the absolute value with the modulus.

The convergence interval of a real power series is now replaced by a disc in the
complex plane, centred at z0 and of radius R ∈ [0,+∞].

The term analytic map determines a function of one complex variable that is
the sum of a power series in C. Examples include rational functions of complex
variable

f(z) =
P (z)

Q(z)
,

where P , Q are coprime polynomials over the complex numbers; with z0 ∈ dom f
fixed, the convergence radius of the series centred at z0 whose sum is f coincides
with the distance (in the complex plane) between z0 and the nearest zero of the
denominator, i.e., the closest singularity.

The exponential, sine and cosine functions possess a natural extension to C,
obtained by substituting the real variable x with the complex z in (2.24), (2.25) and
(2.26). These new series converge on the whole complex plane, so the corresponding
functions are analytic on C.

2.7 Exercises

1. Over the given interval I determine the sets of pointwise and uniform conver-
gence, and the limit function, for:

a) fn(x) =
nx

1 + n3x3
, I = [0,+∞)

b) fn(x) =
x

1 + n2x2
, I = [0,+∞)

c) fn(x) = enx , I = R
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d) fn(x) = nxe−nx , I = R

e) fn(x) =
4nx

3nx + 5nx
, I = R

2. Study uniform and pointwise convergence for the sequence of maps:

fn(x) = nx(1 − x2)n , x ∈ [−1, 1] .

Does the following formula hold?

lim
n→∞

∫ 1

0

fn(x) dx =

∫ 1

0

lim
n→∞

fn(x) dx .

3. Study uniform and pointwise convergence for the sequence of maps:

fn(x) = arctannx , x ∈ R .

Tell whether the formula

lim
n→∞

∫ 1

a

fn(x) dx =

∫ 1

a

lim
n→∞ fn(x) dx ,

holds, with a = 0 or a = 1/2.

4. Determine the sets of pointwise convergence of the series:

a)
∞∑
k=1

(k + 2)x

k3 +
√
k
, b)

∞∑
k=1

(
1 +

x

k

)k2

c)

∞∑
k=1

1

xk + x−k
, x > 0 d)

∞∑
k=1

xk

xk + 2k
, x �= −2

e)
∞∑
k=1

(−1)kkx sin 1
k

f)
∞∑
k=1

(
k −
√
k2 − 1

)x

5. Determine the sets of pointwise and uniform convergence of the series

∞∑
k=2

ekx.

Compute its sum, where defined.

6. Setting fk(x) = cos x
k , check

∞∑
k=1

f ′
k(x) converges uniformly on [−1, 1], while

∞∑
k=1

fk(x) converges nowhere.
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7. Determine the sets of pointwise and uniform convergence of the series:

a)

∞∑
k=1

k1/x b)

∞∑
k=1

(log k)x

k
c)

∞∑
k=1

[
(k2 + x2)

1
k2+x2 − 1

]

8. Knowing that

∞∑
k=0

ak4
k converges, can one infer the convergence of the following

series?

a)

∞∑
k=0

ak(−2)k b)

∞∑
k=0

ak(−4)k

9. Suppose that

∞∑
k=0

akx
k converges for x = −4 and diverges for x = 6. What can

be said about the convergence or divergence of the following series?

a)

∞∑
k=0

ak b)

∞∑
k=0

ak7
k

c)

∞∑
k=0

ak(−3)k d)

∞∑
k=0

(−1)kak9k

10. Let p be a positive integer. Determine, as p varies, the radius of convergence
of ∞∑

k=0

(k!)p

(pk)!
xk .

11. Find radius and set of convergence of the power series:

a)

∞∑
k=1

xk

√
k

b)

∞∑
k=0

(−1)kxk

k + 1

c)

∞∑
k=0

kx2k d)

∞∑
k=2

(−1)k xk

3k log k

e)

∞∑
k=0

k2(x− 4)k f)

∞∑
k=0

k3(x− 1)k

10k

g)

∞∑
k=1

(−1)k (x+ 3)k

k3k
h)

∞∑
k=1

k!(2x− 1)k

i)

∞∑
k=1

kxk

1 · 3 · 5 · · · (2k − 1)
�)

∞∑
k=1

(−1)kx2k−1

2k − 1
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12. The function

J1(x) =

∞∑
k=0

(−1)kx2k+1

k! (k + 1)! 22k+1

is called Bessel function of order 1. Determine its domain.

13. Given the function

f(x) = 1 + 2x+ x2 + 2x3 + · · · =
∞∑
k=0

akx
k ,

where a2k = 1, a2k+1 = 2 for any k ≥ 0, determine the domain of f and an
explicit formula for it.

14. Determine the convergence set of the series:

a)
∞∑
k=1

(
2

3

)k

(x2 − 1)k b)
∞∑
k=1

1
k
√
k

(
1 + x

1− x

)k

c)

∞∑
k=1

k + 1

k2 + 1
2−kx2

d)

∞∑
k=1

1

k

(3x)k(
x+ 1

x

)k
15. Determine the radius of convergence of the power series

∞∑
k=0

a
√
kxk

as the real parameter a > 0 varies.

16. Expand in Maclaurin series the following functions, computing the radius of
convergence of the series thus obtained:

a) f(x) =
x3

x+ 2
b) f(x) =

1 + x2

1− x2

c) f(x) = log(3− x) d) f(x) =
x3

(x− 4)2

e) f(x) = log
1 + x

1− x
f) f(x) = sinx4

g) f(x) = sin2 x h) f(x) = 2x

17. Expand the maps below in Taylor series around the point x0, and tell what is
the radius of the series:

a) f(x) =
1

x
, x0 = 1

b) f(x) =
√
x , x0 = 4

c) f(x) = log x , x0 = 2
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18. Verify that ∑
k=1

k2xk =
x2 + x

(1 − x)3

for |x| < 1.

19. Write the first three terms of the Maclaurin series of:

a) f(x) =
log(1− x)

ex
b) f(x) = e−x2

cosx c) f(x) =
sinx

1− x

20. Write as Maclaurin series the following indefinite integrals:

a)

∫
sinx2 dx b)

∫ √
1 + x3 dx

21. Using series’ expansions compute the definite integrals with the accuracy re-
quired:

a)

∫ 1

0

sinx2 dx , up to the third digit

b)

∫ 1/10

0

√
1 + x3 dx , with an absolute error < 10−8

2.7.1 Solutions

1. Limits of sequences of functions:

a) Since fn(0) = 0 for every n, f(0) = 0; if x �= 0,

fn(x) ∼ nx

n3x3
=

1

n2x2
→ 0 for n→ +∞ .

The limit function f is identically zero on I.
For the uniform convergence, we study the maps fn on I and notice

f ′
n(x) =

n(1− 2n3x3)

(1 + n3x3)2

and f ′
n(x) = 0 for xn = 1

3
√
2n

with fn(xn) =
2

3 3
√
2
(Fig. 2.3). Hence

sup
x∈[0,+∞)

|fn(x)| = 2

3 3
√
2

and the convergence is not uniform on [0,+∞). Nonetheless, with δ > 0 fixed
and n large enough, fn is decreasing on [δ,+∞), so

sup
x∈[δ,+∞)

|fn(x)| = fn(δ)→ 0 as n→ +∞ .

The convergence is uniform on all intervals [δ,+∞) with δ > 0.
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x

y

2

3 3√2 f1

f2

f6
f20

f

Figure 2.3. Graphs of fn and f relative to Exercise 1. a)

b) Reasoning as before, the sequence converges pointwise on I to the limit f(x) =
0, for any x ∈ I. Moreover

f ′
n(x) =

1− n2x2

(1 + n2x2)2
,

and for any x ≥ 0

f ′
n(x) = 0 ⇐⇒ x =

1

n
with fn

( 1
n

)
=

1

2n
.

Thus there is uniform convergence on I, since

lim
n→∞

sup
x∈[0,+∞)

|fn(x)| = lim
n→∞

1

2n
= 0 .

See Fig. 2.4.

c) The sequence converges pointwise on (−∞, 0] to

f(x) =

{
0 if x < 0,

1 if x = 0.

We have no uniform convergence on (−∞, 0] as f is not continuous; but on all
half-lines (−∞,−δ], for any δ > 0, this is the case, because

x

y

f1

f2

f4

f10

f

Figure 2.4. Graphs of fn and f relative to Exercise 1. b)
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lim
n→∞

sup
x∈(−∞,−δ]

enx = lim
n→∞

e−nδ = 0 .

d) We have pointwise convergence to f(x) = 0 for all x ∈ [0,+∞), and uniform
convergence on every [δ,+∞), δ > 0.

e) Note fn(0) = 1/2. As n→∞ the maps fn satisfy

fn(x) ∼
{
(4/3)nx if x < 0 ,

(4/5)nx if x > 0 .

Anyway for x �= 0
f(x) = lim

n→∞
fn(x) = 0 .

Hence the sequence converges pointwise on R to the limit

f(x) =

{
0 if x �= 0,

1/2 if x = 0.

The convergence is not uniform on R because the limit is not continuous on that
domain. But we do have uniform convergence on every set Aδ = (−∞,−δ] ∪
[δ,+∞), δ > 0, since

lim
n→∞

sup
x∈Aδ

|fn(x)| = lim
n→∞

max
(
fn(δ), fn(−δ)

)
= 0 .

2. Notice fn(1) = fn(−1) = 0 for all n. For any x ∈ (−1, 1) moreover, 1− x2 < 1;
hence

lim
n→∞ fn(x) = 0 , ∀x ∈ (−1, 1) .

Then the sequence converges to f(x) = 0 , ∀x ∈ [−1, 1].
What about uniform convergence? For this we consider the odd maps fn, so it

suffices to take x ∈ [0, 1]. Then

f ′
n(x) = n(1− x2)n − 2nx2(1− x2)n−1 = n(1− x2)n−1(1 − x2 − 2nx2) ,

and fn(x) has a maximum point x = 1/
√
1 + 2n (and by symmetry a minimum

point x = −1/√1 + 2n). Therefore

sup
x∈[−1,1]

|fn(x)| = fn

(
1√

1 + 2n

)
=

n√
1 + 2n

(
2n

1 + 2n

)n

,

and the convergence is not uniform on [−1, 1], for

lim
n→∞

n√
1 + 2n

(
2n

1 + 2n

)n

= e−1/2 lim
n→∞

n√
1 + 2n

= +∞ .



2.7 Exercises 67

From this argument the convergence cannot be uniform on the interval [0, 1] either,
and we cannot swap the limit with differentiation. Let us check the formula. Put-
ting t = 1− x2, we have

lim
n→∞

∫ 1

0

fn(x) dx = lim
n→∞

n

2

∫ 1

0

tn dt = lim
n→∞

n

2(n+ 1)
=

1

2
,

while ∫ 1

0

lim
n→∞

fn(x) dx = 0 .

3. Since

lim
n→∞

fn(x) =

⎧⎨⎩
π/2 if x > 0 ,

0 if x = 0 ,

−π/2 if x < 0 ,

we have pointwise convergence on R, but not uniform: the limit is not continuous
despite the fn are. Similarly, no uniform convergence on [0, 1]. Therefore, if we put
a = 0, it is not possible to exchange limit and integration automatically. Compute
the two sides of the equality independently:

lim
n→∞

∫ 1

0

fn(x) dx = lim
n→∞

(
x arctannx

∣∣1
0
−
∫ 1

0

nx

1 + n2x2
dx

)

= lim
n→∞

[
arctann− log(1 + n2x2)

2n

∣∣∣1
0

]

= lim
n→∞

(
arctann− log(1 + n2)

2n

)
=

π

2
.

Moreover ∫ 1

0

lim
n→∞

fn(x) dx =

∫ 1

0

π

2
dx =

π

2
.

Hence the equality holds even if the sequence does not converge uniformly on [0, 1].
If we take a = 1/2, instead, we have uniform convergence on [1/2, 1], so the

equality is true by Theorem 2.18.

4. Convergence set for series of functions:

a) Fix x, so that

fk(x) =
(k + 2)x

k3 +
√
k
∼ 1

k3−x
, k →∞ .

The series is like the generalised harmonic series of exponent 3 − x, so it
converges if 3− x > 1, hence x < 2, and diverges if 3− x ≤ 1, so x ≥ 2.



68 2 Series of functions and power series

b) Given x, use the Root Test to see

lim
k→∞

k
√
|fk(x)| = lim

k→∞

(
1 +

x

k

)k
= ex .

Then the series converges if ex < 1, i.e., x < 0, and diverges if ex > 1, so
x > 0. If x = 0, the series diverges because the general term is always 1. The
convergence set is the half-line (−∞, 0).

c) If x = 1, the general term does not tend to 0 so the series cannot converge. If
x �= 1, as k →∞ we have

fk(x) ∼
{
x−k if x > 1,

xk if x < 1 .

In either case the series converges. Thus the convergence set is (0,+∞) \ {1}.
d) If |x| < 2, the convergence is absolute as |fk(x)| ∼

( |x|
2

)k
, k →∞. If x ≤ −2 or

x ≥ 2 the series does not converge since the general term is not infinitesimal.
The set of convergence is (−2, 2).

e) Observe that

|fk(x)| ∼ 1

k1−x
, k →∞ .

The series converges absolutely if 1− x > 1, so x < 0. By Leibnitz’s Test, the
series converges pointwise if 0 < 1−x ≤ 1, i.e., 0 ≤ x < 1. It does not converge
(it is indeterminate, actually) if x ≥ 1, since the general term does not tend
to 0. The convergence set is thus (−∞, 1).

f) Given x, the general term is equivalent to that of a generalised harmonic series:

fk(x) =

(
1

k +
√
k2 − 1

)x

∼
(
1

2k

)x

, k →∞ .

The convergence set is (1,+∞).

5. Geometric series with q = ex, converging pointwise on (−∞, 0) and uniformly
on (−∞,−δ], for any δ > 0. Moreover for any x < 0

∞∑
k=2

(ex)k =
1

1− ex
− 1− ex =

e2x

1− ex
.

6. For any x ∈ R, lim
k→∞

cos
x

k
= 1 �= 0. Hence the convergence set of

∞∑
k=1

cos
x

k
is

empty.
As f ′

k(x) = − 1
k sin

x
k , we have

|f ′
k(x)| ≤

|x|
k2

≤ 1

k2
, ∀x ∈ [−1, 1] .
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Since
∞∑
k=1

1

k2
converges, the M-test of Weierstrass tells

∞∑
k=1

f ′
k(x) converges uni-

formly on [−1, 1].
7. Sets of pointwise and uniform convergence:

a) This is harmonic with exponent −1/x, so: pointwise convergence on (−1, 0),
uniform convergence on any sub-interval [a, b] of (−1, 0).

b) The Integral Test tells the convergence is pointwise on (−∞,−1). Uniform
convergence happens on every half-line (−∞,−δ], for any δ > 1.

c) Observing

fk(x) ∼ 1

k2 + x2
log(k2 + x2) , k →∞ ,

the series converges pointwise on R. Moreover,

sup
x∈R

|fk(x)| = fk(0) = exp

(
1

k2
log k2

)
− 1 = Mk .

The numerical series

∞∑
k=1

Mk converges just like

∞∑
k=1

2 log k

k2
. The M-test implies

the convergence is also uniform on R.

8. The assumption ensures the radius of convergence is bigger or equal than 4.
Hence the first series converges, while for the second one we cannot say anything.

9. Convergence of power series:

a) Converges. b) Diverges. c) Converges. d) Diverges.

10. We have ∣∣∣∣ak+1

ak

∣∣∣∣ =
(
(k + 1)!

)p
(pk)!(

p(k + 1)
)
! (k!)p

(k + 1)p

(pk + 1)(pk + 2) · · · (pk + p)
.

Thus

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

k + 1

pk + 1

k + 1

pk + 2
· · · k + 1

pk + p
=

1

pp
,

and the Ratio Test gives R = pp.

11. Radius and set of convergence for power series:

a) R = 1, I = [−1, 1) b) R = 1, I = (−1, 1]
c) R = 1, I = (−1, 1) d) R = 3, I = (−3, 3]
e) R = 1, I = (3, 5) f) R = 10, I = (−9, 11)
g) R = 3, I = (−6, 0] h) R = 0, I = { 1

2}
i) R = +∞, I = R �) R = 1, I = [−1, 1]
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12. Using the Ratio Test:

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

k! (k + 1)! 22k+1

(k + 1)! (k + 2)! 22k+3
= lim

k→∞
1

4(k + 2)(k + 1)
= 0 .

Hence R = +∞ and the domain of the function is R.

13. Since lim
k→∞

k
√
|ak| = 1, the radius is R = 1. It is straightforward to see the

series does not converge for x = ±1 because the general term does not tend to 0.
Hence dom f = (−1, 1), and for x ∈ (−1, 1),

f(x) =

∞∑
k=0

x2k + 2

∞∑
k=0

x2k+1 1

1− x2
+

2x

1− x2
=

1 + 2x

1− x2
.

14. Set of convergence:

a) Put y = x2 − 1 and look at the power series

∞∑
k=1

(2
3

)k
yk

in the variable y, with radius Ry. Since

lim
k→∞

k

√(2
3

)k
=

2

3
,

Ry =
3
2 . For y = ± 3

2 the series does not converge as the general term does not
tend to 0. In conclusion, the series converges if − 3

2 < x2 − 1 < 3
2 . The first

inequality holds for any x, whereas the second one equals x2 < 5
2 ; The series

converges on
(−√ 5

2 ,
√

5
2

)
.

b) Let x �= 1; set y = 1+x
1−x and consider the series

∞∑
k=1

1
k
√
k
yk in y. Since

lim
k→∞

k

√
1
k
√
k
= lim

k→∞
e−

1
k2 log k = 1 ,

we obtain Ry = 1. For y = ±1 there is no convergence as the general term
does not tend to 0. Hence, the series converges for

−1 <
1 + x

1− x
< 1 , i.e., x < 0 .

c) Write y = 2−x2

and consider the power series
∞∑
k=1

k + 1

k2 + 1
yk. Immediately we

have Ry = 1; in addition the series converges if y = −1 (like the alternating
harmonic series) and diverges if y = 1 (harmonic series). Returning to the

variable x, the series converges if −1 ≤ 2−x2

< 1. The left inequality is trivial,
the right one holds when x �= 0. Overall the set of convergence is R \ {0}.
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d) When x �= 0 we set y =
x

x+ 1
x

=
x2

1 + x2
and then study

∞∑
k=1

3k

k
yk. Its radius

equals Ry =
1
3 , so it converges on [− 1

3 ,
1
3 ).

Back to the x, we impose the conditions

−1

3
≤ x2

1 + x2
<

1

3
.

This is equivalent to 2x2 < 1, making
(− √

2
2 ,

√
2
2

) \ {0} the convergence set.
15. Exploiting the Ratio Test we have

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

a
√
k+1

a
√
k

= lim
k→∞

a
√
k+1−

√
k = lim

k→∞
a

1√
k+1+

√
k = 1 .

Hence R = 1 for any a > 0.

16. Maclaurin series:

a) Using the geometric series with q = −x
2 ,

f(x) =
x3

2

1

1 + x
2

=
x3

2

∞∑
k=0

(
−x

2

)k
=

∞∑
k=0

(−1)k x
k+3

2k+1
;

this has radius R = 2.

b) With the geometric series where q = x2, we have

f(x) = −1 + 2

1− x2
= −1 + 2

∞∑
k=0

x2k ,

whose radius is R = 1.

c) Expanding the function g(t) = log(1 + t), where t = −x
3 , we obtain

f(x) = log 3 + log(1− x

3
) = log 3 +

∞∑
k=1

(−1)k+1

k

(
−x

3

)k
= log 3−

∞∑
k=1

xk

k3k
;

This has radius R = 3.

d) Expanding g(t) =
1

(1− t)2
(recall (2.16)) with t = x

4 ,

f(x) =
x3

16

1

(1− x
4 )

2
=

x3

16

∞∑
k=0

(k + 1)
(x
4

)k
=

∞∑
k=0

(k + 1)xk+3

4k+2
;

Now the radius is R = 4.
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e) Recalling the series of g(t) = log(1 + t), with t = x and then t = −x, we find

f(x) = log(1 + x)− log(1− x) =
∞∑
k=1

(−1)k+1

k
xk −

∞∑
k=1

(−1)k+1

k
(−x)k

=

∞∑
k=1

1

k

(
(−1)k+1 + 1

)
xk =

∞∑
k=0

2

2k + 1
x2k+1 ;

thus the radius equals R = 1.

f) f(x) =
∞∑
k=0

(−1)k x8k+4

(2k + 1)!
has radius R =∞ .

g) Since sin2 x = 1
2 (1 − cos 2x), and remembering the expansion of g(t) = cos t

with t = 2x, we have

f(x) =
1

2
− 1

2

∞∑
k=0

(−1)k 2
2kx2k

(2k)!
, R = +∞ .

h) f(x) =

∞∑
k=0

(log 2)k

k!
xk , with R = +∞ .

17. Taylor series:

a) One can proceed directly and compute the derivatives of f to obtain

f (k)(x) = (−1)k k!

xk+1
, whence f (k)(1) = (−1)kk! , ∀k ∈ N .

Therefore

f(x) =
∞∑
k=0

(−1)k(x− 1)k , R = 1 .

Alternatively, one could set t = x− 1 and take the Maclaurin series of f(t) =
1

1+t to arrive at the same result:

1

1 + t
=

∞∑
k=0

(−1)ktk =
∞∑
k=0

(−1)k(x− 1)k , R = 1 .

b) Here as well we compute directly

f ′(x) =
1

2
x−1/2 , f (k)(x) = (−1)k+1 1 · 3 · 5 · · · (2k − 3)

2k
x− 2k−1

2 ,

for all k ≥ 2; then
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f(x) = 2 +
1

4
(x − 4) +

∞∑
k=1

(−1)k+1 1 · 3 · 5 · · · (2k − 3)

k!2k
2−(2k−1) (x− 4)k

and the radius is R = 4.

Alternatively, put t = x− 4, to the effect that

√
x =

√
4 + t = 2

√
1 +

t

4

= 2 +
1

4
(x− 4) + 2

∞∑
k=2

(1
2

k

)(
t

4

)k

= 2 +
1

4
(x− 4) + 2

∞∑
k=2

1
2

(
1
2 − 1

) · · · ( 12 − k + 1
)

k!

1

4k
(x− 4)k

= 2 +
1

4
(x− 4) + 2

∞∑
k=2

1 · 3 · · · (2k − 3)

2kk!

(−1)k+1

22k
(x− 4)

k

= 2 +
1

4
(x− 4) +

∞∑
k=2

(−1)k+1 1 · 3 · 5 · · · (2k − 3)

k!23k−1
(x − 4)k .

c) log x = log 2 +

∞∑
k=1

(−1)k+1

k2k
(x− 2)k , R = 2.

18. The equality is trivial for x = 0. Differentiating term by term, for |x| < 1 we
have

∞∑
k=0

xk =
1

1− x
,

∞∑
k=1

kxk−1 =
1

(1− x)2
,

∞∑
k=2

k(k − 1)xk−2 =
2

(1− x)3
.

From the last relationship, when x �= 0, we have

2

(1− x)3
=

∞∑
k=1

k(k + 1)xk−1 =

∞∑
k=1

k2xk−1 +

∞∑
k=1

kxk−1 =
1

x

∞∑
k=1

k2xk +
1

(1− x)2
.

Therefore ∞∑
k=1

k2xk =
2x

(1− x)3
− x

(1− x)2
=

x2 + x

(1 − x)3
.

19. Maclaurin series:

a) Using the well-known series of g(x) = log(1 − x) and h(x) = e−x yields

f(x) = e−x log(1− x) =
(
1− x+

x2

2
− x3

3!
+ · · · )(− x− x2

2
− x3

3
− · · · )

= −x+ x2 − 1

2
x2 − 1

3
x3 +

1

2
x3 − 1

2
x3 + · · ·

= −x+ 1

2
x2 − 1

3
x3 + · · ·
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b) f(x) = 1− 3

2
x2 +

25

24
x4 − · · ·

c) f(x) = x+ x2 +
5

6
x3 + · · ·

20. Indefinite integrals:

a) Since

sinx2 =

∞∑
k=0

(−1)k
(2k + 1)!

x2(2k+1) , ∀x ∈ R ,

a term-by-term integration produces∫
sinx2 dx = c+

∞∑
k=0

(−1)kx4k+3

(4k + 3)(2k + 1)!

with arbitrary constant c.

b)

∫ √
1 + x3 dx = c+ x+

x4

8
+

∞∑
k=2

(−1)k−1 1 · 3 · 5 · · · (2k − 3)

2kk!(3k + 1)
x3k+1 .

21. Definite integrals:

a)

∫ 1

0

sinx2 dx ∼ 0.310 .

b)

∫ 1/10

0

√
1 + x3 dx ∼ 0.10001250 .
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Fourier series

The sound of a guitar, the picture of a footballer on tv, the trail left by an oil tanker
on the ocean, the sudden tremors of an earthquake are all examples of events, either
natural or caused by man, that have to do with travelling-wave phenomena. Sound
for instance arises from the swift change in air pressure described by pressure waves
that move through space. The other examples can be understood similarly using
propagating electromagnetic waves, water waves on the ocean’s surface, and elastic
waves within the ground, respectively.

The language of Mathematics represents waves by one or more functions that
model the physical object of concern, like air pressure, or the brightness of an
image’s basic colours; in general this function depends on time and space, for in-
stance the position of the microphone or the coordinates of the pixel on the screen.
If one fixes the observer’s position in space, the wave appears as a function of the
time variable only, hence as a signal (acoustic, of light, . . . ). On the contrary, if we
fix a moment in time, the wave will look like a collection of values in space of the
physical quantity represented (think of a picture still on the screen, a photograph
of the trail taken from a plane, and so on).

Propagating waves can have an extremely complicated structure; the desire to
understand and be able to control their behaviour in full has stimulated the quest
for the appropriate mathematical theories to analyse them, in the last centuries.
Generally speaking, this analysis aims at breaking down a complicated wave’s
structure in the superposition of simpler components that are easy to treat and
whose nature is well understood. According to such theories there will be a collec-
tion of ‘elementary waves’, each describing a specific and basic way of propagation.
Certain waves are obtained by superposing a finite number of elementary ones, yet
the more complex structures are given by an infinite number of elementary waves,
and then the tricky problem arises – as always – of making sense of an infinite
collection of objects and how to handle them.

The so-called Fourier Analysis is the most acclaimed and widespread frame-
work for describing propagating phenomena (and not only). In its simplest form,
Fourier Analysis considers one-dimensional signals with a given periodicity. The
elementary waves are sine functions characterised by a certain frequency, phase

C. Canuto, A. Tabacco:Mathematical Analysis II, 2nd Ed.,
UNITEXT – La Matematica per il 3+2 85, DOI 10.1007/978-3-319-12757-6_3,
© Springer International Publishing Switzerland 2015
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and amplitude of oscillation. The composition of a finite number of elementary
waves generates trigonometric polynomials, whereas an infinite number produces
a series of functions, called Fourier series. This is an extremely efficient way of rep-
resenting in series a large class of periodic functions. This chapter introduces the
rudiments of Fourier Analysis through the study of Fourier series and the issues
of their convergence to a periodic map.

Beside standard Fourier Analysis, other much more sophisticated tools for ana-
lysing and representing functions have been developed, especially in the last dec-
ades of the XX century, among which the so-called Wavelet Analysis. Some of
those theories lie at the core of the recent, striking success of Mathematics in sev-
eral groundbreaking technological applications such as mobile phones, or digital
sound and image processing. Far from obfuscating the classical subject matter,
these latter-day developments highlight the importance of the standard theory as
foundational for all successive advancements.

3.1 Trigonometric polynomials

We begin by recalling periodic functions.

Definition 3.1 A map f : R→ R is periodic of period T > 0 if

f(x+ T ) = f(x) , ∀x ∈ R.

If f is periodic of period T it is also periodic of period kT , with k ∈ N \ {0},
including that f might be periodic of period T/k, k ∈ N \ {0}. The minimum
period of f is the smallest T (if existent) for which f is periodic. Moreover, f is
known when we know it on an interval [x0, x0 + T ) (or (x0, x0 + T ]) of length T .

Usually one chooses the interval [0, T ) or
[ − T

2 ,
T
2

)
. Note that if f is constant, it

is periodic of period T , for any T > 0.
Any map defined on a bounded interval [a, b) can be prolonged to a periodic

function of period T = b− a, by setting

f(x+ kT ) = f(x) , k ∈ Z , ∀x ∈ [a, b) .

Such prolongation is not necessarily continuous at the points x = a+ kT , even if
the original function is.

Examples 3.2

i) The functions f(x) = cosx, g(x) = sinx are periodic of period 2kπ with
k ∈ N \ {0}. Both have minimum period 2π.

ii) f(x) = cos x
4 is periodic of period 8π, 16π, . . .; its minimum period is 8π.

iii) The maps f(x) = cosωx, g(x) = sinωx, ω �= 0, are periodic with minimum
period T0 =

2π
ω .

iv) The mantissa map f(x) = M(x) is periodic of minimum period T0 = 1. �
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The following properties are easy to prove.

Proposition 3.3 Let f be periodic of period T > 0; for any x0 ∈ R then,∫ T

0

f(x) dx =

∫ x0+T

x0

f(x) dx .

In particular, if x0 = −T/2,∫ T

0

f(x) dx =

∫ T/2

−T/2

f(x) dx .

Proof. By the properties of definite integrals,∫ T

0

f(x) dx =

∫ x0

0

f(x) dx+

∫ x0+T

x0

f(x) dx+

∫ T

x0+T

f(x) dx .

Putting x = y + T in the last integral, by periodicity∫ T

x0+T

f(x) dx =

∫ 0

x0

f(y + T ) dy =

∫ 0

x0

f(y) dy −
∫ x0

0

f(y) dy ,

whence the result. �

Proposition 3.4 Let f be a periodic map of period T1 > 0 and take T2 > 0.

Then g(x) = f
(

T1

T2
x
)
is periodic of period T2.

Proof. For any x ∈ R,

g(x+ T2) = f
(T1

T2
(x+ T2)

)
= f
(T1

T2
x+ T1

)
= f
(T1

T2
x
)
= g(x) . �

The periodic function f(x) = a sin(ωx + φ), where a, ω,φ are constant, is
rather important for the sequel. It describes in Physics a special oscillation of sine
type, and goes under the name of simple harmonic. Its minimum period equals
T = 2π

ω and the latter’s reciprocal ω
2π is the frequency, i.e., the number of wave

oscillations on each unit interval (oscillations per unit of time, if x denotes time);
ω is said angular frequency. The quantities a and φ are called amplitude and
phase (offset) of the oscillation. Modifying a > 0 has the effect of widening or
shrinking the range of f (the oscillation’s crests and troughs move apart or get
closer, respectively), while a positive or negative variation of φ translates the wave
left or right (Fig. 3.1). A simple harmonic can also be represented as a sin(ωx+φ) =
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−1

1

−2π 2π x

y

−1

1

x

y

−2

2

−2π 2π x

y

−1

1

−2π−φ 2π−φ−φ x

y

Figure 3.1. Simple harmonics for various values of angular frequency, amplitude and
phase: (ω, a,φ) = (1, 1, 0), top left; (ω, a,φ) = (5, 1, 0), top right; (ω, a,φ ) = (1, 2, 0),
bottom left; (ω, a,φ ) = (1, 1, π

3
), bottom right

α cosωx+ β sinωx with α = a sinφ and β = a cosφ; the inverse transformation of
the parameters is a =

√
α2 + β2, φ = arctan α

β .
In the sequel we shall concentrate on periodic functions of period 2π because

all results can be generalised by a simple variable change, thanks to Proposition
3.4. (More details can be found in Sect. 3.6.)

The superposition of simple harmonics whose frequencies are all multiple of
one fundamental frequency, say 1/2π for simplicity, gives rise to trigonometric
polynomials.

Definition 3.5 A trigonometric polynomial of order or degree n is a
finite linear combination

P (x) = a0 + a1 cosx+ b1 sinx+ . . .+ an cosnx+ bn sinnx

= a0 +

n∑
k=1

(ak cos kx+ bk sin kx) ,

where ak, bk are real constants and at least one of an, bn is non-zero. Rep-
resenting simple harmonics in terms of their amplitude and phase, a trigono-
metric polynomial can be written as

P (x) = a0 +

n∑
k=1

αk sin(kx+ ϕk) .
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The name stems from the observation that each algebraic polynomial of degree
n in X and Y generates a trigonometric polynomial of the same degree n, by
substituting X = cosx, Y = sinx and using suitable trigonometric identities. For
example, p(X,Y ) = X3 + 2Y 2 gives

p(cosx, sinx) = cos3 x+ 2 sin2 x

= cosx
1 + cos 2x

2
+ 2

1− cos 2x

2

= 1 +
1

2
cosx− cos 2x+

1

2
cosx cos 2x

= 1 +
1

2
cosx− cos 2x+

1

4
(cos x+ cos 3x)

= 1 +
3

4
cosx− cos 2x+

1

4
cos 3x = P (x).

Obviously, not all periodic maps can be represented as trigonometric polynomials
(e.g., f(x) = esin x). At the same time though, certain periodic maps (that include
the functions appearing in applications) may be approximated, in a sense to be
made precise, by trigonometric polynomials: they can actually be expanded in
series of trigonometric polynomials. These functions are called Fourier series
and are the object of concern in this chapter.

3.2 Fourier Coefficients and Fourier series

Although the theory of Fourier series can be developed in a very broad context,
we shall restrict to a subclass of all periodic maps (of period 2π), namely those
belonging to the space C̃2π, which we will introduce in a moment. First though, a
few preliminary definitions are required.

Definition 3.6 A map f periodic of period 2π is piecewise continuous if
it is continuous on [0, 2π] except for at most a finite number of points x0. At
such points there can be a removable singularity or a singularity of the first
kind, so the left and right limits

f(x+
0 ) = lim

x→x+
0

f(x) and f(x−
0 ) = lim

x→x−
0

f(x)

exist and are finite.
If, in addition,

f(x0) =
1

2

(
f(x+

0 ) + f(x−
0 )
)
, (3.1)

at each discontinuity x0, f is called regularised.
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Definition 3.7 We denote by C̃2π the space of maps defined on R that are
periodic of period 2π, piecewise continuous and regularised.

The set C̃2π is an R-vector space (i.e., αf + βg ∈ C̃2π for any α,β ∈ R and all
f, g ∈ C̃2π); it is not hard to show that given f, g ∈ C̃2π, the expression

(f, g) =

∫ 2π

0

f(x)g(x) dx (3.2)

defines a scalar product on C̃2π (we refer to Appendix A.2.1, p. 521, for the
general concept of scalar product and of norm of a function). In fact,

i) (f, f) ≥ 0 for any f ∈ C̃2π, and (f, f) = 0 if and only if f = 0;

ii) (f, g) = (g, f), for any f, g ∈ C̃2π;
iii) (αf + βg, h) = α(f, h) + β(g, h), for all f, g, h ∈ C̃2π and any α,β ∈ R.

The only non-trivial fact is that (f, f) = 0 forces f = 0. To see that, let x1, . . . , xn

be the discontinuity points of f in [0, 2π]; then

0 =

∫ 2π

0

f2(x) dx =

∫ x1

0

f2(x) dx +

∫ x2

x1

f2(x) dx + . . .+

∫ 2π

xn

f2(x) dx .

As f is continuous on every sub-interval (xi, xi+1), we get f(x) = 0 on each of
them. At last, f(xi) = 0 at each point of discontinuity, by (3.1).

Associated to the scalar product (3.2) is a norm

‖f‖2 = (f, f)1/2 =
(∫ 2π

0

|f(x)|2 dx
)1/2

called quadratic norm. As any other norm, the quadratic norm enjoys the fol-
lowing characteristic properties:

i) ‖f‖2 ≥ 0 for any f ∈ C̃2π and ‖f‖2 = 0 if and only if f = 0;

ii) ‖αf‖2 = |α| ‖f‖2, for all f ∈ C̃2π and any α ∈ R;

iii) ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2, for any f, g ∈ C̃2π.
The Cauchy-Schwarz inequality

|(f, g)| ≤ ‖f‖2 ‖g‖2 , ∀f, g ∈ C̃2π , (3.3)

holds.
Let us now recall that a family {fk} of non-zero maps in C̃2π is said an ortho-

gonal system if
(fk, f�) = 0 for k �= � .



3.2 Fourier Coefficients and Fourier series 81

By normalising f̂k =
fk

‖fk‖2 for any k, an orthogonal system generates an or-

thonormal system {f̂k},

(f̂k, f̂�) = δk� =

{
1 if k = � ,

0 if k �= � .

The set of functions

F =
{
1, cosx, sinx, . . . , cos kx, sin kx, . . .

}
=
{
ϕk(x) = cos kx : k ≥ 0

}
∪
{
ψk(x) = sin kx : k ≥ 1

} (3.4)

forms an orthogonal system in C̃2π, whose associated orthonormal system is

F̂ =
{ 1√

2π
,

1√
π
cosx,

1√
π
sinx, . . . ,

1√
π
cos kx,

1√
π
sin kx, . . .

}
. (3.5)

This follows from the relationships

∫ 2π

0

cos2 kxdx =

∫ 2π

0

sin2 kxdx = π , ∀k ≥ 1∫ 2π

0

cos kx cos �xdx =

∫ 2π

0

sin kx sin �xdx = 0 , ∀k,� ≥ 0, k �= � ,

∫ 2π

0

cos kx sin �xdx = 0 , ∀k,� ≥ 0 .

(3.6)

The above orthonormal system in C̃2π plays the role of the canonical orthonor-
mal basis {ek} of Rn: each element in the vector space is uniquely writable as
linear combination of the elements of the system, with the difference that now
the linear combination is an infinite series. Fourier series are precisely the expan-
sions in series of maps in C̃2π, viewed as formal combinations of the orthonormal
system (3.5).

A crucial feature of this expansion is the possibility of approximating a map
by a linear combination of simple functions. Precisely, for any n ≥ 0 we consider
the (2n+ 1)-dimensional subset Pn ⊂ C̃2π of trigonometric polynomials of degree
≤ n. This subspace is spanned by maps ϕk and ψk of F with index k ≤ n, forming
a finite orthogonal system Fn. A “natural” approximation in Pn of a map of C̃2π
is provided by its orthogonal projection on Pn.
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Definition 3.8 We call orthogonal projection of f ∈ C̃2π on Pn the ele-
ment Sn,f ∈ Pn defined by

Sn,f (x) = a0 +

n∑
k=1

(ak cos kx+ bk sin kx) , (3.7)

where ak, bk are

a0 =
1

2π

∫ 2π

0

f(x) dx ;

ak =
1

π

∫ 2π

0

f(x) cos kxdx , k ≥ 1 ;

bk =
1

π

∫ 2π

0

f(x) sin kxdx , k ≥ 1 .

(3.8)

Note Sn,f can be written as

Sn,f(x) =
n∑

k=0

akϕk(x) +
n∑

k=1

bkψk(x)

and the coefficients ak, bk become

ak =
(f,ϕ k)

(ϕk, ϕk)
for k ≥ 0 , bk =

(f,ψ k)

(ψk, ψk)
for k ≥ 1 . (3.9)

There is an equivalent representation with respect to the finite orthonormal
system F̂n made by the elements of F̂ of index k ≤ n; in fact

Sn,f(x) =
n∑

k=0

âkϕ̂k(x) +
n∑

k=1

b̂kψ̂k(x)

where
âk = (f, ϕ̂k) for k ≥ 0 , b̂k = (f, ψ̂k) for k ≥ 1 . (3.10)

The equivalence follows from

ak =
1

‖ϕk‖22
(f,ϕ k) =

1

‖ϕk‖ 2

(
f,

ϕk

‖ϕk‖2
)
=

1

‖ϕk‖2 âk

hence

akϕk(x) = âk
ϕk(x)

‖ϕk‖2 = âkϕ̂k(x) ;

similarly one proves bkψk(x) = b̂kψ̂k(x).
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To understand the properties of the orthogonal projection of f on Pn, we stress
that the quadratic norm defines a distance on C̃2π:

d(f, g) = ‖f − g‖2 , f, g ∈ C̃2π . (3.11)

The number ‖f − g‖2 measures how “close” f and g are. The expected properties
of distances hold:

i) d(f, g) ≥ 0 for any f, g ∈ C̃2π, and d(f, g) = 0 precisely if f = g;

ii) d(f, g) = d(g, f), for all f, g ∈ C̃2π;
iii) d(f, g) ≤ d(f, h) + d(h, g), for any f, g, h ∈ C̃2π.

The orthogonal projection of f on Pn enjoys therefore the following properties,
some of which are symbolically represented in Fig. 3.2.

Proposition 3.9 i) The function f − Sn,f is orthogonal to every element
of Pn, and Sn,f is the unique element of Pn with this property.

ii) Sn,f is the element in Pn with minimum distance to f with respect to
(3.11), i.e.,

‖f − Sn,f‖2 = min
P∈Pn

‖f − P‖2 .

Hence Sn,f is the polynomial of Pn that best approximates f in quadratic
norm.

iii) The minimum square error ‖f − Sn,f‖2 of f satisfies

‖f − Sn,f‖22 =
∫ 2π

0

|f(x)|2 dx− 2πa20 − π
n∑

k=1

(a2k + b2k) . (3.12)

Proof. This proposition transfers to C̃2π the general properties of the orthogonal
projection of a vector, belonging to a vector space equipped with a dot
product, onto the subspace generated by a finite orthogonal system. For
the reader not familiar with such abstract notions, we provide an adapted
proof.
For i), let

P (x) =
n∑

k=0

ãkϕk(x) +

n∑
k=1

b̃kψk(x)

be a generic element of Pn. Then f − P is orthogonal to every element in
Pn if and only if, for any k ≤ n,

(f − P,ϕ k) = 0 and (f − P,ψ k) = 0 .

Using the orthogonality of ϕk, ψk, that is equivalent to

(f,ϕ k)− ãk(ϕk, ϕk) = 0 and (f,ψ k)− b̃k(ψk, ψk) = 0 .
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P

PnC̃2π

Sn,f

f

O

Figure 3.2. Orthogonal projection of f ∈ C̃2π on Pn

Hence ãk = ak and b̃k = bk for any k ≤ n, recalling (3.9). In other words,
P = Sn,f .
To prove ii), note first that

‖f + g‖22 = ‖f‖22 + ‖g‖22 + 2(f, g) , ∀f, g ∈ C̃2π
by definition of norm. Writing ‖f −P‖2 as ‖(f −Sn,f)+ (Sn,f −P )‖2, and
using the previous relationship with the fact that f − Sn,f is orthogonal
to Sn,f − P ∈ Pn by i), we obtain

‖f − P‖22 = ‖f − Sn,f‖22 + ‖Sn,f − P‖22 ;
the equation is to be considered as a generalisation of Pythagoras’ Theorem
to spaces with a scalar product (Fig. 3.2). Then

‖f − P‖22 ≥ ‖f − Sn,f‖22 , ∀P ∈ Pn ,

and equality holds if and only if Sn,f −P = 0 if and only if P = Sn,f . This
proves ii).
Claim iii) follows from

‖f − Sn,f‖22 =
(
f − Sn,f , f − Sn,f

)
=
(
f, f − Sn,f

)− (Sn,f , f − Sn,f

)
=
(
f, f − Sn,f

)
= ‖f‖22 −

(
f, Sn,f

)
and (

f, Sn,f

)
=

∫ 2π

0

f(x)Sn,f (x) dx = 2πa20 + π
n∑

k=1

(a2k + b2k) . �

At this juncture it becomes natural to see if, and in which sense, the polynomial
sequence Sn,f converges to f as n→∞. These are the partial sums of the series

a0 +

∞∑
k=1

(ak cos kx+ bk sin kx) ,
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where the coefficients ak, bk are given by (3.8). We are thus asking about the
convergence of the series.

Definition 3.10 The Fourier series of f ∈ C̃2π is the series of functions

a0 +

∞∑
k=1

(ak cos kx+ bk sin kx) , (3.13)

where a0, ak, bk (k ≥ 1) are the real numbers (3.8) and are called the Fourier
coefficients of f . We shall write

f ≈ a0 +

∞∑
k=1

(ak cos kx+ bk sin kx) . (3.14)

The symbol ≈ means that the right-hand side of (3.14) represents the Fourier
series of f ; more explicitly, the coefficients ak and bk are prescribed by (3.8). Due
to the ample range of behaviours of a series (see Sect. 2.3), one should expect the
Fourier series of f not to converge at all, or to converge to a sum other than f .
That is why we shall use the equality sign in (3.14) only in case the series pointwise
converges to f . We will soon discuss sufficient conditions for the series to converge
in some way or another.

It is possible to define the Fourier series of a periodic, piecewise-continuous
but not-necessarily-regularised function. Its series coincides with the one of the
regularised function built from f .

Example 3.11

Consider the square wave (Fig. 3.3)

f(x) =

⎧⎪⎨⎪⎩
−1 if −π < x < 0 ,

0 if x = 0, ±π ,
1 if 0 < x < π .

By Proposition 3.3, for any k ≥ 0∫ 2π

0

f(x) cos kxdx =

∫ π

−π

f(x) cos kxdx = 0 ,

as f(x) cos kx is an odd map, whence ak = 0. Moreover

bk =
1

π

∫ π

−π

f(x) sin kxdx =
2

π

∫ π

0

sin kxdx

=
2

kπ
(1− cos kπ) =

2

kπ
(1− (−1)k) =

{
0 if k is even ,

4
kπ if k is odd .
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x

y

π−π

2π−2π 0

x

y

π−π

0

Figure 3.3. Graphs of the square wave (top) and the corresponding polynomials
S1,f (x), S9,f (x), S41,f (x) (bottom)

Writing every odd k as k = 2m+ 1, the Fourier series of f reads

f ≈ 4

π

∞∑
m=0

1

2m+ 1
sin(2m+ 1)x . �

The example shows that if the map f ∈ C̃2π is symmetric, computing its Fourier
coefficients can be simpler. The precise statement goes as follows.

Proposition 3.12 If the map f ∈ C̃2π is odd,

ak = 0 , ∀k ≥ 0 ,

bk =
2

π

∫ π

0

f(x) sin kxdx , ∀k ≥ 1 ;

If f is even,

bk = 0 , ∀k ≥ 1 ,

a0 =
1

π

∫ π

0

f(x) dx ; ak =
2

π

∫ π

0

f(x) cos kxdx , ∀k ≥ 1 .

Proof. Take, for example, f even. Recalling Proposition 3.3, it suffices to note
f(x) sin kx is odd for any k ≥ 1, and f(x) cos kx is even for any k ≥ 0, to
obtain that∫ 2π

0

f(x) sin kxdx =

∫ π

−π

f(x) sin kxdx = 0 , ∀k ≥ 1 ,
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and, for any k ≥ 0,∫ 2π

0

f(x) cos kxdx =

∫ π

−π

f(x) cos kxdx = 2

∫ π

0

f(x) cos kxdx .

�

Example 3.13

Let us determine the Fourier series for the rectified wave f(x) = | sinx|
(Fig. 3.4). As f is even, the bk vanish and we just need to compute ak for
k ≥ 0:

a0 =
1

2π

∫ π

−π

| sinx| dx =
1

π

∫ π

0

sinxdx =
2

π
,

a1 =
1

π

∫ π

0

sin 2xdx = 0 ,

ak =
2

π

∫ π

0

sinx cos kxdx =
1

π

∫ π

0

(
sin(k + 1)x− sin(k − 1)x

)
dx

=
1

π

(1− cos(k + 1)π

k + 1
− 1− cos(k − 1)π

k − 1

)

=

⎧⎪⎨⎪⎩
0 if k is odd ,

− 4

π(k2 − 1)
if k is even ,

∀k > 1 .

The Fourier series of the rectified wave thus reads

f ≈ 2

π
− 4

π

∞∑
m=1

1

4m2 − 1
cos 2mx . �

x

y

π−π 0

x

y

π−π 0

Figure 3.4. Graphs of the rectified wave (top) and the corresponding polynomials
S2,f (x), S10,f (x), S30,f (x) (bottom)
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3.3 Exponential form

The exponential form is an alternative, but equivalent, way of representing a Four-
ier series; it is more concise and sometimes easier to use, but the price for this is
that it requires complex numbers.

The starting point is the Euler identity (Vol. I, Eq. (8.31))

eiθ = cos θ + i sin θ , θ ∈ R ; (3.15)

setting θ = ±kx, k ≥ 1 integer, we may write cos kx and sin kx as linear combin-
ations of the functions eikx, e−ikx:

cos kx =
1

2
(eikx + e−ikx) , sin kx =

1

2i
(eikx − e−ikx) .

On the other hand, 1 = ei0x trivially. Substituting in (3.14) and rearranging terms
yields

f ≈
+∞∑

k=−∞
cke

ikx , (3.16)

where

c0 = a0 , ck =
ak − ibk

2
, c−k =

ak + ibk
2

, for k ≥ 1 . (3.17)

It is an easy task to check

ck =
1

2π

∫ 2π

0

f(x)e−ikx dx , k ∈ Z .

Expression (3.16) represents the Fourier series of f in exponential form, and the
coefficients ck are the complex Fourier coefficients of f .

The complex Fourier series embodies the (formal) expansion of a function f ∈
C̃2π with respect to the orthogonal system of functions eikx, k ∈ Z. In fact,

(eikx, ei�x) = 2πδkl =

{
2π if k = � ,

0 if k �= � ,

where

(f, g) =

∫ 2π

0

f(x)g(x) dx

is defined on C̃∗2π, the set of complex-valued maps f = fr+ ifi : R→ C whose real
part fr and imaginary part fi belong to C̃2π.



3.4 Differentiation 89

For this system the complex Fourier coefficients of f become

ck =
(f, eikx)

(eikx, eikx)
, k ∈ Z , (3.18)

in analogy to (3.9). Since this formula makes sense for all maps in C̃∗2π, equa-
tion (3.16) might define Fourier series on C̃∗2π as well.

It is straighforward that f ∈ C̃∗2π is a real map (fi = 0) if and only if its
complex Fourier coefficients satisfy c−k = ck, for any k ∈ Z. If so, the real Fourier
coefficients of f are just

a0 = c0 , ak = ck + c−k , bk = i(ck − c−k) , for k ≥ 1 . (3.19)

3.4 Differentiation

Consider the real Fourier series (3.13) and let us differentiate it (formally) term
by term. This gives

α0 +

∞∑
k=1

(αk cos kx+ βk sin kx) ,

with
α0 = 0 , αk = kbk , βk = −kak , for k ≥ 1 . (3.20)

Supposing f ∈ C̃2π is C1 on R, in which case the derivative f ′ still belongs to
C̃2π, the previous expression coincides with the Fourier series of f ′. In fact,

α0 =
1

2π

∫ 2π

0

f ′(x) dx =
1

2π

(
f(2π)− f(0)

)
= 0

by periodicity. Moreover, for k ≥ 1, integrating by part gives

αk =
1

π

∫ 2π

0

f ′(x) cos kxdx

=
1

π

[
f(x) cos kx

]2π
0
+

k

π

∫ 2π

0

f(x) sin kxdx = kbk ,

and similarly, βk = −kak.
In summary,

f ′ ≈
∞∑
k=1

(k bk cos kx− k ak sinkx) . (3.21)

A similar reasoning shows that such representation holds under weaker hypotheses
on the differentiability of f , e.g., if f is piecewise C1 (see Definition 3.24).
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The derivatives’ series becomes all the more explicit if we exploit the complex
form (3.16). From (3.15) in fact,

d

dθ
eiθ = (− sin θ) + i cos θ = i(cos θ + i sin θ) = ieiθ .

Therefore
d

dx
eikx = ikeikx ,

whence

f ′ ≈
+∞∑

k=−∞
ikcke

ikx .

If f is Cr on R, r ≥ 1, this fact generalises in the obvious way:

f (r) ≈
+∞∑

k=−∞
(ik)rcke

ikx ;

Thus, the kth complex Fourier coefficient γk of the rth derivative of f is

γk = (ik)rck . (3.22)

3.5 Convergence of Fourier series

This section is devoted to the convergence properties of the Fourier series of a
piecewise-continuous, periodic map of period 2π (not regularised necessarily). We
shall treat three kinds of convergence: quadratic, pointwise and uniform. We omit
the proofs of all theorems, due to their prevailingly technical nature1.

3.5.1 Quadratic convergence

We begin by the definition.

Definition 3.14 Let f and fk, k ≥ 0, be square-integrable functions defined

on a closed and bounded interval [a, b]. The series

∞∑
k=0

fk converges in quad-

ratic norm to f on [a, b] if

lim
n→∞

∫ b

a

∣∣∣f(x)− n∑
k=0

fk(x)
∣∣∣2dx = lim

n→∞

∥∥∥f − n∑
k=0

fk

∥∥∥2
2
= 0 .

1 A classical text where the interested reader may find these proofs is Y. Katznelson’s,
Introduction to Harmonic Analysis, Cambridge University Press, 2004.
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Directly from this, the uniform convergence of

∞∑
k=0

fk to f implies the quadratic

convergence, for∫ b

a

∣∣∣f(x)− n∑
k=0

fk(x)
∣∣∣2 dx ≤ ∫ b

a

(
sup

x∈[a,b]

∣∣∣f(x)− n∑
k=0

fk(x)
∣∣∣)2 dx

≤ (b− a)
∥∥∥f − n∑

k=0

fk

∥∥∥2
∞,[a,b]

;

hence, if the last expression is infinitesimal as n→∞, so is the first one.

Quadratic convergence of the Fourier series of a map in C̃2π is guaranteed by
the next fundamental result, whose proof we omit.

Theorem 3.15 The Fourier series of f ∈ C̃2π converges to f in quadratic
norm:

lim
n→+∞

‖f − Sn,f‖2 = 0 .

Let us describe some consequences.

Corollary 3.16 Any f ∈ C̃2π satisfies Parseval’s formula:∫ 2π

0

|f(x)|2 dx = 2πa20 + π

+∞∑
k=1

(a2k + b2k) . (3.23)

Proof. This is an easy corollary of the above theorem. By (3.12) in fact,

0 = lim
n→+∞

‖f − Sn,f‖2 = lim
n→+∞

( ∫ 2π

0

|f(x)|2 dx− 2πa20 − π
n∑

k=1

(a2k + b2k)
)

=

∫ 2π

0

|f(x)|2 dx− 2πa20 − π

∞∑
k=1

(a2k + b2k) . �

Corollary 3.17 (Riemann-Lebesgue Lemma) Given f ∈ C̃2π,

lim
k→+∞

ak = lim
k→+∞

bk = 0 .

Proof. From Parseval’s identity (3.23) the series
∞∑
k=1

(a2k+b2k) converges. Therefore

its general term a2k+ b2k goes to zero as k → +∞, and the result follows. �
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If f ∈ C̃∗2π is expanded in complex Fourier series (3.16), Parseval’s formula
becomes ∫ 2π

0

|f(x)|2 dx = 2π

+∞∑
k=−∞

|ck|2 ,

while the Riemann-Lebesgue Lemma says

lim
k→∞

ck = 0 .

Corollary 3.16 is useful to compute sums of numerical series.

Example 3.18

The map f(x) = x, defined on (−π,π ) and prolonged by periodicity to all R
(sawtooth wave) (Fig. 3.5), has a simple Fourier series. The map is odd, so

ak = 0 for all k ≥ 0, and bk =
2
k
(−1)k+1, hence

f ≈
∞∑
k=1

2

k
(−1)k+1 sin kx.

The series converges in quadratic norm to f(x), and via Parseval’s identity we
find ∫ π

−π

|f(x)|2 dx = π

∞∑
k=1

b2k .

Since ∫ π

−π

x2 dx =
2π3

3
,

x

y

π−π

3π−3π 0 x

y

π−π
0

Figure 3.5. Graphs of the sawtooth wave (left) and the corresponding polynomials
S1,f (x), S7,f (x), S25,f (x) (right)
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we have

2π3

3
= π

∞∑
k=1

4

k2
,

whence the sum of the inverses of all natural numbers squared is
∞∑
k=1

1

k2
=

π2

6
;

This fact was stated without proof in Example 1.11 i). �

We remark, at last, that additional assumptions of the regularity on f allow to
estimate the remainder of the Fourier series in terms of n, and furnish informations
on the speed at which the Fourier series tends to f in quadratic norm. For instance,
if f ∈ C̃2π is Cr on R, r ≥ 1, it can be proved that

‖f − Sn,f‖2 ≤ 1

nr
‖f (r)‖2 .

This is coherent with what will happen in Sect. 3.5.4.

3.5.2 Pointwise convergence

We saw that the Fourier series of f ∈ C̃2π converges to f in quadratic norm, so in a
suitable integral sense; this, though, does not warrant pointwise convergence. We
are thus left with the hard task of finding conditions that ensure pointwise con-
vergence: alas, not even assuming f continuous guarantees the Fourier series will
converge. On the other hand the uniform convergence of the Fourier series implies
pointwise convergence (see the remark after Definition 2.15). As the trigonometric
polynomials are continuous, uniform convergence still requires f be continuous (by
Theorem 2.17). We shall state, without proving them, some sufficient conditions
for the pointwise convergence of the Fourier series of a non-necessarily continuous
map. The first ones guarantee convergence on the entire interval [0, 2π]. But before
that, we introduce a piece of notation.

Definition 3.19 i) A function f is called piecewise regular on an interval
[a, b] ⊂ R in case

a) it is differentiable everywhere on [a, b] except at a finite number of points
at most;

b) it is piecewise continuous, together with its derivative f ′.

ii) f is piecewise monotone if the interval [a, b] can be divided in a finite
number of sub-intervals where f is monotone.
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Theorem 3.20 Let f ∈ C̃2π and suppose one of the following holds:

a) f is piecewise regular on [0, 2π];
b) f is piecewise monotone on [0, 2π].

Then the Fourier series of f converges pointwise to f on [0, 2π].

The theorem also holds under the assumption that f is not regularised; in such
a case (like for the square wave or the sawtooth function),

at a discontinuity point x0, the Fourier series converges to the regularised value

f(x−
0 ) + f(x+

0 )

2

of f , and not to f(x0).

Now let us see a local condition for pointwise convergence.

Definition 3.21 A piecewise-continuous map admits left pseudo-
derivative and right pseudo-derivative at x0 ∈ R if the following
respective limits exist and are finite

f ′(x−
0 ) = lim

x→x−
0

f(x)− f(x−
0 )

x− x0
, f ′(x+

0 ) = lim
x→x+

0

f(x)− f(x+
0 )

x− x0
.

(Fig. 3.6 explains the geometric meaning of pseudo-derivatives.) If in addition f
is continuous at x0, the pseudo-derivatives are nothing else than the left and right
derivatives.

Note that a piecewise-regular function on [0, 2π] admits pseudo-derivatives at
each point of [0, 2π]; despite this, there are functions that are not piecewise regular
yet admit pseudo-derivatives everywhere in R (an example is f(x) = x2 sin 1

x , for
x �= 0, x ∈ [−π,π ] and f(0) = 0).

x

y

x0

f(x0)

f(x−
0 )

f(x+
0 )

Figure 3.6. Geometric meaning of the left and right pseudo-derivatives of f at x0
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Theorem 3.22 Let f ∈ C̃2π. If at x0 ∈ [0, 2π] the left and right pseudo-
derivatives exist, the Fourier series of f at x0 converges to the (regularised)
value f(x0).

Example 3.23

Let us go back to the square wave of Example 3.11. Condition a) of Theorem
3.20 holds, so we have pointwise convergence on R. Looking at Fig. 3.3 we can
see a special behaviour around a discontinuity. If we take a neighbourhood of
x0 = 0, the x-coordinates of points closest to the maximum and minimum points
of the nth partial sum tend to x0 as n→∞, whereas the y-coordinates tend to
different limits �± ∼ ±1.18; the latter are not the limits f(0±) = ±1 of f at 0.
Such anomaly appears every time one considers a discontinuous map in C̃2π, and
goes under the name of Gibbs phenomenon. �

3.5.3 Uniform convergence

As already noted, there is no uniform convergence for the Fourier series of a dis-
continuous function, and we know that continuity is not sufficient (it does not
guarantee pointwise convergence either).

Let us then introduce a new class of maps.

Definition 3.24 A function f ∈ C̃2π is piecewise C1 if it is continuous on
R and piecewise regular on [0, 2π].

The square wave is not piecewise C1 (since not continuous), in contrast to the
rectified wave.

We now state the following important theorem.

Theorem 3.25 Let f ∈ C̃2π be piecewise C1. Its Fourier series converges
uniformly to f everywhere on R.

More generally, the following localization principle holds.

Theorem 3.26 Let f ∈ C̃2π be piecewise regular on [0, 2π]. Its Fourier series
converges uniformly to f on any closed sub-interval where the map is continu-
ous.
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Example 3.27

i) The rectified wave has uniformly convergent Fourier series on R (Fig. 3.4).

ii) The Fourier series of the square wave converges uniformly to the function on
every interval [ε,π − ε] or [π+ ε, 2π− ε] (0 < ε < π /2), because the square wave
is piecewise regular on [0, 2π] and continuous on (0, π) and (π, 2π). �

3.5.4 Decay of Fourier coefficients

The equations of Sect. 3.4, relating the Fourier coefficients of a map and its deriv-
atives, help to establish a link between the coefficients’ asymptotic behaviour, as
|k| → ∞, and the regularity of the function. For simplicity we consider complex
coefficients. Let f ∈ C̃2π be of class Cr on R, with r ≥ 1; from (3.22) we obtain,
for any k �= 0,

|ck| = 1

|k|r |γk| .

The sequence |γk| is bounded for |k| → ∞; in fact, using (3.18) on f (r) gives

γk =
(f (r), eikx)

(eikx, eikx)
;

the inequality of Schwarz tells

|γk| ≤ ‖f (r)‖2‖eikx‖2
‖eikx‖22

=
1√
2
‖f (r)‖2 .

Thus we have proved

|ck| = O

(
1

|k|r
)

as |k| → ∞ .

The result for real coefficients, i.e.,

|ak|, |bk| = O

(
1

kr

)
for k → +∞ ,

is similarly found using (3.19) or a direct computation. In any case, if f has period
2π and is Cr on R, its Fourier coefficients are infinitesimal of order at least r with
respect to the test function 1/|k|.

Vice versa, it can be proved that the speed of decay of Fourier coefficients
determines, in a suitable sense, the function’s regularity.

3.6 Periodic functions with period T > 0

In case a function f belongs to C̃T , i.e., is defined on R, piecewise continuous on
[0, T ], regularised and periodic of period T > 0, its Fourier series assumes the form
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f ≈ a0 +

∞∑
k=1

(
ak cos k

2π

T
x+ bk sin k

2π

T
x
)
,

where

a0 =
1

T

∫ T

0

f(x) dx ,

ak =
2

T

∫ T

0

f(x) cos k
2π

T
xdx , k ≥ 1 ,

bk =
2

T

∫ T

0

f(x) sin k
2π

T
xdx , k ≥ 1 .

The theorems concerning quadratic, pointwise and uniform convergence of the
Fourier series of a map in C̃2π transfer in the obvious manner to maps in C̃T .
Parseval’s formula reads∫ T

0

|f(x)|2 dx = Ta20 +
T

2

∞∑
k=1

(a2k + b2k) .

As far as the Fourier series’ exponential form is concerned, (3.16) must be re-
placed by

f ≈
+∞∑

k=−∞
cke

ik 2π
T

x , (3.24)

where

ck =
1

T

∫ T

0

f(x)e−ik 2π
T

x dx , k ∈ Z ;

Parseval’s identity takes the form∫ T

0

|f(x)|2 dx = T
+∞∑

k=−∞
|ck|2 .

Example 3.28

Let us write the Fourier expansion for f(x) = 1 − x2 on I = [−1, 1], made
periodic of period 2. As f is even, the coefficients bk are zero. Moreover,

a0 =
1

2

∫ 1

−1

(1− x2) dx =

∫ 1

0

(1− x2) dx =
2

3
,

ak =
2

2

∫ 1

−1

(1− x2) cos kπxdx = 2

∫ 1

0

(1− x2) cos kπxdx =
4

k2π2
(−1)k+1

for any k ≥ 1.
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Hence

f ≈ 2

3
+

4

π2

∞∑
k=1

(−1)k+1

k2
cos kπx.

Since f is piecewise of class C1 the convergence is uniform on R, hence also
pointwise at every x ∈ R. We can write

f(x) =
2

3
+

4

π2

∞∑
k=1

(−1)k+1

k2
cos kπx , ∀x ∈ R.

In particular

f(0) = 1 =
2

3
+

4

π2

∞∑
k=1

(−1)k+1

k2
,

whence the sum of the generalised alternating harmonic series can be eventually
computed

∞∑
k=1

(−1)k+1

k2
=

π2

12
. �

3.7 Exercises

1. Determine the minimum period of the following maps:

a) f(x) = cos(3x− 1) b) f(x) = sin
x

3
− cos 4x

c) f(x) = 1 + cosx+ sin 3x d) f(x) = sinx cos x+ 5

e) f(x) = 1 + cos2 x f) f(x) = | cosx|+ sin 2x

2. Sketch the graph of the functions on R that on [0, π) coincide with f(x) =
√
x

and are:
a) π-periodic; b) 2π-periodic, even; c) 2π-periodic, odd.

3. Given f(x) = cos3 x+ sin 3x− 4,
a) determine its minimum period;
b) compute its Fourier series;
c) study quadratic, pointwise, uniform convergence of such expansion.

4. Determine the Fourier series expansion of the 2π-periodic maps defined, on
[−π,π ], as follows:
a) f(x) = 1− 2 cosx+ |x| b) f(x) = 1 + x+ sin 2x

c) f(x) = 4| sin3 x| d) f(x) =

{
0 if −π ≤ x < 0 ,

− cosx if 0 ≤ x < π
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5. Determine the Fourier series of the regularised maps of period T = 1 below:

a) f(x) =

{
1 if x ∈ (− 1

4 ,
1
4

)
,

0 if x ∈ (14 , 3
4

) b) f(x) = | sin 2πx|

c) f(x) =

{
sin 2πx if x ∈ [0, 1

2

]
,

0 if x ∈ [12 , 1] d) f(x) =

{
x if x ∈ [0, 1

2

]
,

1− x if x ∈ [12 , 1]
6. Let f be the T -periodic, piecewise-continuous, regularised function whose

Fourier series is

f ≈ 1 +
∞∑
k=1

k

(2k + 1)3
sin 2kx .

Determine the period T and the symmetries (where present) of f .

7. Appropriately using the Fourier series of f(x) = x2 and g(x) = x3, calculate
the sum of:

a)

∞∑
k=1

1

k4
b)

∞∑
k=1

1

k6

8. Determine the Fourier series of the 2π-periodic map defined on [−π,π ] by

f(x) =
|ϕ(x)|+ ϕ(x)

2
,

where ϕ(x) = x2 − 1.

9. Determine the Fourier series for the 2π-periodic, even, regularised function
defined on [0, π] by

f(x) =

{
π − x if 0 ≤ x < π

2 ,

0 if π
2 < x ≤ π .

Use the expansion to compute the sum of the series

∞∑
k=0

1

(2k + 1)2
.

10. Find the Fourier coefficients for the 2π-periodic, odd map f(x) = 1+ sin 2x+
sin 4x defined on [0, π].
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11. Consider the 2π-periodic map

f(x) =

{
cos 2x if |x| ≤ π

2 ,

−1 if |x| > π
2 and |x| ≤ π

defined on [−π,π ]. Determine the Fourier series of f and f ′; then study the
uniform convergence of the two series obtained.

12. Consider the 2π-periodic function that coincides with f(x) = x2 on [0, 2π].
Verify its Fourier series is

f ≈ 4

3
π2 + 4

∞∑
k=1

( 1
k2

cos kx− π

k
sinkx

)
.

Study the convergence of the above and use the results to compute the sum of

the series
∞∑
k=1

(−1)k
k2

.

13. Consider

f(x) = 2 +

∞∑
k=1

1

2k
sin kx , x ∈ R .

Check that f ∈ C∞(R). Deduce the Fourier series of f ′ and the values of ‖f‖2
and

∫ 2π

0

f(x) dx .

14. Consider the 2π-periodic function defined on [−π,π ) as f(x) = x. Determine
the Fourier series of f and study its quadratic, pointwise and uniform conver-
gence.

3.7.1 Solutions

1. Minimum period:

a) T = 2
3π . b) T = 6π . c) T = 2π .

d) T = π . e) T = π . f) T = π .

2. Graphs of maps: see Fig. 3.7.

3. a) The minimum period is T = 2π.
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x

y

0 π 2π−π−2π

a)

x

y

0 π 2π−π−2π

b)

x

y

0 π 2π−π−2π

c)

Figure 3.7. The graphs relative to Exercise 2

b) Variously using trigonometric identities one gets

f(x) = −4 + sin 3x+ cosx cos2 x

= −4 + sin 3x+
1

2
cosx(1 + cos 2x)

= −4 + 1

2
cosx+ sin 3x+

1

4
(cos 3x+ cosx)

= −4 + 3

4
cosx+ sin 3x+

1

4
cos 3x .

c) As f is a trigonometric polynomial, the Fourier series is a finite sum of simple
harmonics. Thus all types of convergence hold.

4. Fourier series’ expansions:

a) The function is the sum of the trigonometric polynomial 1 − 2 cosx and the
map g(x) = |x|. It is sufficient to determine the Fourier series for g. The latter
is even, so bk = 0 for all k ≥ 1. Let us find the coefficients ak:

a0 =
1

2π

∫ π

−π

|x| dx =
1

π

∫ π

0

xdx =
π

2
,

ak =
1

π

∫ π

−π

|x| cos kxdx =
2

π

∫ π

0

x cos kxdx

=
2

πk2
[
cos kx+ kx sin kx

]π
0
=

2

πk2
(
(−1)k − 1

)
=

⎧⎨⎩
0 if k even,

− 4

πk2
if k odd ,

k ≥ 1 .
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In conclusion,

g ≈ π

2
− 4

π

∞∑
k=0

1

(2k + 1)2
cos(2k + 1)x ,

so

f ≈ 1 +
π

2
−
(
2 +

4

π

)
cosx− 4

π

∞∑
k=1

1

(2k + 1)2
cos(2k + 1)x .

b) f ≈ 1 + 2 sinx+ 2
∞∑
k=3

(−1)k+1

k
sin kx .

c) The map is even, so bk = 0 for all k ≥ 1. As for the ak:

a0 =
1

2π

∫ π

−π

4| sin3 x| dx =
4

π

∫ π

0

sin3 xdx =
4

π

[
cos3 x

3
− cosx

]π
0

=
16

3π

ak =
1

π

∫ π

−π

4| sin3 x| cos kxdx =
8

π

∫ π

0

sin3 x cos kxdx

=
2

π

∫ π

0

(3 sinx− sin 3x) cos kxdx

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

π

[
sin4 x

]π
0

if k = 1 ,

6

π

[
cos 2x

4
− cos 4x

8

]π
0

− 1

3π

[
sin2 3x

]π
0

if k = 3 ,

2

π

[
−3

2

(
cos(1 + k)x

1 + k
+
cos(1− k)x

1− k

)
+

1

2

(
cos(3− k)x

3− k
+
cos(3 + k)x

3 + k

)]π
0

if k �= 1, 3 ,

=

⎧⎨⎩
0 if k = 1, k = 3,

48

π(1 − k2)(9− k2)

(
(−1)k + 1

)
if k �= 1, 3 ,

=

⎧⎨⎩
0 if k odd,

96

π(1 − k2)(9− k2)
if k even .

Overall,

f ≈ 16

3π
+
96

π

∞∑
k=1

1

(1− 4k2)(9 − 4k2)
sin 2kx .
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d) Calculating the coefficients ak, bk gives:

a0 =
1

2π

∫ π

0

(− cosx) dx = 0 ,

ak = − 1

π

∫ π

0

cosx cos kxdx

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

π

[
x

2
+
sin 2x

4

]π
0

for k = 1 ,

− 1

π

[
sin(1 − k)x

2(1− k)
+
sin(1 + k)x

2(1 + k)

]π
0

for k �= 1 ,

=

{
−1

2
for k = 1 ,

0 for k �= 1 ;

bk = − 1

π

∫ π

0

cosx sin kxdx

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

π

[
sin2 x

2

]π
0

for k = 1 ,

1

π

[
cos(k − 1)x

2(k − 1)
+
cos(k + 1)x

2(k + 1)

]π
0

for k �= 1 ,

=

⎧⎨⎩−
2k

π(k2 − 1)
for k even ,

0 for k odd .

Therefore

f ≈ −1

2
cosx− 4

π

∞∑
k=1

k

4k2 − 1
sin 2kx .

5. Fourier series’ expansions:

a) f ≈ 1

2
+

2

π

∞∑
k=1

(−1)k−1

2k − 1
cos 2π(2k − 1)x .

b) f ≈ 2

π
− 4

π

∞∑
k=1

1

4k2 − 1
cos 4πkx .

c) f ≈ 1

π
+
1

2
sin 2πx− 2

π

∞∑
k=1

1

4k2 − 1
cos 4πkx .

d) f ≈ 1

4
− 2

π2

∞∑
k=1

1

(2k − 1)2
cos 2π(2k − 1)x .
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6. Since

f ≈ 1 +
1

27
sin 2x+

2

125
sin 4x+ · · · ,

we have T = π, which is the minimum period of the simple harmonic sin 2x.
The function is not symmetric, as sum of the even map g(x) = 1 and the odd

one h(x) =
∞∑
k=1

k

(2k + 1)3
sin 2kx.

7. Sum of series:

a) We determine the Fourier coefficients for the 2π-periodic map defined as f(x) =
x2 on [−π,π ]. Being even, it has bk = 0 for all k ≥ 1. Moreover,

a0 =
1

π

∫ π

0

x2 dx =
π2

3
,

ak =
2

π

∫ π

0

x2 cos kxdx =
2

π

[
2x

k2
cos kx+

(
x2

k
− 2

k3

)
sin kx

]π
0

=
4

k2
(−1)k , k ≥ 1 .

Therefore

f ≈ π2

3
+ 4

∞∑
k=1

(−1)k
k2

cos kx ;

Parseval’s identity yields∫ π

−π

x4 dx =
2

9
π5 + 16π

∞∑
k=1

1

k4
,

so ∞∑
k=1

1

k4
=

π4

90
.

b)

∞∑
k=1

1

k6
=

π6

945
.

8. Observe

f(x) =

{
x2 − 1 if x ∈ [−π,−1] ∪ [1, π] ,
0 if x ∈ (−1, 1)

(Fig. 3.8). The map is even so bk = 0 for all k ≥ 1. Moreover

a0 =
1

π

∫ π

1

(x2 − 1) dx =
π2

3
− 1 +

2

3π
,

ak =
2

π

∫ π

1

(x2 − 1) cos kxdx



3.7 Exercises 105

x

y

0 π−π 2π−2π
Figure 3.8. The graph of f relative to Exercise 8

=
2

π

[
1

k3
(
2kx coskx+ (k2x2 − 2) sin kx

)− sinkx

k

]π
1

=
4

πk2
(
(−1)kπ + sin k

k
− cos k

)
, k ≥ 1 ;

then

f ≈ π2

3
− 1 +

2

3π
+

4

π

∞∑
k=1

1

k2
(
(−1)kπ + sin k

k
− cos k

)
cos kx .

9. For convenience let us draw the graph of f (Fig. 3.9).
As f is even, the coefficients bk for k ≥ 1 all vanish. The other ones are:

a0 =
1

π

∫ π/2

0

(π − x) dx =
3

8
π ,

ak =
2

π

∫ π/2

0

(π − x) cos kxdx = 2

[
sin kx

x
− 1

πk2
(
cos kx+ kx sin kx

)]π/2
0

x

y

π−π π
2

−π
2

π

π
2

π
4

0

Figure 3.9. The graph of f relative to Exercise 9
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=
1

k
sin

π

2
k − 2

πk2
cos

π

2
k +

2

πk2
, k ≥ 1 .

Hence

f ≈ 3

8
π +

∞∑
k=1

(
1

k
sin

π

2
k − 2

πk2
cos

π

2
k +

2

πk2

)
cos kx .

The series converges pointwise to f , regularised; in particular, for x = π
2

π

4
=

3

8
π +

∞∑
k=1

(
1

k
sin

π

2
k − 2

πk2
cos

π

2
k +

2

πk2

)
cos

π

2
k .

Now, as

sin
π

2
k =

{
0 if k = 2m ,

(−1)m if k = 2m+ 1 ,
cos

π

2
k =

{
(−1)m if k = 2m ,

0 if k = 2m+ 1 ,

we have

−π

8
=

∞∑
m=1

1

2πm2

(
(−1)m − 1

)− ∞∑
k=0

1

π(2k + 1)2
,

whence ∞∑
k=0

1

(2k + 1)2
=

π2

8
.

10. We have

ak = 0 , ∀k ≥ 0;

b2 = b4 = 1 , b2m = 0 , ∀m ≥ 3 ; b2m+1 =
4

π(2m+ 1)
, ∀m ≥ 0 .

11. The graph is shown in Fig. 3.10. Let us begin by finding the Fourier coefficients
of f . The map is even, implying bk = 0 for all k ≥ 1. What is more,

x

y

0

π−π

2π−2π

Figure 3.10. The graph of f relative to Exercise 11
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a0 =
1

π

∫ π

0

f(x) dx
1

π

(∫ π/2

0

cos 2xdx−
∫ π

π/2

dx

)
= −1

2
,

ak =
2

π

∫ π

0

f(x) cos kxdx
2

π

(∫ π/2

0

cos 2x cos kxdx−
∫ π

π/2

cos kxdx

)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2

π

[[
x

2
+
sin 4x

8

]π/2
0

−
[
1

2
sin 2x

]π
π/2

]
for k = 2 ,

2

π

[[
sin(2− k)x

2(2− k)
+
sin(2 + k)x

2(2 + k)

]π/2
0

−
[
1

k
sin kx

]π
π/2

]
for k �= 2 ,

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2
for k = 2 ,

0 for k = 2m , m > 1 ,

8(−1)m
π(2m+ 1)

(
4− (2m+ 1)2

) for k = 2m+ 1 , m ≥ 0 .

Hence

f ≈ −1

2
+
1

2
cos 2x+

8

π

∞∑
k=0

(−1)k
(2k + 1)(3− 4k − 4k2)

cos(2k + 1)x .

Note the series converges uniformly on R by Weierstrass’ M-test: for k ≥ 0,∣∣∣∣ (−1)k
(2k + 1)(3− 4k − 4k2)

cos(2k + 1)x

∣∣∣∣ ≤ 1

(2k + 1)(4k2 + 4k − 3)
= Mk ,

and

∞∑
k=0

Mk converges (like the generalised harmonic series of exponent 3, because

Mk ∼ 1
8k3 , as k → ∞). In particular, the Fourier series converges for any x ∈ R

pointwise. Alternatively, one could invoke Theorem 3.20.
Instead of computing directly the Fourier coefficients of f ′ with the definition,

we shall check if the convergence is uniform for the derivatives’ Fourier series; thus,
we will be able to use Theorem 2.19. Actually one sees rather immediately f is
C1(R) with

f ′(x) =
{−2 sin 2x if |x| < π

2 ,

0 if π
2 ≤ |x| ≤ π ,

while f ′ is piecewise C1 on R (f ′′ has a jump discontinuity at ±π
2 ). Therefore the

Fourier series of f ′ converges uniformly (hence, pointwise) on R, and so

f ′(x) = − sin 2x+
8

π

∞∑
k=0

(−1)k
4k2 + 4k − 3

sin(2k + 1)x .
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12. We have

a0 =
1

2π

∫ 2π

0

x2 dx =
4

3
π2 ,

ak =
1

π

∫ 2π

0

x2 cos kxdx

=
1

π

[
1

k
x2 sin kx+

2

k2
x cos kx− 2

k3
sin kx

]2π
0

=
4

k2
, k ≥ 1 ,

bk =
1

π

∫ 2π

0

x2 sin kxdx

=
1

π

[
−1

k
x2 cos kx+

2

k2
x sin kx+

2

k3
cos kx

]2π
0

= −4π

k
, k ≥ 1 ;

so the Fourier series of f is the given one.
The function f is continuous and piecewise monotone on R, so its Fourier series

converges to the regularised f pointwise (f̃(2kπ) = 2π2, ∀k ∈ Z). Furthermore,
the series converges to f uniformly on all closed sub-intervals not containing the
points 2kπ, ∀k ∈ Z.

In particular,

f(π) = π2 =
4

3
π2 + 4

∞∑
k=1

1

k2
cos kπ =

4

3
π2 + 4

∞∑
k=1

(−1)k
k2

whence ∞∑
k=1

(−1)k
k2

=
1

4
(π2 − 4

3
π2) = −π2

12
.

13. The series

∞∑
k=1

1

2k
sin kx converges to R uniformly because Weierstrass’ M-test

applies with Mk =
1
2k ; this is due to

|fk(x)| =
∣∣∣∣ 12k sin kx

∣∣∣∣ ≤ 1

2k
, ∀x ∈ R .

Analogous results hold for the series of derivatives:

|f ′
k(x)| =

∣∣∣∣ k2k cos kx
∣∣∣∣ ≤ k

2k
, ∀x ∈ R ,

|f ′′
k (x)| =

∣∣∣∣k22k sin kx
∣∣∣∣ ≤ k2

2k
, ∀x ∈ R ,

...

|f (n)
k (x)| ≤ kn

2k
, ∀x ∈ R .
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Consequently, for all n ≥ 0 the series
∞∑
k=0

f
(n)
k (x) converges on R uniformly; by

Theorem 2.19 the map f is differentiable infinitely many times: f ∈ C∞(R). In
particular, the Fourier series of f ′ is

f ′(x) =
∞∑
k=1

k

2k
cos kx , ∀x ∈ R .

To compute ‖f‖2 we use Parseval’s formula

‖f‖22 =
∫ 2π

0

|f(x)|2 dx = 2πa0 + π

∞∑
k=1

(a2k + b2k) = 4π + π

∞∑
k=1

1

4k

= 4π + π

(
1

1− 1
4

− 1

)
= 4π +

π

3
=

13

3
π ,

from which ‖f‖2 = 5
√

13
3 π. At last,

∫ 2π

0

f(x) dx = 2πa0 = 4π .

14. We have

f ≈ 2

∞∑
k=1

(−1)k+1

k
sin kx .

This converges quadratically; it converges pointwise to the regularised map coin-
ciding with f for x �= π + 2kπ and equal to 0 for x = π + 2kπ, k ∈ Z; it converges
uniformly on every closed interval not containing π + 2kπ, k ∈ Z.



4

Functions between Euclidean spaces

This chapter sees the dawn of the study of multivariable and vector-valued func-
tions, that is, maps between the Euclidean spaces Rn and Rm or subsets thereof,
with one of n and m bigger than 1. Subsequent chapters treat the relative differ-
ential and integral calculus and constitute a large part of the course.

To warm up we briefly recall the main notions related to vectors and matrices,
which students should already be familiar with. Then we review the indispensable
topological foundations of Euclidean spaces, especially neighbourhood systems of
a point, open and closed sets, and the boundary of a set. We discuss the properties
of subsets of Rn, which naturally generalise those of real intervals, highlighting the
features of this richer, higher-dimensional landscape.

We then deal with the continuity features of functions and their limits; despite
these extend the ones seen in dimension one, they require particular care, because
of the subtleties and snags specific to the multivariable setting.

At last, we start exploring a remarkable class of functions describing one- and
two-dimensional geometrical objects – present in our everyday life – called curves
and surfaces. The careful study of curves and surfaces will continue in the second
part of Chapter 6, at which point the differential calculus apparatus will be avail-
able. The aspects connected to integral calculus will be postponed to Chapter 9.

4.1 Vectors in Rn

Recall Rn is the vector space of ordered n-tuples x = (xi)i=1,...,n, called vectors.
The components xi of x may be written either horizontally, to give a row vector

x = (x1, . . . , xn) ,

or vertically, producing a column vector

x =

⎛⎝ x1
...
xn

⎞⎠ = (x1, . . . , xn)
T .

C. Canuto, A. Tabacco:Mathematical Analysis II, 2nd Ed.,
UNITEXT – La Matematica per il 3+2 85, DOI 10.1007/978-3-319-12757-6_4,
© Springer International Publishing Switzerland 2015
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These two expressions will be equivalent in practice, except for some cases where
writing vertically or horizontally will make a difference. For typesetting reasons
the horizontal notation is preferable.

Any vector of Rn can be represented using the canonical basis {e1, . . . , en}
whose vectors have components all zero except for one that equals 1

ei = (δij)1≤j≤n where δij =

{
1 if i = j
0 if i �= j

. (4.1)

Then

x =
n∑

i=1

xiei . (4.2)

The vectors of the canonical basis are usually denoted by i, j in R2 and i, j, k in
R3. It can be useful to identify a vector (x1, x2) = x1i+ x2j ∈ R2 with the vector
(x1, x2, 0) = x1i + x2j + 0k ∈ R3: the expression x1i + x2j will thus indicate a
vector of R2 or R3, according to the context.

In Rn the dot product of two vectors is defined as

x · y = x1y1 + . . .+ xnyn =
n∑

i=1

xiyi .

This in turn defines the Euclidean norm

‖x‖ = √
x · x =

√√√√ n∑
i=1

x2
i ,

for which the Cauchy-Schwarz inequality

|x · y| ≤ ‖x‖ ‖y‖ (4.3)

and the triangle inequality

‖x+ y‖ ≤ ‖x‖+ ‖y‖ (4.4)

hold. Two vectors x and y satisfying x · y = 0 are called orthogonal, and a
vector x such that ‖x‖ = 1 is said a unit vector, or of length 1. The canonical
basis of Rn is an example of an orthonormal system of vectors, i.e., a set of n
normalised and pairwise orthogonal vectors; its elements satisfy in fact

ei · ej = δij , 1 ≤ i, j ≤ n .

From (4.2) we have
xi = x · ei

for the ith component of a vector x.
It makes sense to associate x ∈ Rn to the unique point P in Euclidean n-

space whose coordinates in an orthogonal Cartesian frame are the components of
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x; this fact extends what we already know for the plane and space. Under this
identification ‖x‖ is the Euclidean distance between the point P , of coordinates
x, and the origin O. The quantity ‖x − y‖ = √(x1 − y1)2 + . . .+ (xn − yn)2 is
the distance between the points P and Q of respective coordinates x and y.

In R3 the cross or wedge product x∧ y of two vectors x = x1i+ x2j + x3k

and y = y1i+ y2j + y3k is the vector of R3 defined by

x ∧ y = (x2y3 − x3y2)i+ (x3y1 − x1y3)j + (x1y2 − x2y1)k . (4.5)

It can also be computed by the formula

x ∧ y = det

⎛⎝ i j k

x1 x2 x3

y1 y2 y3

⎞⎠ (4.6)

by expanding the determinant formally along the first row (see definition (4.11)).
The cross product of two vectors is orthogonal to both (Fig. 4.1, left):

(x ∧ y) · x = 0 , (x ∧ y) · y = 0 . (4.7)

The number ‖x∧y‖ is the area of the parallelogram with the vectors x, y as sides,
while ‖(x ∧ y) · z‖ represents the volume of the prism of sides x, y, z (Fig. 4.1).

We have some properties:

y ∧ x = −(x ∧ y) ,

x ∧ y = 0 ⇐⇒ x = λy for some λ ∈ R ,

(x+ y) ∧ z = x ∧ z + y ∧ z ,

(4.8)

the first of which implies x ∧ x = 0.
Furthermore,

i ∧ j = k , j ∧ k = i , k ∧ i = j ;

these and previous ones prove for instance that if x = x1i + x2j, y = y1i + y2j
then x ∧ y = (x1y2 − x2y1)k.

 

 

 

x

y

x ∧ y

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

y

z

Figure 4.1. Wedge products x ∧ y (left) and (x ∧ y) · z (right)
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A triple (v1,v2,v3) of pairwise non-aligned, unit vectors is said positively
oriented (or right-handed) if

(v1 ∧ v2) · v3 > 0 ,

i.e., if v3 and v1 ∧ v2 lie on the same side of the plane spanned by v1 and v2. A
practical way to decide whether a triple is positively oriented is to use the right-
hand rule: the pointing finger is v1, the long finger v2, the thumb v3. (The left
hand works, too, as long as we take the long finger for v1, the pointing finger for
v2 and the thumb for v3.)

The triple (v1,v2,v3) is negatively oriented (or left-handed) if (v1,v2,−v3)
is oriented positively

(v1 ∧ v2) · v3 < 0 .

4.2 Matrices

A real matrix A with m rows and n columns (an m× n matrix) is a collection of
m× n real numbers arranged in a table

A =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n
...

am1 am2 . . . amn

⎞⎟⎟⎟⎠
or, more concisely,

A = (aij) 1≤ i≤m
1≤j≤n

∈ Rmn .

The vectors formed by the entries of one row (resp. column) of A are the row
vectors (column vectors) of A. Thus m× 1 matrices are vectors of Rm written as
column vectors, while 1× n matrices are vectors of Rn seen as row vectors. When
m = n the matrix is called square of order n. The set of m × n matrices is a
vector space: usually indicated by Rm,n, it is isomorphic to the Euclidean space
Rmn. The matrix C = λA+ μB, λ, μ ∈ R, has entries

cij = λaij + μbij , 1 ≤ i ≤ m, 1 ≤ j≤ n .

If A is m× n and B is n× p, the product C = AB has by definition m rows and
p columns; its generic entry is the dot product of a row vector of A with a column
vector of B:

cij =
n∑

k=1

aikbkj , 1 ≤ i ≤ m, 1 ≤ j≤ p .

In particular, if B = x is n× 1, hence a column vector in Rn, the matrix product
with the vector Ax is well defined: it is a column vector in Rm. If p = m, we have
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square matrices AB of order m and BA of order n. If n = m, AB �= BA in
general, because the product of matrices is not commutative.

The first minor Aij (1 ≤ i ≤ m, 1 ≤ j ≤ n) of an m × n matrix A is the
(m− 1)× (n− 1) matrix obtained erasing from A the ith row and jth column.

The rank r ≤ min(m,n) of A is the maximum number of linearly independent
rows thought of as vectors of Rn (or linearly independent columns, seen as vectors
of Rm).

Given an m×n matrix A, its transpose is the n×m matrix AT with entries

aTij = aji , 1 ≤ i ≤ n , 1 ≤ j≤ m ;

otherwise put, AT is obtained from A by orderly swapping rows and columns;
clearly, (AT )T = A. Whenever defined, the product of matrices satisfies (AB)T =
BTAT . The dot product of vectors in Rn is a special case of matrix product
x · y = xTy = yTx, provided we think x and y as column vectors.

In Rm,n there is a norm, associated to the Euclidean norm,

‖A‖ = max{‖Ax‖ : x ∈ Rn, ‖x‖ = 1} , (4.9)

that satisfies the inequalities

‖Ax‖ ≤ ‖A‖ ‖x‖ and ‖AB‖ ≤ ‖A‖ ‖B‖ (4.10)

for any x ∈ Rn and B ∈ Rn,p.

Square matrices
From now on we will consider square matrices of order n. Among them a par-
ticularly important one is the identity matrix I = (δij)1≤i,j≤n, which satisfies
AI = IA = A for any square matrix A of order n. A matrix A is called sym-
metric if it coincides with its transpose

aij = aji , 1 ≤ i, j ≤ n ;

it is normal if AAT = ATA, and in particular orthogonal if AAT = ATA = I.
To each square matrix A one can associate a number detA, the determinant

of A, which may be computed recursively using Laplace’s rule: detA = a if n = 1
and A = (a), whereas for n > 1

detA =

n∑
j=1

(−1)i+jaij detAij , (4.11)

where i ∈ {1, . . . , n} is arbitrary, but fixed. For instance

det

(
a b
c d

)
= ad− bc .
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The following properties hold:

det(AB) = detA detB , det(λA) = λn detA ,

detAT = detA , detA′ = − detA

if A′ is A with two rows (or columns) exchanged. Immediate consequences are
that det I = 1 and | detA| = 1 for A orthogonal.

The matrix A is said non-singular if detA �= 0. This is equivalent to the
invertibility of A, i.e., the existence of a matrix A−1 of order n, called the inverse
of A, such that

AA−1 = A−1A = I .

If A and B are invertible,

det(A−1) = (detA)−1 , (AB)−1 = B−1A−1 , (AT )−1 = (A−1)T ;

from the last equation it follows, as special case, that the inverse of a symmetric
matrix is still symmetric. Every orthogonal matrix A is invertible, for A−1 =AT .

There are several equivalent conditions to invertibility, among which:

• the rank of A equals n;
• the linear system Ax = b has a solution x ∈ Rn for any b ∈ Rn;
• the homogeneous linear system Ax = 0 has only the trivial solution x = 0.

The last one amounts to saying that 0 is no eigenvalue of A.

Eigenvalues and eigenvectors
The eigenvalues of A are the zeroes (in C) of the characteristic polynomial
of degree n

χ(λ) = det(A− λI) .

In other words, the eigenvalues are complex numbers λ for which there exists a
vector v �= 0, called (right) eigenvector of A associated to λ, such that

Av = λv (4.12)

(here and henceforth all vectors should be thought of as column vectors). The
Fundamental Theorem of Algebra predicts the existence of p distinct eigenvalues
λ(1), . . . , λ(p) with 1 ≤ p ≤ n, each having algebraic multiplicity (as root of the
polynomial χ) μ(i), such that μ(1) + . . . + μ(p) = n. The maximum number of
linearly independent eigenvectors associated to λ(i) is the geometric multiplicity
of λ(i); we denote it by m(i), and observe m(i) ≤ μ(i). Eigenvectors associated to
distinct eigenvalues are linearly independent. Therefore when the algebraic and
geometric multiplicities of each eigenvalue coincide, there are in total n linearly
independent eigenvectors, and thus a basis made of eigenvectors. In such a case
the matrix is diagonalisable.

The name means that the matrix can be made diagonal. To see this we number
the eigenvalues by λk, 1 ≤ k ≤ n for convenience, repeating each one as many times
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as its multiplicity; let vk be an eigenvector associated to λk, chosen so that the
set {vk}1≤k≤n is made of linearly independent vectors. The equations

Avk = λkvk , 1 ≤ k ≤ n ,

can be rewritten in matrix form

AP = PΛ , (4.13)

where Λ = diag (λ1, . . . , λn) is the diagonal matrix with the eigenvalues as entries,
and P = (v1, . . . ,vn) is the square matrix of order n whose columns are the
eigenvectors of A. The linear independence of the eigenvectors is equivalent to the
invertibility of P , so that (4.13) becomes

A = PΛP−1 , (4.14)

and consequently A is similar to a diagonal matrix.
Returning to the general setting, it is relevant to notice that as A is a real

matrix (making the characteristic polynomial a real polynomial), its eigenvalues
are either real or complex conjugate; the same is true for the corresponding eigen-
vectors. The determinant of A coincides with the product of the eigenvalues

detA = λ1λ2 · · ·λn−1λn .

The eigenvalues of A2 = AA are the squares of those of A, with the same eigen-
vectors, and the analogue fact will hold for the generic power of A. At the same
time, if A is invertible, the eigenvalues of the inverse matrix are the inverses of
the eigenvalues of A, while the eigenvectors stay the same; by assumption in fact,
(4.12) is equivalent to

v = λA−1v , so A−1v =
1

λ
v .

The spectral radius of A is by definition the maximum modulus of the ei-
genvalues

ρ(A) = max
1≤k≤n

|λk| .

The (Euclidean) norm of A satisfies

‖A‖ =
√

ρ(ATA) ;

a special case is that of symmetric matrices A, for which ‖A‖ = ρ(A); if A is
additionally orthogonal, then ‖A‖ =√ρ(I) = 1.

Symmetric matrices
Symmetric matrices A have pivotal properties concerning eigenvalues and eigen-
vectors. Each eigenvalue is real and its algebraic and geometric multiplicities coin-
cide, rendering A always diagonalisable. The eigenvectors, all real, may be chosen
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to form an orthonormal basis (in fact, eigenvectors relative to distinct eigenvalues
are orthogonal, those with same eigenvalue can be made orthonormal); the matrix
P associated to such a basis is thus orthogonal, so (4.14) reads

A = PΛPT . (4.15)

Hence the transformation x �→ P Tx = y defines an orthogonal change of basis in
Rn, from the canonical basis {ei}1≤i≤n to the basis of eigenvectors {vk}1≤k≤n; in
this latter basis A is diagonal. The inverse transformation is y �→ Py = x.

Every real symmetric matrix A is associated to a quadratic form Q, which
is a function Q : Rn → R satisfying Q(λx) = λ2Q(x) for any x ∈ Rn, λ ∈ R; to
be precise,

Q(x) =
1

2
x ·Ax =

1

2
xTAx . (4.16)

The eigenvalues of A determine the quadratic form Q: substituting to A the
expression (4.15) and setting y = P Tx, we get

Q(x) =
1

2
xTPΛPTx =

1

2
(P Tx)TΛ(P Tx) =

1

2
yTΛy .

Since Λy = (λkyk)1≤k≤n if y = (yk)1≤k≤n, we conclude

Q(x) =
1

2

n∑
k=1

λky
2
k . (4.17)

Consequently, one can classify A according to the sign of Q:

• A is positive definite if Q(x) > 0 for any x ∈ Rn, x �= 0; equivalently, all
eigenvalues of A are strictly positive.

• A is positive semi-definite if Q(x) ≥ 0 for any x ∈ Rn; equivalently, all
eigenvalues of A are non-negative.

• A is indefinite if Q assumes on Rn both positive and negative values; this is
to say A has positive and negative eigenvalues.

The notion of negative-definite and negative semi-definite matrices are clear.

Positive-definite symmetric matrices may be characterised in many other equi-
valent ways. For example, all first minors ofA (those obtained by erasing the same
rows and columns) have positive determinant. In particular, the diagonal entries
aii are positive.

A crucial geometrical characterisation is the following: if A is positive definite
and symmetric, the level sets

{x ∈ Rn : Q(x) = c > 0}

of Q are generalised ellipses (e.g., ellipses in dimension 2, ellipsoids in dimension
3), with axes collinear to the eigenvectors of A.
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x1

x2

y1

y2
v1

v2
y → x = Py

Figure 4.2. The conic associated to a positive-definite symmetric matrix

In fact, (restricting to dimension two for simplicity) the equation

1

2
(λ1y

2
1 + λ2y

2
2) = c , i.e.,

y21(
2c/λ1

) + y22(
2c/λ2

) = 1

defines an ellipse in canonical form with semi-axes of length
√
2c/λ1 and

√
2c/λ2

in the coordinates (y1, y2) associated to the eigenvectors v1, v2. In the original
coordinates (x1, x2) the ellipse is rotated in the directions of v1, v2 (Fig. 4.2).

Equation (4.17) implies easily

Q(x) ≥ λ∗
2
‖x‖2 , ∀x ∈ Rn , (4.18)

where λ∗ = min
1≤k≤n

λk. In fact,

Q(x) ≥ λ∗
2

n∑
k=1

y2k =
λ∗
2
‖y‖2

and ‖y‖2 = ‖P Tx‖2 = xTPP Tx = xTx = ‖x‖2 as P is orthogonal.

Example 4.1

Take the symmetric matrix of order 2

A =

(
4 α

α 2

)
with α a real parameter. Solving the characteristic equation det(A − λI) =
(4− λ)(2 − λ) − α2 = 0, we find the eigenvalues:

λ1 = 3−
√
1 + α2 , λ2 = 3+

√
1 + α2 > 0 .

Then

|α| < 2
√
2 ⇒ λ1 > 0 ⇒ A positive definite ,

|α| = 2
√
2 ⇒ λ1 = 0 ⇒ A positive semi-definite ,

|α| > 2
√
2 ⇒ λ1 < 0 ⇒ A indefinite . �
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4.3 Sets in Rn and their properties

The study of limits and the continuity of functions of several variables require that
we introduce some notions on vectors and subsets of Rn.

Using distances we define neighbourhoods in Rn.

Definition 4.2 Take x0 ∈ Rn and let r > 0 be a real number. One calls
neighbourhood of x0 of radius r the set

Br(x0) = {x ∈ Rn : ‖x− x0‖ < r}

consisting of all points in Rn with distance from x0 smaller than r. The set

Br(x0) = {x ∈ Rn : ‖x− x0‖ ≤ r}

is called closed neighbourhood of x0 of radius r.

Therefore Br(x0) is the disc (n = 2) or the ball (n = 3) centred at x0 of radius r,
while Br(x0) is a disc or ball without boundary.

If X is a subset of Rn, by CX = Rn \X we denote the complement of X .

Definition 4.3 A point x ∈ Rn is called

i) an interior point of X if there is a neighbourhood Br(x) contained in
X;

ii) an exterior point of X if it belongs to the interior of CX;
iii) a boundary point of X if it is neither interior nor exterior for X.

Fig. 4.3 depicts the various possibilities.
Boundary points can also be defined as the points whose every neighbourhood

contains points of X and CX alike. It follows that X and its complement have
the same boundary set.

Definition 4.4 The set of interior points of X forms the interior of X,

denoted by
◦
X or intX. Similarly, boundary points form the boundary of

X, written ∂X. Exterior points form the exterior of X. Eventually, the set
X ∪ ∂X is the closure of X, written X.

To be absolutely accurate, given a topological space X the set ∂X defined above
should be called ‘frontier’, because the term ‘boundary’ is used in a different sense
for topological manifolds (defining the topology of which is a rather delicate mat-
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x2X

x1

x3

Figure 4.3. An interior point x1, a boundary point x2, an exterior point x3 of a set X

ter). Section 6.7.3 will discuss explicit examples where X is a surface. We shall
not be this subtle and always speak about the boundary ∂X of X .

From the definition,
◦
X ⊆ X ⊆ X .

When one of the above inclusions is an equality the space X deserves one of the
following names:

Definition 4.5 The set X is open if all its points are interior points,
◦
X =

X. It is closed if it contains its boundary, X = X.

A set is then open if and only if it contains a neighbourhood of each of its points,
i.e., when it does not contain boundary points. Consequently, X is closed precisely
if its complement is open, since a set and its complement share the boundary.

Examples 4.6

i) The sets Rn and ∅ are simultaneously open and closed (and are the only such
subsets of Rn, by the way). Their boundary is empty.

ii) The half-plane X = {(x, y) ∈ R2 : x > 1} is open. In fact, given (x0, y0) ∈ X ,
any neighbourhood of radius r ≤ x0 − 1 is contained in X (Fig. 4.4, left). The
boundary ∂X is the line x = 1 parallel to the y-axis (Fig. 4.4, right), hence the
complementary set CX = {(x, y) ∈ R2 : x ≤ 1} is closed.
Any half-plane X ⊂ R2 defined by an inequality like

ax+ by > c or ax+ by < c ,

with one of a, b non-zero, is open; inequalities like

ax+ by ≥ c or ax+ by ≤ c

define closed half-planes. In either case the boundary ∂X is the line ax+ by = c.
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X

x

y

rx0

Br(x0)

X

x

y

∂X

Figure 4.4. The boundary (right) of the half-plane x > 1 and the neighbourhood of a
point (left)

iii) Let X = B1(0) = {x ∈ Rn : ‖x‖ < 1} be the n-dimensional ball with centre
the origin and radius 1, without boundary. It is open, because for any x0 ∈ X ,
Br(x0) ⊆ X if we set r ≤ 1− ‖x0‖: for ‖x− x0‖ < r in fact, we have

‖x‖ = ‖x− x0 + x0‖ ≤ ‖x− x0‖+ ‖x0‖ < 1− ‖x0‖+ ‖x0‖ = 1 .

The boundary ∂X = {x ∈ Rn : ‖x‖ = 1} is the ‘surface’ of the ball (the
n-dimensional sphere), while the closure of X is the ball itself, i.e., the closed
neighbourhood B1(0).

In general, for arbitrary x0 ∈ Rn and r > 0, the neighbourhood Br(x0) is open,
it has boundary {x ∈ Rn : ‖x−x0‖ = r}, and the closed neighbourhood Br(x0)
is the closure.

iv) The set X = {x ∈ Rn : 2 ≤ ‖x−x0‖ < 3} (an annulus for n = 2, a spherical
shell for n = 3) is neither open nor closed, for its interior is

◦
X = {x ∈ Rn : 2 < ‖x− x0‖ < 3}

and the closure

X = {x ∈ Rn : 2 ≤ ‖x− x0‖ ≤ 3} .
The boundary,

∂X = {x ∈ Rn : ‖x− x0‖ = 2} ∪ {x ∈ Rn : ‖x− x0‖ = 3} ,
is the union of the two spheres delimiting X .

v) The set X = [0, 1]2 ∩ Q2 of points with rational coordinates inside the unit
square has empty interior and the whole square [0, 1]2 as boundary. Since rational
numbers are dense in R, any neighbourhood of a point in [0, 1]2 contains infinitely
many points of X and infinitely many of the complement. �
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Definition 4.7 A point x ∈ Rn is called a limit point of X if each of its
neighbourhoods contains points of X different from x:

∀r > 0 ,
(
Br(x) \ {x}

) ∩X �= ∅ .

A point x ∈ X is isolated if there exists a neighbourhood Br(x) not contain-
ing points of X other than x:

∃r > 0 ,
(
Br(x) \ {x}

) ∩X = ∅ ,

or equivalently,
∃r > 0 , Br(x) ∩X = {x} .

Interior points of X are certainly limit points in X , whereas no exterior point can
be a limit point. A boundary point of X must necessarily be either a limit point
of X (belonging to X or not) or an isolated point. Conversely, a limit point can
be interior or a non-isolated boundary point, and an isolated point is forced to lie
on the boundary.

Example 4.8

Consider X the set X = {(x, y) ∈ R2 : y2

x2 ≤ 1 or x2 + (y − 1)2 ≤ 0} .
Requiring y2

x2 ≤ 1, hence |y|
|x| ≤ 1, defines the region lying between the lines

y = ±x (included) and containing the x-axis except the origin (due to the
denominator). To this we have to add the point (0, 1), the unique solution to
x2 + (y − 1)2 ≤ 0. See Fig. 4.5.
The limit points of X are those satisfying y2 ≤ x2. They are either interior, when
y2 < x2, or boundary points, when y = ±x (origin included). An additional
boundary point is (0, 1), also the only isolated point. �

x

y

y = −x y = x

1

Figure 4.5. The set X = {(x, y) ∈ R2 : y2

x2 ≤ 1 or x2 + (y − 1)2 ≤ 0}
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Let us define a few more notions that will be useful in the sequel.

Definition 4.9 A set X is bounded if there exists a real number R > 0
such that

‖x‖ ≤ R , ∀x ∈ X ,

i.e., if X is contained in a closed neighbourhood BR(0) of the origin.

Definition 4.10 A set X is said compact if it is closed and bounded.

Examples 4.11

i) The unit square X = [0, 1]2 ⊂ R2 is compact; it manifestly contains its bound-
ary, and if we take x ∈ X ,

‖x‖ =
√
x2
1 + x2

2 ≤
√
1 + 1 =

√
2 .

In general, the n-dimensional cube X = [0, 1]n ⊂ Rn is compact.

ii) The elementary plane figures (such as rectangles, polygons, discs, ovals) and
solids (tetrahedra, prisms, pyramids, cones and spheres) are all compact.

iii) The closure of a bounded set is compact. �

Let a , b be distinct points of Rn, and call S[a, b] the (closed) segment with
end points a, b, i.e., the set of points on the line through a and b that lie between
the two points:

S[a, b] = {x = a+ t(b− a) : 0 ≤ t ≤ 1}
= {x = (1− t)a+ tb : 0 ≤ t ≤ 1} . (4.19)

Definition 4.12 A set X is called convex if the segment between any two
points of X is all contained in X.

Given r+1 points a0, a1, . . . ,ar in Rn, all distinct (except possibly for a0 = ar),
one calls polygonal path of vertices a0, a1, . . . ,ar the union of the r segments
S[ai−1,ai], 1 ≤ i ≤ r, joint at the end points:

P [a0, . . . ,ar] =
r⋃

i=1

S[ai−1,ai] .

Definition 4.13 An open set A ⊆ Rn is (path-)connected if, given two
arbitrary points x, y in A, there is a polygonal path joining them that is
entirely contained in A.

Figure 4.6 shows an example.
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x

y

A

Figure 4.6. A connected (but not convex) set A

Examples 4.14

i) The only open connected subsets of R are the open intervals.

ii) An open and convex set A in Rn is obviously connected.

iii) Any annulus A = {x ∈ R2 : r1 < ‖x−x0‖ < r2}, with x0 ∈ R2, r2 > r1 ≥ 0,
is connected but not convex (Fig. 4.7, left). Finding a polygonal path between
any two points x, y ∈ A is intuitively quite easy.

iv) The open set A = {x = (x, y) ∈ R2 : xy > 1} is not connected (Fig. 4.7,
right). �

It is a basic fact that an open non-empty set A of Rn is the union of a family
{Ai}i∈I of non-empty, connected and pairwise-disjoint open sets:

A =
⋃
i∈I

Ai with Ai ∩Aj = ∅ for i �= j .

Each Ai is called a connected component of A.

x

y

x

y

x

yxy = 1

Figure 4.7. The set A of Examples 4.14 iii) (left) and iv) (right)



126 4 Functions between Euclidean spaces

Every open connected set has only one connected component, namely itself.
The set A of Example 4.14 iv) has two connected components

A1 = {x = (x, y) ∈ A : x > 0} and A2 = {x = (x, y) ∈ A : x < 0} .

Definition 4.15 We call region any subset R of Rn made by the union of
a non-empty, open, connected set A and part of the boundary ∂A

R = A ∪ Z with ∅ ⊆ Z ⊆ ∂A .

When Z = ∅ the region is open, when Z = ∂A it is closed.
A region may be defined equivalently as a non-empty setR of Rn whose interior

A =
◦
R is connected and such that A ⊆ R ⊆ A.

Example 4.16

The set R = {x ∈ R2 :
√
4− x2 − y2 < 1} is a region in the plane, for

R = {x ∈ R2 :
√
3 < ‖x‖ ≤ 2} .

Therefore A =
◦
R is the open annulus {x ∈ R2 :

√
3 < ‖x‖ < 2}, while Z = {x ∈

R2 : ‖x‖ = 2} ⊂ ∂A. �

4.4 Functions: definitions and first examples

We begin discussing real-valued maps, sometimes called (real) scalar functions.
Let n be a given integer ≥ 1. A function f defined on Rn with values in R is a
real function of n real variables; if dom f denotes its domain, we write

f : dom f ⊆ Rn → R .

The graph Γ (f) = {(x, f(x)) ∈ Rn+1 : x ∈ dom f} is a subset of Rn+1.
The case n = 1 (one real variable) was dealt with in Vol. I exhaustively, so in

the sequel we will consider scalar functions of two or more variables. If n = 2 or 3
the variable x will also be written as (x, y) or (x, y, z), respectively.

Examples 4.17

i) The map z = f(x, y) = 2x− 3y, defined on R2, has the plane 2x− 3y − z = 0
as graph.

ii) The function z = f(x, y) =
y2 + x2

y2 − x2
is defined on R2 without the lines y = ±x.

iii) The function w = f(x, y, z) =
√

z − x2 − y2 has domain dom f = {(x, y, z) ∈
R3 : z ≥ x2 + y2}, which is made of the elliptic paraboloid z = x2 + y2 and the
region inside of it.
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iv) The function f(x) = f(x1, . . . , xn) = log(1− x2
1 − . . .− x2

n) is defined inside

the n-dimensional sphere x2
1+. . .+x2

n = 1, since dom f =
{
x ∈ Rn :

n∑
i=1

x2
i < 1

}
.

�

In principle, a scalar function can be drawn only when n ≤ 2. For example,
f(x, y) =

√
9− x2 − y2 has graph in R3 given by z =

√
9− x2 − y2. Squaring the

equation yields

z = 9− x2 − y2 hence x2 + y2 + z2 = 9 .

We recognise the equation of a sphere with centre the origin and radius 3. As
z ≥ 0, the graph of f is the hemisphere of Fig. 4.8.

Another way to visualise a function’s behaviour, in two or three variables, is
by finding its level sets. Given a real number c, the level set

L(f, c) = {x ∈ dom f : f(x) = c} (4.20)

is the subset of Rn where the function is constant, equal to c. Figure 4.9 shows
some level sets for the function z = f(x, y) of Example 4.9 ii).

Geometrically, in dimension n = 2, a level set is the projection on the xy-plane
of the intersection between the graph of f and the plane z = c. Clearly, L(f, c) is
not empty if and only if c ∈ im f . A level set may have an extremely complicated
shape. That said, we shall see in Sect. 7.2 certain assumptions on f that guarantee
L(f, c) consists of curves (dimension two) or surfaces (dimension three).

Consider now the more general situation of a map between Euclidean spaces,
and precisely: given integers n,m ≥ 1, we denote by f an arbitrary function on
Rn with values in Rm

f : domf ⊆ Rn → Rm .

x

y

z

(0, 0, 3)

(0, 3, 0)
(3, 0, 0)

Figure 4.8. The function f(x, y) =
√

9− x2 − y2
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x

y

Figure 4.9. Level sets for z = f(x, y) =
y2 + x2

y2 − x2

If m = 1, we have the scalar functions of above. If m ≥ 2 we shall say f is a real
vector-valued function.

Let us see some interesting cases. Curves, seen in Vol. I for m = 2 (plane
curves) and m = 3 (curves in space), are special vector-valued maps where n = 1;
surfaces in space are vector-valued functions with n = 2 and m = 3. The study of
curves and surfaces is postponed to Sects. 4.6, 4.7 and Chapter 6 in particular. In
the case n = m, f is called a vector field. An example with n = m = 3 is the
Earth’s gravitational field.

Let fi, 1 ≤ i ≤ m, be the components of f with respect to the canonical basis
{ei}1≤i≤m of Rm:

f(x) =
(
fi(x)

)
1≤i≤m

=

m∑
i=1

fi(x)ei .

Each fi is a real scalar function of one or more real variables, defined on dom f

at least; actually, domf is the intersection of the domains of the components of f .

Examples 4.18

i) Consider the vector field on R2

f(x, y) = (−y, x) .
The best way to visualise a two-dimensional field is to draw the vector cor-
responding to f(x, y) as position vector at the point (x, y). This is clearly not
possible everywhere on the plane, but a sufficient number of points might still
give a reasonable idea of the behaviour of f . Since f(1, 0) = (0, 1), we draw
the vector (0, 1) at the point (1, 0); similarly, we plot the vector (−1, 0) at (0, 1)
because f(0, 1) = (−1, 0) (see Fig. 4.10, left).
Notice that each vector is tangent to a circle centred at the origin. In fact, the
dot product of the position vector x = (x, y) with f(x) is zero:

x · f(x) = (x, y) · (−y, x) = −xy + xy = 0 ,
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x

y

f(1, 0)
f(0, 1)

x y

z

Figure 4.10. The fields f(x, y) = (−y, x) (left) and f(x, y, z) = (0, 0, z) (right)

making x and f(x) orthogonal vectors. Additionally, ‖f(x)‖ = ‖x‖, so the
length of f(x, y) coincides with the circle’s radius.
This vector field represents the velocity of a wheel spinning counter-clockwise.

ii) Vector fields in R3 can be understood in a similar way. Figure 4.10, right,
shows a picture of the vector field

f(x, y, z) = (0, 0, z) .

All vectors are vertical, and point upwards if they lie above the xy-plane, down-
wards if below the plane z = 0. The magnitude increases as we move away from
the xy-plane.

iii) Imagine a fluid running through a pipe with velocity f(x, y, z) at the point
(x, y, z). The function f assignes a vector to each pont (x, y, z) in a certain
domain Ω (the region inside the pipe) and so is a vector field of R3, called the
velocity vector field. A concrete example is in Fig. 4.11.

 

 

 

 

 

 

 

 

Figure 4.11. The velocity vector field of a fluid moving in a pipe
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iv) The R3-valued map

f(x, y, z) =

(
x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

)
=

x

‖x‖3 ,

on R3\{0} represents the electrostatic force field generated by a charged particle
placed in the origin.

v) Let A = (aij) 1 ≤ i ≤ m
1 ≤ j≤ n

be a real m× n matrix. The function

f(x) = Ax ,

is a linear map from Rn to Rm. �

4.5 Continuity and limits

The notion of continuity for functions between Euclidean spaces is essentially the
same as what we have seen for one-variable functions (Vol. I, Ch. 3), with the
proviso that the absolute value of R must be replaced by an arbitrary norm in Rn

or Rm (which we shall indicate with ‖ · ‖ for simplicity).

Definition 4.19 A function f : domf ⊆ Rn → Rm is said continuous at
x0 ∈ domf if for any ε > 0 there exists a δ > 0 such that

∀x ∈ domf , ‖x− x0‖ < δ ⇒ ‖f(x)− f(x0)‖ < ε ;

that is to say,

∀x ∈ domf , x ∈ Bδ(x0) ⇒ f(x) ∈ Bε(f(x0)).

A map f is continuous on a set Ω ⊆ domf if it is continuous at each point
x ∈ Ω.

The following result is used a lot to study the continuity of vector-valued func-
tions. Its proof is left to the reader.

Proposition 4.20 The map f = (fi)1≤i≤m is continuous at x0 ∈ domf if
and only if all its components fi are continuous.

Due to this result we shall merely provide some examples of scalar functions.

Examples 4.21

i) Let us verify f : R2 → R, f(x) = 2x1+5x2 is continuous at x0 = (3, 1). Using
the fact that |yi| ≤ ‖y‖ for all i (mentioned earlier), we have

|f(x)− f(x0)| = |2(x1 − 3) + 5(x2 − 1)| ≤ 2|x1 − 3|+ 5|x2 − 1| ≤ 7‖x− x0‖ .
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Given ε > 0 then, it is enough to choose δ = ε/7 to conclude. The same argument
shows f is continuous at each x0 ∈ R2.

ii) The above function is an affine map f : Rn → R, i.e., a map of type f(x) =
a · x+ b (a ∈ Rn, b ∈ R). Affine maps are continuous at each x0 ∈ Rn because

|f(x)− f(x0)| = |a · x− a · x0| = |a · (x− x0)| ≤ ‖a‖ ‖x− x0‖ (4.21)
by the Cauchy-Schwarz inequality (4.3).

If a = 0, the result is trivial. If a �= 0, continuity holds if one chooses δ = ε/‖a‖
for any given ε > 0. �

The map f is uniformly continuous on Ω if we may choose δ independently
of x0 in the above definition; this is made precise as follows.

Definition 4.22 A function is said uniformly continuous on Ω ⊆ domf

if for any ε > 0 there exists a δ > 0 such that

∀x′, x′′ ∈ Ω, ‖x′ − x′′‖ < δ ⇒ ‖f(x′)− f(x′′)‖ < ε . (4.22)

For instance, the above affine function f is uniformly continuous on Rn.

A continuous function on a closed and bounded set (i.e., a compact set) Ω is
uniformly continuous therein (Theorem of Heine-Cantor, given in Appendix A.1.3,
p. 515).

Often one can study the continuity of a function of several variables without
turning to the definition. To this end the next three criteria are rather practical.

i) If the map ϕ is defined and continuous on a set I ⊆ R, then

f(x) = ϕ(x1)

is defined and continuous on Ω = I × Rn−1 ⊆ Rn.
In general, any continuous map of m variables is continuous if we think of it
as a map of n > m variables.

For example, the following functions are continuous:

f1(x, y) = ex on dom f1 = R2 ,

f2(x, y, z) =
√
1− y2 on dom f2 = R× [−1, 1]× R .

ii) If f and g are continuous on Ω ⊆ Rn, then also f + g, f − g and fg are
continuous on Ω, while f/g is continuous on the subset of Ω where g �= 0.

Examples of continuous maps:

h1(x, y) = ex + sin y on domh1 = R2 ,
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h2(x, y) = y log x on domh2 = (0,+∞)× R ,

h3(x, y, z) =
arctan y

x2 + z2
on domh3 = R3 \ ({0} × R× {0}) .

iii) If f is continuous on Ω ⊆ Rn and g is continuous on I ⊆ R, the composite
map g ◦ f is continuous on dom g ◦ f = {x ∈ Ω : f(x) ∈ I}.

For instance,

h1(x, y) = log(1 + xy) on domh1 = {(x, y) ∈ R2 : xy > −1} ,

h2(x, y, z) =

∣∣∣∣x3 + y2

z − 1

∣∣∣∣ on domh2 = R2 × (R \ {1}) ,
h3(x) =

4
√
x4
1 + . . .+ x4

n on domh3 = Rn .

In particular, Proposition 4.20 and criterion iii) imply the next result, which
is about the continuity of a composite map in the most general setting.

Proposition 4.23 Let

f : domf ⊆ Rn → Rm , g : dom g ⊆ Rm → Rp

be functions and x0 ∈ domf a point such that y0 = f(x0) ∈ domg. Consider
the composite map

h = g ◦ f : domh ⊆ Rn → Rp ,

where x0 ∈ domh. Then if f is continuous at x0 and g is continuous at y0,
h is continuous at x0.

The definition of finite limit of a vector-valued map, for x → x0 ∈ Rn, is
completely analogous to the one-variable case. From now on we will suppose f is
defined on domf ⊆ Rn and x0 ∈ Rn is a limit point of domf .

Definition 4.24 One says that f has limit � ∈ Rm (or tends to �) as x

tends to x0, in symbols
lim

x→x0

f(x) = �,

if for any ε > 0 there is a δ > 0 such that

∀x ∈ domf , 0 < ‖x− x0‖ < δ ⇒ ‖f(x)− �‖ < ε , (4.23)

i.e.,
∀x ∈ domf , x ∈ Bδ(x0) \ {x0} ⇒ f(x) ∈ Bε(�) .
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As for one real variable, if f is defined on x0, then

f continuous at x0 ⇐⇒ lim
x→x0

f(x) = f(x0) .

The analogue of Proposition 4.20 holds for limits, justifying the component-by-
component approach.

Examples 4.25

i) The map

f(x, y) =
x4 + y4

x2 + y2

is defined on R2 \ {(0, 0)} and continuous on its domain, as is clear by using
criteria i) and ii) on p. 131. What is more,

lim
(x,y)→(0,0)

f(x, y) = 0 ,

because
x4 + y4 ≤ x4 + 2x2y2 + y4 = (x2 + y2)2

and by definition of limit∣∣∣∣x4 + y4

x2 + y2

∣∣∣∣ ≤ x2 + y2 < ε if 0 < ‖x‖ < √
ε ;

therefore the condition is true with δ =
√
ε.

ii) Let us check that

lim
(x,y)→(0,0)

|x|+ |y|
x2 + y2

= +∞ .

Since

x2 + y2 ≤ x2 + 2|x| |y|+ y2 = (|x| + |y|)2,
so that ‖x‖ ≤ |x|+ |y|, we have

f(x, y) =
|x|+ |y|
‖x‖2 =

|x|+ |y|
‖x‖

1

‖x‖ ≥
1

‖x‖ ,
and f(x, y) > A if ‖x‖ < 1/A; the condition for the limit is true by taking
δ = 1/A. �

A necessary condition for the limit of f(x) to exist (finite or not) as x→ x0, is
that the restriction of f to any line through x0 has the same limit. This observation
is often used to show that a certain limit does not exist.

Example 4.26

The map

f(x, y) =
x3 + y2

x2 + y2

does not admit limit for (x, y)→ (0, 0). Suppose the contrary, and let
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L = lim
(x,y)→(0,0)

f(x, y)

be finite or infinite. Necessarily then,

L = lim
x→0

f(x, 0) = lim
y→0

f(0, y) .

But f(x, 0) = x, so lim
x→0

f(x, 0) = 0, and f(0, y) = 1 for any y �= 0, whence

lim
y→0

f(0, y) = 1 . �

One should not be led to believe, though, that the behaviour of the function
restricted to lines through x0 is sufficient to compute the limit. Lines represent
but one way in which we can approach the point x0. Different relationships among
the variables may give rise to completely different behaviours of the limit.

Example 4.27

Let us determine the limit of

f(x, y) =

{
xex/y if y �= 0 ,

0 if y = 0 ,

at the origin. The map tends to 0 along each straight line passing through (0, 0):

lim
x→0

f(x, 0) = lim
y→0

f(0, y) = 0

because the function is identically zero on the coordinate axes, and along the
other lines y = kx, k �= 0,

lim
x→0

f(x, kx) = lim
x→0

xek = 0 .

Yet along the parabolic arc y = x2 , x > 0, the map tends to infinity, for

lim
x→0+

f(x, x2) = lim
x→0+

xe1/x = +∞ .

Therefore the function does not admit limit as (x, y)→ (0, 0). �

A function of several variables can be proved to admit limit for x tending to x0

(see Remark 4.35 for more details) if and only if the limit behaviour is independent
of the path through x0 chosen (see Fig. 4.12 for some examples). The previous
cases show that if that is not true, the limit does not exist.

 

 

 

 

x0
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Figure 4.12. Different ways of approaching the point x0
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For two variables, a useful sufficient condition to study the limit’s existence
relies on polar coordinates

x = x0 + r cos θ , y = y0 + r sin θ .

Proposition 4.28 Suppose there exist � ∈ R and a map g depending on the
variable r such that, on a neighbourhood of (x0, y0),

|f(x0 + r cos θ , y0 + r sin θ)− �| ≤ g(r) with lim
r→0+

g(r) = 0 .

Then
lim

(x,y)→(x0,y0)
f(x, y) = � .

Examples 4.29

i) The above result simplifies the study of the limit of Example 4.25 i):

f(r cos θ, r sin θ) =
r4 sin4 θ + r4 cos4 θ

r2
= r2(sin4 θ + cos4 θ)

≤ r2(sin2 θ + cos2 θ) = r2 ,

recalling | sin θ| ≤ 1 and | cos θ| ≤ 1. Thus

|f(r cos θ, r sin θ)| ≤ r2

and the criterion applies with g(r) = r2.

ii) Consider

lim
(x,y)→(0,1)

x log y√
x2 + (y − 1)2

.

Then

f(r cos θ, 1 + r sin θ) =
r cos θ log(1 + r sin θ)

r
= cos θ log(1 + r sin θ) .

Remembering that

lim
t→0

log(1 + t)

t
= 1 ,

for t small enough we have ∣∣∣∣ log(1 + t)

t

∣∣∣∣ ≤ 2 ,

i.e., | log(1 + t)| ≤ 2|t|. Then
|f(r cos θ, 1 + r sin θ)| = | cos θ log(1 + r sin θ)| ≤ 2r| sin θ cos θ| ≤ 2r .

The criterion can be used with g(r) = 2r, to the effect that

lim
(x,y)→(0,1)

x log y√
x2 + (y − 1)2

= 0 . �



136 4 Functions between Euclidean spaces

We would also like to understand what happens when the norm of the inde-
pendent variable tends to infinity. As there is no natural ordering on Rn for n ≥ 2,
one cannot discern, in general, how the argument of the map moves away from
the origin. In contrast to dimension one, where it is possible to distinguish the
limits for x → +∞ and x → −∞, in higher dimensions there is only one “point”
at infinity ∞. Neighbourhoods of the point at infinity are by definition

BR(∞) = {x ∈ Rn : ‖x‖ > R} with R > 0 .

Each BR(∞) is the complement of the closed neighbourhood BR(0) of radius R
centred at the origin.

With this, the definition of limit (finite or infinite) assumes the usual form.
For example a function f with unbounded domain in Rn has limit � ∈ Rm as x

tends to ∞, written

lim
x→∞

f(x) = � ∈ Rm ,

if for any ε > 0 there is an R > 0 such that

∀x ∈ domf , ‖x‖ > R ⇒ ‖f(x)− �‖ < ε ,

i.e.,
∀x ∈ domf , x ∈ BR(∞) ⇒ f(x) ∈ Bε(�) .

Eventually, we discuss infinite limits. A scalar function f has limit +∞ (or
tends to +∞) as x tends to x0, written

lim
x→x0

f(x) = +∞,

if for any R > 0 there is a δ > 0 such that

∀x ∈ dom f, 0 < ‖x− x0‖ < δ ⇒ f(x) > R , (4.24)

i.e.,
∀x ∈ dom f, x ∈ Bδ(x0) \ {x0} ⇒ f(x) ∈ BR(+∞).

The definitions of

lim
x→x0

f(x) = −∞ and lim
x→∞

f(x) = −∞

descend from the previous ones, substituting f(x) > R with f(x) < −R.
In the vectorial case, the limit is infinite when at least one component of f

tends to ∞. Here as well we cannot distinguish how f grows. Precisely, f has
limit ∞ (or tends to ∞) as x tends to x0, which one indicates by

lim
x→x0

f(x) =∞,
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if
lim

x→x0

‖f(x)‖ = +∞ .

Similarly we define
lim

x→∞

f(x) =∞ .

4.5.1 Properties of limits and continuity

The main theorems on limits of one-variable maps, discussed in Vol. 1, Ch. 4,
carry over to several variables. Precisely, we still have uniqueness of the limit,
local invariance of tha function’s sign, the various Comparison Theorems plus
corollaries, the algebra of limits with the relative indeterminate forms. Clearly,
x→ c should be understood by thinking c as either a point x0 ∈ Rn or ∞.

We can also use the Landau formalism for a local study in several variables.
The definition and properties of the symbols O, o, �, ∼ depend on limits, and
thus extend. The expression f(x) = o(‖x‖) as x→ 0, for instance, means

lim
x→0

f(x)

‖x‖ = 0 .

An example satisfying this property is f(x, y) = 2x2 − 5y3.

Some continuity theorems of global nature, see Vol. I, Sect. 4.3, have a counter-
part for scalar maps of several variables. For example, the theorem on the existence
of zeroes goes as follows.

Theorem 4.30 Let f be a continuous map on a region R ⊆ Rn. If f assumes
on R both positive and negative values, it necessarily has a zero on R.

Proof. If a, b ∈ R satisfy f(a) < 0 and f(b) > 0, and if P [a, . . . , b] is an arbitrary
polygonal path in R joining a and b, the map f restricted to P [a, . . . , b] is
a function of one variable that satisfies the ordinary Theorem of Existence
of Zeroes. Therefore an x0 ∈ P [a, . . . , b] exists with f(x0) = 0. �

From this follows, as in the one-dimensional case, the Mean Value Theorem.
We also have Weierstrass’s Theorem, which we will see in Sect. 5.6, Theorem 5.24.

For maps valued in Rm, m ≥ 1, we have the results on limits that make sense
for vectorial quantities (e.g., the uniqueness of the limit and the limit of a sum of
functions, but not the Comparison Theorems).

The Substitution Theorem holds, just as in dimension one (Vol. I, Thm. 4.15);
for continuous maps this guarantees the continuity of the composite map, as men-
tioned in Proposition 4.23.
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Examples 4.31

i) We prove that

lim
(x,y)→∞

e−
1

|x|+|y| = 1 .

As (x, y) → ∞, we have |x| + |y| → +∞, hence t = − 1
|x|+|y| → 0; but the

exponential map t→ et is continuous at the origin, so the result follows.

ii) Let us show

lim
(x,y)→∞

x4 + y4

x2 + y2
= +∞ .

This descends from
x4 + y4

x2 + y2
≥ 1

4
‖x‖2 , ∀x ∈ R2 , x �= 0 (4.25)

and the Comparison Theorem, for (x, y)→∞ is clearly the same as ‖x‖ → +∞.
To get (4.25), note that if x2 ≥ y2, we have

‖x‖2 = x2 + y2 ≤ 2x2 ,
so

x4 + y4

x2 + y2
≥ x4

2x2
=

1

2
x2 ≥ 1

4
‖x‖2 ;

at the same result we arrive if y2 ≥ x2. �

4.6 Curves in Rm

A curve can describe the way the boundary of a plane region encloses the region
itself – think of a polygon or an ellipse, or the trajectory of a point-particle mov-
ing in time under the effect of a force. Chapter 9 will provide us with a means
of integrating along a curve, hence allowing us to formulate mathematically the
physical notion of the work of a force.

Let us start with the definition of curve. Given a real interval I and a map

γ : I → Rm, we denote by γ(t) =
(
xi(t)

)
1≤i≤m

=
m∑
i=1

xi(t)ei ∈ Rm the image of

t ∈ I under γ.

Definition 4.32 A continuous function γ : I ⊆ R → Rm is called a curve.
The set Γ = γ(I) ⊆ Rm is said trace of the curve.

If the trace of the curve lies on a plane, one speaks about a plane curve.
The most common curves are those in the plane (m = 2)

γ(t) =
(
x(t), y(t)

)
= x(t) i + y(t) j ,
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and curves in space (m = 3)

γ(t) =
(
x(t), y(t), z(t)

)
= x(t) i + y(t) j + z(t)k .

We wish to stress the difference occurring between a curve, which is a function
of one real variable, and its trace, a set in Euclidean space Rm. A curve provides
a way to parametrise its trace by associating to the parameter t ∈ I one (and only
one) point of the trace. Still, Γ may be the trace of many curves, because it may be
parametrised in distinct ways. For instance the plane curves γ(t) = (t, t), t ∈ [0, 1],
and δ(t) = (t2, t2), t ∈ [0, 1] have the segment AB of end points A = (0, 0) and
B = (1, 1) as common trace; γ and δ are two parametrisations of the segment.

The mid-point of AB, for example, corresponds to the value t = 1
2 for γ, t =

√
2
2

for δ.

A curve γ is said simple if γ is a one-to-one map, i.e., if distinct parameter’s
values determine distinct points of the trace.

If the interval I = [a, b] is closed and bounded, as in the previous examples, the
curve γ will be named arc. We call end points of the arc the points P0 = γ(a),
P1 = γ(b); precisely, P0 is the initial point and P1 the end point, and γ joins
P0 and P1. An arc is closed if its end points coincide: γ(a) = γ(b); although
a closed arc cannot be simple, one speaks anyway of a simple closed arc (or
Jordan arc) when the point γ(a) = γ(b) is the unique point on the trace where
injectivity fails. Figure 4.13 illustrates a few arcs; in particular, the trace of the
Jordan arc (bottom left) shows a core property of Jordan arcs, known as Jordan
Curve Theorem.

γ(a)

γ(b)

γ(a)

γ(b)

γ(a) = γ(b) γ(a) = γ(b)

Figure 4.13. The trace Γ = γ([a, b]) of a simple arc (top left), a non-simple arc (top
right), a simple closed arc or Jordan arc (bottom left) and a closed non-simple arc (bottom
right)
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Theorem 4.33 The trace Γ of a Jordan arc in the plane divides the plane
in two connected components Σi and Σe with common boundary Γ , where Σi

is bounded, Σe is unbounded.
Conventionally, Σi is called the region “inside” Γ , while Σe is the region
“outside” Γ .

Like for curves, there is a structural difference between an arc and its trace.
It must be said that very often one uses the term ‘arc’ for a subset of Euclidean
space Rm (as in: ‘circular arc’), understanding the object as implicitly parametrised
somehow, usually in the simplest and most natural way.

Examples 4.34

i) The simple plane curve

γ(t) = (at+ b, ct+ d) , t ∈ R , a �= 0

has the line y =
c

a
x +

ad− bc

a
as trace. Indeed, putting x = x(t) = at + b and

y = y(t) = ct+ d gives t =
x− b

a
, so

y =
c

a
(x − b) + d =

c

a
x+

ad− bc

a
.

ii) Let ϕ : I → R be a continuous function on the interval I; the curve

γ(t) = ti + ϕ(t)j , t ∈ I

has the graph of ϕ as trace.

iii) The trace of

γ(t) =
(
x(t), y(t)

)
= (1 + cos t, 3 + sin t) , t ∈ [0, 2π]

is the circle with centre (1, 3) and radius 1, for in fact
(
x(t) − 1

)2
+
(
y(t) −

3
)2

= cos2 t + sin2 t = 1. The arc is simple and closed, and is the standard
parametrisation of the circle starting at the point (2, 3) and running counter-
clockwise.

More generally, the closed, simple arc

γ(t) =
(
x(t), y(t)

)
= (x0 + r cos t, y0 + r sin t) , t ∈ [0, 2π]

has trace the circle centred at (x0, y0) with radius r.

If t varies in an interval [0, 2kπ], with k ≥ 2 a positive integer, the curve has the
same trace seen as a set; but because we wind around the centre k times, the
curve is not simple.

Instead, if t varies in [0, π], the curve is a circular arc, simple but not closed.

iv) Given a, b > 0, the map

γ(t) =
(
x(t), y(t)

)
= (a cos t, b sin t) , t ∈ [0, 2π]
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is a simple closed curve parametrising the ellipse with centre in the origin and
semi-axes a and b:

x2

a2
+

y2

b2
= 1 .

v) The trace of

γ(t) =
(
x(t), y(t)

)
= (t cos t, t sin t) = t cos t i+ t sin t j , t ∈ [0,+∞]

is a spiral coiling counter-clockwise around the origin, see Fig. 4.14, left. Since the
point γ(t) has distance

√
x2(t) + y2(t) = t from the origin, so it moves farther

afield as t grows, the spiral a simple curve.

vi) The simple curve

γ(t) =
(
x(t), y(t), z(t)

)
= (cos t, sin t, t) = cos t i+ sin t j + tk , t ∈ R

has the circular helix of Fig. 4.14, right, as trace. It rests on the infinite cylinder
{(x, y, z) ∈ R3 : x2 + y2 = 1} along the z-axis with radius 1.

vii) Let P and Q be distinct points of Rm, with m ≥ 2 arbitrary. The trace of
the simple curve

γ(t) = P + (Q− P )t , t ∈ R

is the line through P and Q, because γ(0) = P , γ(1) = Q and the vector γ(t)−P
has constant direction, being parallel to Q− P .

There is a more general parametrisation of the same line

γ(t) = P + (Q− P )
t− t0
t1 − t0

, t ∈ R , (4.26)

with t0 �= t1; in this case γ(t0) = P , γ(t1) = Q. �

x

y

 

 

 

 

 

 

 

 

x

y

z

Figure 4.14. Spiral and circular helix, see Examples 4.34 v) and vi)
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Some of the above curves have a special trace, given as the locus of points in
the plane satisfying an equation of type

f(x, y) = c ; (4.27)

otherwise said, they parametrise level sets of f . With suitable assumptions on f ,
one can start from an implicit equation like (4.27) and obtain a curve γ(t) =(
x(t), y(t)

)
of solutions. The details may be found in Sect. 7.2.

Remark 4.35 We posited in Sect. 4.5 that the existence of the limit of f , as x
tends to x0 ∈ Rn, is equivalent to the fact that the restrictions of f to the trace
of any curve through x0 admit the same limit; namely, one can prove that

lim
x→x0

f(x) = � ⇐⇒ lim
t→t0

f
(
γ(t)
)
= �

for any curve γ : I → dom f such that γ(t0) = x0 for some t0 ∈ I. �

Curves in polar, cylindrical and spherical coordinates
Representing a curve using Cartesian coordinates, as we have done so far, is but
one possibility. Sometimes it may be better to use polar coordinates in dimension
2, and cylindrical or spherical coordinates in dimension 3 (these were introduced
in Vol. I, Sect. 8.1, and will be discusses anew in Sect. 6.6.1).

A plane curve R2 can be defined by a continuous map γp : I ⊆ R→ [0,+∞)×R,
where γp(t) =

(
r(t), θ(t)

)
are the polar coordinates of the point image of the value

t of the parameter. It corresponds to the curve γ(t) = r(t) cos θ(t) i+ r(t) sin θ(t) j
in Cartesian coordinates. The spiral of Example 4.34 v) can be parametrised, in
polar coordinates, by γp(t) = (t, t), t ∈ [0,+∞).

Similarly, we can represent a curve in space using cylindrical coordinates,
γc(t) =

(
r(t), θ(t), z(t)

)
, with γc : I ⊆ R → [0,+∞) × R2 continuous, or using

spherical coordinates, γs(t) =
(
r(t), ϕ(t), θ(t)

)
, with γs : I ⊆ R → [0,+∞) × R2

continuous. The circular helix of Example 4.34 vi) is γc(t) = (1, t, t), t ∈ R,
while a meridian arc of the unit sphere, joining the North and the South poles, is
γs(t) = (1, t, θ0), for t ∈ [0, π] and with given θ0 ∈ [0, 2π].

4.7 Surfaces in R3

Surfaces are continuous functions defined on special subsets of R2, namely plane
regions (see Definition 4.15); these regions play the role intervals had for curves.

Definition 4.36 Let R ⊆ R2 be a region. A continuous map σ : R → R3 is
said surface, and Σ = σ(R) ⊆ R3 is the trace of the surface.
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The independent variables in R are usually denoted (u, v), and

σ(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
= x(u, v)i + y(u, v)j + z(u, v)k

is the Cartesian representation of σ.
A surface is simple if the restriction of σ to the interior of R is one-to-one.
A surface is compact if the region R is compact. It is the 2-dimensional

analogue of an arc.

Examples 4.37

i) Consider vectors a, b ∈ R3 such that a ∧ b �= 0, and c ∈ R3. The surface
σ : R2 → R3

σ(u, v) = au+ bv + c

= (a1u+ b1v + c1)i + (a2u+ b2v + c2)j + (a3u+ b3v + c3)k

parametrises the plane Π passing through the point c and parallel to a and b

(Fig. 4.15, left).

The Cartesian equation is found by setting x = (x, y, z) = σ(u, v) and observing

x− c = au+ bv ,

i.e., x− c is a linear combination of a and b. Hence by (4.7)

(a ∧ b) · (x− c) = (a ∧ b) · a u+ (a ∧ b) · b v = 0 ,
so

(a ∧ b) · x = (a ∧ b) · c .
The plane has thus equation

αx+ βy + γz = δ ,

where α,β and γ are the components of a ∧ b, and δ = (a ∧ b) · c.

 
 

a

b

c

Π

x

y

z

 

 

x

y

z

Figure 4.15. Representation of the plane Π (left) and the hemisphere (right) relative
to Examples 4.37 i) and ii)
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ii) Any continuous scalar function ϕ : R→ R defined on a plane region produces
a surface σ : R → R3

σ(u, v) = ui+ vj + ϕ(u, v)k ,

whose trace is the graph of ϕ. Such a surface is sometimes referred to as topo-
graphic (with respect to the z-axis).
The surface σ : R = {(u, v) ∈ R2 : u2 + v2 ≤ 1} → R3,

σ(u, v) = ui+ vj +
√
1− u2 − v2 k

produces as trace the upper hemisphere centred at the origin and with unit
radius (Fig. 4.15, right).
Permuting the components u, v, ϕ(u, v) of σ clearly gives rise to surfaces whose
equation is solved for x or y instead of z.

iii) The plane curve γ : I ⊆ R → R3 given by γ(t) =
(
γ1(t), 0, γ3(t)

)
, γ1(t) ≥ 0

for any t ∈ I has trace Γ in the half-plane xz where x ≥ 0.
Rotating Γ around the z-axis gives the trace Σ of the surface σ : I×[0, 2π]→ R3

defined by

σ(u, v) = γ1(u) cos v i+ γ1(u) sin v j + γ3(u)k .

One calls surface of revolution (around the z-axis) a surface thus obtained.
The generating arc is said meridian (arc). For example, revolving around the
z-axis the parabolic arc Γ parametrised by γ : [−1, 1]→ R3, γ(t) = (4− t2, 0, t)
yields the lateral surface of a plinth, see Fig. 4.16, left.
Akin surfaces can be defined by revolution around the other coordinate axes.

iv) The vector-valued map

σ(u, v) = (x0 + r sinu cos v)i + (y0 + r sinu sin v)j + (z0 + r cosu)k

on R = [0, π] × [0, 2π] is a compact surface with trace the spherical surface
of centre x0 = (x0, y0, z0), radius r > 0. Slightly more generally, consider the
(surface of the) ellipsoid, centred at x0 with semi-axes a, b, c > 0, defined by

(x − x0)
2

a2
+
(y − y0)

2

b2
+
(z − z0)

2

c2
= 1 ;

This surface is parametrised by

σ(u, v) = (x0 + a sinu cos v)i+ (y0 + b sinu sin v)j + (z0 + c cosu)k .

v) The function σ : R→ R3,

σ(u, v) = u cos v i + u sin vj + vk

with R = [0, 1]× [0, 4π], defines a compact surface; its trace is the ideal parking-
lot ramp, see Fig. 4.16, right. The name helicoid is commonly used for this
surface defined on R = [0, 1]× R.

All surfaces considered so far are simple. �
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Figure 4.16. Plinth (left) and helicoid (right) relative to Examples 4.37 iii) and v)

We will see in Sect. 7.2 sufficient conditions for an implicit equation

f(x, y, z) = c

to be solved in one of the variables, i.e., to determine the trace of a surface which
is locally a graph.

For surfaces, too, there is an alternative representationmaking use of cylindrical
or spherical coordinates. The lateral surface of an infinite cylinder with axis z
and radius 1, for instance, has cylindrical parametrisation σc : [0, 2π] × R →
R3, σc(u, v) =

(
r(u, v), θ(u, v), z(u, v)

)
= (1, u, v). Similarly, the unit sphere at

the origin has a spherical parametrisation σs : [0, π] × [0, 2π] → R3, σs(u, v) =(
r(u, v), ϕ(u, v), θ(u, v)

)
= (1, u, v). The surfaces of revolution of Example 4.37

iii) are σc : I × [0, 2π] → R3, with σc(u, v) =
(
γ1(u), v, γ3(u)

)
in cylindrical

coordinates.

4.8 Exercises

1. Determine the interior, the closure and the boundary of the following sets. Say
if the sets are open, closed, connected, convex or bounded:

a) A = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 < y < 1}

b) B =
(
B2(0) \ ([−1, 1]× {0})) ∪ ((−1, 1)× {3})

c) C = {(x, y) ∈ R2 : |y| > 2}

2. Determine the domain of the functions:

a) f(x, y) =
x− 3y + 7

x− y2
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b) f(x, y) =
√
1− 3xy

c) f(x, y) =
√
3x+ y + 1− 1√

2y − x

d) f(x, y, z) = log(x2 + y2 + z2 − 9)

e) f(x, y) =

(
y√

x2 + y2
, − x√

x2 + y2

)

f) f(x, y, z) =

(
arctan y,

log z

x

)
g) γ(t) = (t3,

√
t− 1,

√
5− t)

h) γ(t) =

(
t− 2

t+ 2
, log(9− t2)

)
i) σ(u, v) =

(
log(1− u2 − v2), u,

1

u2 + v2
)

�) σ(u, v) =
(√

u+ v,
2

4− u2 − v2
, v
)

3. Say whether the following limits exist, and compute them:

a) lim
(x,y)→(0,0)

xy√
x2 + y2

b) lim
(x,y)→(0,0)

xy

x2 + y2

c) lim
(x,y)→(0,0)

x

y
log(1 + x) d) lim

(x,y)→(0,0)

3x2y

x2 + y2

e) lim
(x,y)→(0,0)

x2y

x4 + y2
f) lim

(x,y,z)→(0,0,0)

xy + yz2 + xz2

x2 + y2 + z4

g) lim
(x,y)→(0,0)

x2√
x2 + y2

h) lim
(x,y)→(0,0)

x2 − x3 + y2 + y3

x2 + y2

i) lim
(x,y)→(0,0)

x− y

x+ y
�) lim

(x,y)→(0,0)
(x2 + y2) log(x2 + y2) + 5

m) lim
(x,y)→∞

x2 + y + 1

x2 + y4
n) lim

(x,y)→∞

√
1 + 3x2 + 5y2

x2 + y2

4. Determine the set on which the following maps are continuous:

a) f(x, y) = arcsin(xy − x− 2y) b) f(x, y, z) =
xyz

x2 + y2 − z

5. As the real number α ≥ 0 varies, study the continuity of:

f(x, y) =

{
|x|α sin y

x2 + y2
if (x, y) �= (0, 0) ,

0 if (x, y) = (0, 0) .
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6. The cylinders z = x2 and z = 4y2 intersect along the traces of two curves.
Find a parametrisation of the one containing the point (2,−1, 4).

7. Parametrise (with a curve) the intersection of the plane x+ y+ z = 1 and the
cylinder z = x2.

8. Parametrise (with a curve) the intersection of x2 + y2 = 16 and z = x+ y.

9. Find a Cartesian parametrisation for the curve γ(t) =
(
r(t), θ(t)

)
, t ∈ [0, 2π],

given in polar coordinates, when:

a) γ(t) = (sin2 t, t) b) γ(t) =
(
sin

t

2
, t
)

10. Eliminate the parameters u, v to obtain a Cartesian equation in x, y, z rep-
resenting the trace of:

a) σ(u, v) = au cos vi+ bu sin vj + u2k , a, b ∈ R

elliptic paraboloid

b) σ(u, v) = ui+ a sin vj + a cos vk , a ∈ R

cylinder

c) σ(u, v) = (a+ b cosu) sin vi+ (a+ b cosu) cos vj + b sinuk , 0 < b < a

torus

4.8.1 Solutions

1. Properties of sets:

a) The interior of A is

◦
A = {(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1} ,

which is the open square (0, 1)2. Its closure is

A = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} ,

i.e., the closed square [0, 1]2. The boundary is

∂A = {(x, y) ∈ R2 : x = 0 or x = 1, 0 ≤ y ≤ 1} ∪
∪{(x, y) ∈ R2 : y = 0 or y = 1, 0 ≤ x ≤ 1} ,

which is the union of the four sides (perimeter) of [0, 1]2.
Then A is neither open nor closed, but connected, convex and bounded, see
Fig. 4.17, left.
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Figure 4.17. The sets A, B, C of Exercise 1

b) The interior of B is
◦
B = B2(0) \ ([−1, 1]× {0}) ,

the closure
B = B2(0) ∪

(
[−1, 1]× {3}) ,

the boundary

∂B = {(x, y) ∈ R2 : x2 + y2 = 2} ∪ ([−1, 1]× {0}) ∪ ([−1, 1]× {3}) .
Hence B is not open, closed, connected, nor convex; but it is bounded, see
Fig. 4.17, middle.

c) The interior of C is C itself; its closure is

C = {(x, y) ∈ R2 : |y| ≥ 2} ,
while the boundary is

∂C = {(x, y) ∈ R2 : y = ±2} ,
making C open, not connected, nor convex, nor bounded (Fig. 4.17, right).

2. Domain of functions:

a) The domain is {(x, y) ∈ R2 : x �= y2}, the set of all points in the plane except
those on the parabola x = y2.

b) The map is defined where the radicand is ≥ 0, so the domain is

{(x, y) ∈ R2 : y ≤ 1

3x
if x > 0, y ≥ 1

3x
if x < 0, y ∈ R if x = 0} ,

which describes the points lying between the two branches of the hyperbola
y = 1

3x .

c) The map is defined for 3x+ y+1 ≥ 0 and 2y− x > 0, implying the domain is

{(x, y) ∈ R2 : y ≥ −3x− 1} ∩ {(x, y) ∈ R2 : y >
x

2
} .

See Fig. 4.18 .
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y = x
2

y = −3x− 1

Figure 4.18. The domain of the function f of Exercise 2. c)

d) The function’s domain is defined by the positivity of the log’s argument,
whence

{(x, y, z) ∈ R3 : x2 + y2 + x2 > 9} .
These are the points of the plane outside the sphere at the origin of radius 3.

e) domf = R2 \ {0} .
f) The map is defined for z > 0 and x �= 0; there are no constraints on y. The

domain is thus the subset of R3 given by the half-space z > 0 without the
half-plane x = 0.

g) domγ = I = [1, 5] .

h) The components x(t) =
t− 2

t+ 2
and y(t) = log(9 − t2) of the curve are well

defined for t �= −2 and t ∈ (−3, 3) respectively. Therefore γ is defined on the
intervals I1 = (−3,−2) and I2 = (−2, 3).

i) The surface is defined for 0 < u2 + v2 < 1, i.e., for points of the punctured
open unit disc on the plane uv.

�) The domain of σ is domσ = {(u, v) ∈ R2 : u + v ≥ 0, u2 + v2 �= 4}. See
Fig. 4.19 for a picture.

y

x
2

Figure 4.19. The domain of the surface σ of Exercise 2. �)
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3. Limits:

a) From

|x| =
√
x2 ≤

√
x2 + y2

follows |x|√
x2 + y2

≤ 1 .

Hence

|f(x, y)| = |x| |y|√
x2 + y2

≤ |y| ,

and by the Squeeze Rule we conclude the limit is 0.

b) If y = 0 or x = 0 the map f(x, y) =
xy

x2 + y2
is identically zero. When com-

puting limits along the axes, then, the result is 0:

lim
x→0

f(x, 0) = lim
y→0

f(0, y) = 0 .

But along the line y = x the function equals 1
2 , so

lim
x→0

f(x, x) = lim
x→0

x2

x2 + x2
=

1

2
.

In conclusion, the limit does not exist.

c) Let us compute the function f(x, y) =
x

y
log(1+x) along the lines y = kx with

k �= 0; from

f(x, kx) =
1

k
log(1 + x)

follows
lim
x→0

f(x, kx) = 0 .

Along the parabola y = x2 though, f(x, x2) = 1
x log(1 + x), i.e.,

lim
x→0

f(x, x2) = 1 .

The limit does not exist.

d) 0 . e) Does not exist. f) Does not exist.

g) Since

|f(r cos θ, r sin θ)| = r2 cos2 θ

r
= r cos2 θ ≤ r ,

Proposition 4.28, with g(r) = r, implies the limit is 0.

h) 1.
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i) From

f(r cos θ, r sin θ) =
cos θ − sin θ

cos θ + sin θ

follows

lim
r→0

f(r cos θ, r sin θ) =
cos θ − sin θ

cos θ + sin θ
;

thus the limit does not exist.

�) 5 .

m) Set f(x, y) =
x2 + y + 1

x2 + y4
, so that

f(x, 0) =
x2 + 1

x2
and f(0, y) =

y + 1

y4
.

Hence
lim

x→±∞
f(x, 0) = 1 and lim

y→±∞
f(0, y) = 0

and we conclude the limit does not exist.

n) Note

0 ≤
√
1 + 3x2 + 5y2

x2 + y2
≤
√
1 + 5(x2 + y2)

x2 + y2
, ∀(x, y) �= (0, 0) .

Set t = x2 + y2, so that

lim
(x,y)→∞

√
1 + 5(x2 + y2)

x2 + y2
= lim

t→+∞

√
1 + 5t

t
= 0

and

0 ≤ lim
(x,y)→∞

√
1 + 3x2 + 5y2

x2 + y2
≤ lim

t→+∞

√
1 + 5t

t
= 0 .

The required limit is 0.

4. Continuity sets:

a) The function is continuous on its domain as composite map of continuous
functions. For the domain, recall that arcsin is defined when the argument lies
between −1 and 1, so

dom f = {(x, y) ∈ R2 : −1 ≤ xy − x− 2y ≤ 1} .

Let us draw such set. The points of the line x = 2 do not belong to dom f . If
x > 2, the condition −1 + x ≤ (x− 2)y ≤ 1 + x is equivalent to

1 +
1

x− 2
=

x− 1

x− 2
≤ y ≤ x+ 1

x− 2
= 1 +

3

x− 2
;
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this means dom f contains all points lying between the graphs of the two

hyperbolas y = 1+
1

x− 2
and y = 1+

3

x− 2
. Similarly, if x < 2, the domain is

1 +
3

x− 2
≤ y ≤ 1 +

1

x− 2
.

Overall, dom f is as in Fig. 4.20.

b) The continuity set is C = {(x, y, z) ∈ R3 : z �= x2 + y2}.
5. Let us compute lim

(x,y)→(0,0)
f(x, y). Using polar coordinates,

f(r cos θ, r sin θ) = rα−2| cos θ|α sin(r sin θ) ;

but | sin t| ≤ |t|, valid for any t ∈ R, implies

|f(r cos θ, r sin θ)| ≤ rα−1| cos θ|α| sin θ| ,

so the limit is zero if α > 1, and does not exist if α ≤ 1. Therefore if α > 1 the
map is continuous on R2, if 0 ≤ α ≤ 1 it is continuos only on R2 \ {0}.
6. The system {

z = x2

z = 4y2

gives x2 = 4y2. The cylinders’ intersection projects onto the plane xy as the two
lines x = ±2y (Fig. 4.21). As we are looking for the branch containing (2,−1, 4),
we choose x = −2y. One possible parametrisation is given by t = y, hence

γ(t) = (−2t, t, 4t2) , t ∈ R .

x

y

y = 1 + 1
x−2

2

1

y = 1 + 3
x−2

Figure 4.20. The continuity set of f(x, y) = arcsin(xy − x− 2y)
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Figure 4.21. The intersection of the cylinders z = x2 and z = 4y2

7. We have x+ y + x2 = 1, and choosing t = x as parameter,

γ(t) = (t, 1− t− t2, t2) , t ∈ R .

8. Use cylindrical coordinates with x = 4 cos t, y = 4 sin t. Then

γ(t) = (4 cos t, 4 sin t, 4(cos t+ sin t)) , t ∈ [0, 2π] .

9. Curves in Cartesian coordinates:

a) We have r(t) = sin2 t and θ(t) = t; recalling that x = r cos θ and y = r sin θ,
gives

x = sin2 t cos t and y = sin3 t .

In Cartesian coordinates then, γ : [0, 2π] → R2 can be written γ(t) =(
x(t), y(t)

)
=
(
sin2 t cos t, sin3 t

)
, see Fig. 4.22, left.

b) We have γ(t) =
(
sin t

2 cos t, sin
t
2 sin t

)
. The curve is called cardioid, see

Fig. 4.22, right.

10. Graphs:

a) It is straightforward to see

x2

a2
+

y2

b2
= u2 cos2 v + u2 sin2 v = u2 = z,

giving the equation of an elliptic paraboloid.

b) y2 + z2 = a2 .
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Figure 4.22. Traces of the curves of Exercise 9. a) (left) and 9. b) (right)

c) Note that x2+y2 = (a+b cosu)2 and a+b cosu > 0; therefore
√

x2 + y2−a =
b cosu . Moreover,(√

x2 + y2 − a
)2
+ z2 = b2 cos2 u+ b2 sin2 u = b2 ;

in conclusion (√
x2 + y2 − a

)2
+ z2 = b2 .



5

Differential calculus for scalar functions

While the previous chapter dealt with the continuity of multivariable functions
and their limits, the next three are dedicated to differential calculus. We start in
this chapter by discussing scalar functions.

The power of differential tools should be familiar to students from the first Cal-
culus course; knowing the derivatives of a function of one variable allows to capture
the function’s global behaviour, on intervals in the domain, as well as the local
one, on arbitrarily small neighbourhoods. In passing to higher dimension, there
are more instruments available that adapt to a more varied range of possibilities.
If on one hand certain facts attract less interest (drawing graphs for instance, or
understanding monotonicity, which is tightly related to the ordering of the reals,
not present any more), on the other new aspects come into play (from Linear
Algebra in particular) and become central. The first derivative in one variable is
replaced by the gradient vector field, and the Hessian matrix takes the place of
the second derivative. Due to the presence of more variables, some notions require
special attention (differentiability at a point is a more delicate issue now), whereas
others (convexity, Taylor expansions) translate directly from one to several vari-
ables. The study of so-called unconstrained extrema of a function of several real
variables carries over effortlessly, thus generalising the known Fermat and Weier-
strass’ Theorems, and bringing to the fore a new kind of stationary points, like
saddle points, at the same time.

5.1 First partial derivatives and gradient

The simplest case where partial derivatives at a point can be seen is on the plane,
i.e., in dimension two, which we start from.

Let f : dom f ⊆ R2 → R be a function of two variables defined in a neighbour-
hood of the point x0 = (x0, y0). The map x �→ f(x, y0), obtained by fixing the
second variable to a constant, is a real-valued map of one real variable, defined

C. Canuto, A. Tabacco:Mathematical Analysis II, 2nd Ed.,
UNITEXT – La Matematica per il 3+2 85, DOI 10.1007/978-3-319-12757-6_5,
© Springer International Publishing Switzerland 2015
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around the point x0 ∈ R. If this is differentiable at x0, one says f admits partial
derivative with respect to x at x0 and sets

∂f

∂x
(x0) =

d

dx
f(x, y0)

∣∣∣∣
x=x0

= lim
x→x0

f(x, y0)− f(x0, y0)

x− x0
.

Similarly, if y �→ f(x0, y) is differentiable at y0, f is said to admit partial deriv-
ative with respect to y at x0 and one defines

∂f

∂y
(x0) =

d

dy
f(x0, y)

∣∣∣∣
y=y0

= lim
y→y0

f(x0, y)− f(x0, y0)

y − y0
.

The geometric meaning of partial derivatives is explained in Fig. 5.1.

This can be generalised to functions of n variables, n ≥ 3, in the most obvious
way. Precisely, let a map in n variables f : dom f ⊆ Rn → R be defined on the

neighbourhood of x0 = (x01, . . . , x0n) =
n∑

i=1

x0iei, where ei is the ith unit vector

of the canonical basis of Rn seen in (4.1). One says f admits partial derivative
with respect to xi at x0 if the function of one real variable

x �→ f(x01, . . . , x0,i−1, x, x0,i+1, . . . , x0n) ,
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Figure 5.1. The partial derivatives of f at x0 are the slopes of the lines r1, r2, tangent
to the graph of f at P0
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obtained by making all independent variables but the ith one constant, is differ-
entiable at x = x0i. If so, one defines the symbol

∂f

∂xi
(x0) =

d

dx
f(x01, . . . , x0,i−1, x, x0,i+1, . . . , x0n)

∣∣∣∣
x=x0i

= lim
Δx→0

f(x0 +Δxei)− f(x0)

Δx
.

(5.1)

The partial derivative of f at x0 with respect to the variable xi is also denoted
as follows

Dxi
f(x0) , Dif(x0) , fxi

(x0)

(or simply fi(x0), if no confusion arises).

Definition 5.1 Assume f admits partial derivatives at x0 with respect to all
variables. The gradient ∇f(x0) of f at x0 is the vector defined by

∇f(x0) =
( ∂f
∂xi

(x0)
)
1≤i≤n

=
∂f

∂x1
(x0) e1 + . . .+

∂f

∂xn
(x0) en ∈ Rn .

Another notation for it is grad f(x0).

We remind that, as any vector in Rn, ∇f(x0) can be written both as row or
column vector, according to need.

Examples 5.2

i) Let f(x, y) =
√

x2 + y2 be the function ‘distance from the origin’. At the point
x0 = (2,−1),

∂f

∂x
(x0) =

d

dx

√
x2 + 1

∣∣∣
x=2

=
x√

x2 + 1

∣∣∣∣
x=2

=
2√
5
,

∂f

∂y
(x0) =

d

dy

√
4 + y2

∣∣∣
y=−1

=
y√
4 + y2

∣∣∣∣∣
y=−1

= − 1√
5
.

Therefore

∇f(x0) =
( 2√

5
,− 1√

5

)
=

1√
5
(2,−1) .

ii) For f(x, y, z) = y log(2x− 3z), at x0 = (2, 3, 1) we have

∂f

∂x
(x0) =

d

dx
3 log(2x− 3)

∣∣∣
x=2

= 3
2

2x− 3

∣∣∣∣
x=2

= 6 ,

∂f

∂y
(x0) =

d

dy
y log 1

∣∣∣
y=3

= 0 ,
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∂f

∂z
(x0) =

d

dz
3 log(4 − 3z)

∣∣∣
z=1

= 3
−3

4− 3z

∣∣∣∣
z=1

= −9 ,
whence

∇f(x0) = (6, 0,−9) .
iii) Let f : Rn → R be the affine map f(x) = a · x + b, a ∈ Rn, b ∈ R. At any
point x0 ∈ Rn,

∇f(x0) = a .

iv) Take a function f not depending on the variable xi on a neighbourhood of

x0 ∈ dom f . Then
∂f

∂xi
(x0) = 0.

In particular, f constant around x0 implies ∇f(x0) = 0. �

The function

∂f

∂xi
: x �→ ∂f

∂xi
(x) ,

defined on a suitable subset dom
∂f

∂xi
⊆ dom f ⊆ Rn and with values in R, is called

(first) partial derivative of f with respect to xi. The gradient function of f ,

∇f : x �→ ∇f(x),

whose domain dom∇f is the intersection of the domains of the single first partial
derivatives, is an example of a vector field, being a function defined on a subset of
Rn with values in Rn.

In practice, each partial derivative
∂f

∂xi
is computed by freezing all variables of

f different from xi (taking them as constants), and differentiating in the only one
left xi. We can then use on this function everything we know from Calculus 1.

Examples 5.3

We shall use the previous examples.

i) For f(x, y) =
√

x2 + y2 we have

∇f(x) =

(
x√

x2 + y2
,

y√
x2 + y2

)
=

x

‖x‖
with dom∇f = R2 \ {0}. The formula holds in any dimension n if f(x) = ‖x‖
is the norm function on Rn.

ii) For f(x, y, z) = y log(2x− 3z) we obtain

∇f(x) =

(
2y

2x− 3z
, log(2x− 3z),

−3y
2x− 3z

)
,

with dom∇f = dom f = {(x, y, z) ∈ R3 : 2x− 3z > 0}.
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iii) The total resistance R produced by three conductors with resistances
R1, R2, R3 in a parallel circuit is given by the formula:

1

R
=

1

R1
+

1

R2
+

1

R3
.

We want to compute the partial derivative of R with respect to one of the Ri,
say R1. As

R(R1, R2, R3) =
1

1
R1

+ 1
R2

+ 1
R3

=
R1R2R3

R2R3 +R1R3 +R1R2
,

we have
∂R

∂R1
(R1, R2, R3) =

R2
2R

2
3

(R2R3 +R1R3 +R1R2)2
. �

Partial derivatives with respect to the xi, i = 1, . . . , n, are special cases of
the directional derivative along a vector. Let f be a map defined around a point
x0 ∈ Rn and let v ∈ Rn be a given non-zero vector. Then f admits partial
derivative, or directional derivative, along v at x0 if

∂f

∂v
(x0) = lim

t→0

f(x0 + tv)− f(x0)

t
(5.2)

exists and is finite.

Another notation for this is Dvf(x0). The condition spells out the fact that
the map t �→ f(x0 + tv) is differentiable at t0 = 0 (the latter is defined in a
neighbourhood of t0 = 0, since x0+tv belongs to the neighbourhood of x0 where f
is defined, for t small enough). See Fig. 5.2 to interpret geometrically the directional
derivative.

 

 

 

 

 

 

 

 

x

y

z

x0

P0

x0 + tv

r

Γ (f)

Figure 5.2. The directional derivative is the slope of the line r tangent to the graph of
f at P0



160 5 Differential calculus for scalar functions

The directional derivative of f at x0 with respect to xi is obtained by choosing
v = ei; thus

∂f

∂ei
(x0) =

∂f

∂xi
(x0), i = 1, . . . , n ,

as is immediate by comparing (5.2) with (5.1), using Δx = t.
In the next section we discuss the relationship between the gradient and direc-

tional derivatives of differentiable functions.

5.2 Differentiability and differentials

Recall from Vol. I, Sect. 6.6 that a real map of one real variable f , differentiable
at x0 ∈ R, satisfies the first formula of the finite increment

f(x) = f(x0) + f ′(x0)(x− x0) + o(x− x0) , x→ x0 . (5.3)

This is actually equivalent to differentiability at x0, because if there is a number
a ∈ R such that

f(x) = f(x0) + a (x− x0) + o(x− x0) , x→ x0 ,

necessarily f is differentiable at x0, and a = f ′(x0). From the geometric viewpoint,
furthermore, differentiability at x0 amounts to the existence of the tangent line to
the graph of f at the point P0 =

(
x0, f(x0)

)
:

y = t(x) = f(x0) + f ′(x0)(x − x0) .

In presence of several variables, the picture is more involved and the existence of
the gradient of f at x0 does not guarantee the validity of a formula like (5.3), e.g.,

f(x) = f(x0) +∇f(x0) · (x− x0) + o(‖x− x0‖) , x→ x0 , (5.4)

nor the existence of the tangent plane (or hyperplane, if n > 2) to the graph of f
at P0 =

(
x0, f(x0)

) ∈ Rn+1. Consider for example the function

f(x, y) =

⎧⎪⎨⎪⎩
x2y

x2 + y2
if (x, y) �= (0, 0) ,

0 if (x, y) = (0, 0) .

The map is identically zero on the coordinate axes (f(x, 0) = f(0, y) = 0 for any
x, y ∈ R), so

∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0 , i.e., ∇f(0, 0) = (0, 0) .
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If we had (5.4), at x0 = (0, 0) we would find

lim
(x,y)→(0,0)

x2y

(x2 + y2)
√

x2 + y2
= 0 ;

but moving along the line y = x, for instance, we have

lim
x→0±

x3

2
√
2x2|x| = ± 1

2
√
2
�= 0 .

Not even the existence of every partial derivative at x0 warrants (5.4) will hold. It
is easy to see that the above f has directional derivatives along any given vector v.

Thus it makes sense to introduce the following definition.

Definition 5.4 A function f is differentiable at an interior point x0 of the
domain, if ∇f(x0) exists and the following formula holds:

f(x) = f(x0) +∇f(x0) · (x− x0) + o(‖x− x0‖) , x→ x0 . (5.5)

In the case n = 2,
z = f(x0) +∇f(x0) · (x− x0) , (5.6)

i.e.,

z = f(x0, y0) +
∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0) , (5.7)

defines a plane, called the tangent plane to the graph of the function f at P0 =(
x0, y0, f(x0, y0)

)
. This is the plane that best approximates the graph of f on a

neighbourhood of P0, see Fig. 5.3. The differentiability at x0 is equivalent to the
existence of the tangent plane at P0. In higher dimensions n > 2, equation (5.6)
defines the hyperplane (affine subspace of codimension 1, i.e., of dimension n− 1)
tangent to the graph of f at the point P0 =

(
x0, f(x0)

)
.

Equation (5.5) suggests a natural way to approximate the map f around x0

by means of a polynomial of degree one in x. Neglecting the higher-order terms,
we have in fact

f(x) ∼ f(x0) +∇f(x0) · (x− x0)

on a neighbourhood of x0. This approximation, called linearisation of f at x0,
often allows to simplify in a constructive and efficient way the mathematical de-
scription of a physical phenomenon.

Here is yet another interpretation of (5.5): put Δx = x − x0 in the formula,
so that

f(x0 +Δx) = f(x0) +∇f(x0) ·Δx+ o(‖Δx‖) , Δx→ 0 ,
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Figure 5.3. Tangent plane at P0

in other words

Δf = f(x0 +Δx)− f(x0) = ∇f(x0) ·Δx+ o(‖Δx‖) , Δx→ 0 .

Then the incrementΔf of the dependent variable is, up to an infinitesimal of order
bigger than one, proportional to the increment Δx of the independent variable.
This means the linear map Δx �→ ∇f(x0) · Δx is an approximation, often suffi-
ciently accurate, of the variation of f in a neighbourhood of x0. This fact justifies
the next definition.

Definition 5.5 The linear map dfx0 : R
n → R

dfx0(Δx) = ∇f(x0) ·Δx

is called differential of f at x0.

Example 5.6

Consider f(x, y) =
√
1 + x+ y and set x0 = (1, 2). Then ∇f(x0) =

(
1
4 ,

1
4

)
and

the differential at x0 is the function

dfx0(Δx,Δy ) =
1

4
Δx+

1

4
Δy .

Choosing for instance (Δx,Δy ) =
(

1
100 ,

1
20

)
, we will have

Δf =

√
203

50
− 2 = 0.014944 . . . while dfx0

( 1

100
,
1

20

)
= 0.015 . �

Just like in dimension one, differentiability implies continuity also for several
variables.
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Proposition 5.7 A differentiable map f at x0 is continuous at x0.

Proof. From (5.4),

lim
x→x0

f(x) = lim
x→x0

(
f(x0) +∇f(x0) · (x− x0) + o(‖x− x0‖)

)
= f(x0) .

�

This property shows that the definition of a differentiable function of several
variables is the correct analogue of what we have in dimension one.

In order to check whether a map is differentiable at a point of its domain,
the following sufficient condition if usually employed. Its proof may be found in
Appendix A.1.1, p. 511.

Proposition 5.8 Assume f admits continuous partial derivatives on a
neighbourhood of x0. Then f is differentiable at x0.

Here is another feature of differentiable maps.

Proposition 5.9 If a function f is differentiable at x0, it admits at x0 dir-
ectional derivatives along any vector v �= 0, and moreover

∂f

∂v
(x0) = ∇f(x0) · v =

∂f

∂x1
(x0) v1 + · · ·+ ∂f

∂xn
(x0) vn . (5.8)

Proof. Using (5.4),

f(x0 + tv) = f(x0) + t∇f(x0) · v + o(‖tv‖) , ‖tv‖ → 0 .

Since ‖tv‖ = |t|‖v‖, we have o(‖tv‖) = o(t) , t→ 0, and hence

∂f

∂v
(x0) = lim

t→0

f(x0 + tv)− f(x0)

t

= lim
t→0

t∇f(x0) · v + o(t)

t
= ∇f(x0) · v . �

Note that (5.8) furnishes the expressions

∂f

∂xi
(x0) = ei · ∇f(x0), i = 1, . . . , n ,

which might turn out to be useful.
Formula (5.8) establishes a simple-yet-crucial result concerning the behaviour

of a map around x0 in case the gradient is non-zero at that point. How does
the directional derivative of f at x0 vary, when we change the direction along
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which we differentiate? To answer this we first of all establish bounds for
∂f

∂v
(x0)

when v is a unit vector (‖v‖ = 1) in Rn. By (5.8), recalling the Cauchy-Schwarz
inequality (4.3), we have ∣∣∣∣∂f∂v (x0)

∣∣∣∣ ≤ ‖∇f(x0)‖

i.e.,

−‖∇f(x0)‖ ≤ ∂f

∂v
(x0) ≤ ‖∇f(x0)‖ .

Now, equality is attained for v = ± ∇f(x0)

‖∇f(x0)‖ , and then
∂f

∂v
(x0) reaches its (posit-

ive) maximum or (negative) minimum according to whether v is plus or minus the
unit vector parallel to ∇f(x0). In summary we have proved the following result,
shown in Fig. 5.4 (see Sect. 7.2.1 for more details).

Proposition 5.10 At points x0 where the gradient of f does not vanish, f
has the greatest rate of increase, starting from x0, in the direction of the
gradient, and the greatest decrease in the opposite direction.

The next property will be useful in the sequel. The proof of Proposition 5.9
showed that the map ϕ(t) = f(x0 + tv) is differentiable at t = 0, and

ϕ′(0) = ∇f(x0) · v . (5.9)

+

−

∇f(x0)

−∇f(x0)

v

x0

Figure 5.4. Level curves and direction of steepest slope
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More generally,

Property 5.11 Let a, v ∈ Rn be given points and suppose f is differentiable
at a+ t0v, t0 ∈ R. Then the map ϕ(t) = f(a+ tv) is differentiable at t0, and

ϕ′(t0) = ∇f(a+ t0v) · v . (5.10)

Proof. Set Δt = t − t0, so that a + tv = (a + t0v) + Δtv and then ϕ(t) =
f(a+ t0v +Δtv) = ψ(Δt). Now apply (5.9) to the map ψ. �

Formula (5.10) is nothing else but a special case of the rule for differentiating
a composite map of several variables, for which see Sect. 6.4.

5.2.1 Mean Value Theorem and Lipschitz functions

Let a , b be distinct points in Rn and

S[a, b] = {x(t) = (1− t)a+ tb : 0 ≤ t ≤ 1}

be the segment between a and b, as in (4.19). The result below is the n-dimensional
version of the famous result for one-variable functions due to Lagrange.

Theorem 5.12 (Mean Value Theorem or Lagrange Theorem) Let f :
dom f ⊆ Rn → R be defined and continuous at any point of S[a, b], and
differentiable at any point of S[a, b] with the (possible) exception of the end-
points a and b. Then there exists an x ∈ S[a, b] different from a, b such
that

f(b)− f(a) = ∇f(x) · (b− a) . (5.11)

Proof. Consider the auxiliary map ϕ(t) = f
(
x(t)
)
, defined - and continuous - on

[0, 1] ⊂ R, as composite of the continuous maps t �→ x(t) and f , for any
x(t). Because x(t) = a+ t(b−a), and using Property 5.11 with v = b−a,
we obtain that ϕ is differentiable (at least) on (0, 1), plus

ϕ′(t) = ∇f
(
x(t)
) · (b− a) , 0 < t < 1 .

Then ϕ satisfies the one-dimensional Mean Value Theorem on [0, 1], and
there must be a t ∈ (0, 1) such that

ϕ(1)− ϕ(0) = ϕ′(t) .

Putting x = x(t) in the above gives precisely (5.11). �
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As an application, we will find a result known to the reader at least in dimension
one.

Proposition 5.13 Let R be a region in Rn and f : R ⊆ Rn → R a continu-

ous map on R, differentiable everywhere on A =
◦
R. Then

∇f = 0 on A ⇐⇒ f is constant on R .

Proof. We have seen that f constant on R, hence on A a fortiori, implies ∇f = 0
at each point of A (Example 5.2 iv)).
Conversely, let us fix an arbitrary a in A, and choose any b in R. There
is a polygonal path P [a0, . . . ,ar] with a0 = a, ar = b, going from one
to the other (directly from the definition of open connected set if b ∈ A,
while if b ∈ ∂A we can join it to a point of A through a segment). On
each segment S[aj−1,aj ], 1 ≤ j ≤ r forming the path, the hypotheses of
Theorem 5.12 hold, so from (5.11) and the fact that ∇f = 0 identically,
follows

f(aj)− f(aj−1) = 0 ,

whence f(b) = f(a) for any b ∈ R. That means f is constant. �

Consequently, if f is differentiable everywhere on an open set A and its gradient
is zero on A, then f is constant on each connected component of A.

The property we are about to introduce is relevant for the applications. For
this, let R be a region of dom f .

Definition 5.14 The map f is Lipschitz on R if there is a constant L ≥ 0
such that

|f(x1)− f(x2)| ≤ L‖x1 − x2‖ , ∀x1,x2 ∈ R . (5.12)

The smallest number L verifying the condition is said Lipschitz constant
of f on R.

By definition of least upper bound we easily see that the Lipschitz constant of
f on R is

sup
x1,x2∈R
x1 �=x2

|f(x1)− f(x2)|
‖x1 − x2‖ .

To say that f is Lipschitz on R tantamounts to the assertion that the supremum
is finite.

Examples 5.15

i) The affine map f(x) = a ·x+ b (a ∈ Rn, b ∈ R) is Lipschitz on Rn, as shown
by (4.21). It can be proved the Lipschitz constant equals ‖a‖.



5.2 Differentiability and differentials 167

ii) The function f(x) = ‖x‖, mapping x ∈ Rn to its Euclidean norm, is Lipschitz
on Rn with Lipschitz constant 1, as∣∣‖x1‖ − ‖x2‖

∣∣ ≤ ‖x1 − x2‖ , ∀x1,x2 ∈ Rn .

This is a consequence of x1 = x2 + (x1 − x2) and the triangle inequality (4.4)

‖x1‖ ≤ ‖x2‖+ ‖x1 − x2‖ ,
i.e.,

‖x1‖ − ‖x2‖ ≤ ‖x1 − x2‖ ;
swapping x1 and x2 yields the result.

iii) The map f(x) = ‖x‖2 is not Lipschitz on all Rn. In fact, choosing x2 = 0,
equation (5.12) becomes

‖x1‖2 ≤ L‖x1‖ ,
which is true if and only if ‖x1‖ ≤ L. It becomes Lipschitz on any bounded region
R, for ∣∣‖x1‖2 − ‖x2‖2

∣∣ = (‖x1‖+ ‖x2‖
) ∣∣‖x1‖ − ‖x2‖

∣∣
≤ 2M

∣∣‖x1‖ − ‖x2‖
∣∣ , ∀x1,x2 ∈ R ,

where M = sup{‖x‖ : x ∈ R} and using the previous example. �

Note if R is open, the property of being Lipschitz implies the (uniform) con-
tinuity on R.

There is a sufficient condition for being Lipschitz, namely:

Proposition 5.16 Let f be differentiable over a convex region R inside
dom f , with bounded (first) partial derivatives. Then f is Lipschitz on R.
Precisely, for any M ≥ 0 such that∣∣∣∣ ∂f∂xi

(x)

∣∣∣∣ ≤M , ∀x ∈ R, i = 1, . . . , n ,

one has (5.12) with L =
√
nM .

Proof. Pick x1, x2 ∈ R. By assumption the segment S[x1,x2] is contained in R
and f is differentiable (hence, continuous) at any point of S[x1,x2]. Thus
by the Mean Value Theorem 5.12 there is an x ∈ R with

f(x1)− f(x2) = ∇f(x) · (x1 − x2) .

The Cauchy-Schwarz inequality (4.3) tells us

|f(x1)− f(x2)| ≤ ‖∇f(x)‖ ‖x1 − x2‖ .
To conclude, observe

‖∇f(x)‖ =
(

n∑
i=1

∣∣∣∣ ∂f∂xi
(x)

∣∣∣∣2
)1/2

≤
(

n∑
i=1

M2

)1/2

=
√
nM .

�
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The assertion that the existence and boundedness of the partial derivatives
implies being Lipschitz is a fact that holds under more general assumptions: for
instance if R is compact, or if the boundary of R is sufficiently regular.

5.3 Second partial derivatives and Hessian matrix

Let f admit partial derivative in xi on a whole neighbourhood of x0. If
∂f

∂xi
admits

first derivative at x0 with respect to xj , we say f admits at x0 second partial
derivative with respect to xi and xj , and set

∂2f

∂xj∂xi
(x0) =

∂

∂xj

(
∂f

∂xi

)
(x0) .

If i �= j one speaks of mixed second partial derivatives, while for i = j second

partial derivatives are said of pure type and denoted by the symbol
∂2f

∂x2
i

. Other

ways to denote second partial derivatives are

D2
xjxi

f(x0) , D2
jif(x0) , fxjxi

(x0) , fji(x0) .

In case i is different from j, and assuming f admits at x0 mixed derivatives
∂2f

∂xj∂xi
(x0) and

∂2f

∂xi∂xj
(x0), these might differ. Take for example

f(x, y) =

⎧⎨⎩ xy
x2 − y2

x2 + y2
if (x, y) �= (0, 0),

0 if (x, y) = (0, 0),

a function such that
∂2f

∂y∂x
(0, 0) = −1 while ∂2f

∂x∂y
(0, 0) = 1.

We have arrived at an important sufficient condition, very often fulfilled, for
the mixed derivatives to coincide.

Theorem 5.17 (Schwarz) If the mixed partial derivatives
∂2f

∂xj∂xi
and

∂2f

∂xi∂xj
(j �= i) exist on a neighbourhood of x0 and are continuous at x0,

they coincide at x0.

Proof. See Appendix A.1.1, p. 512. �
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Definition 5.18 If f possesses all second partial derivatives at x0, the matrix

Hf(x0) = (hij)1≤i,j≤n where hij =
∂2f

∂xj∂xi
(x0) , (5.13)

or

Hf(x0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2f

∂x2
1

(x0)
∂2f

∂x2∂x1
(x0) . . .

∂2f

∂xn∂x1
(x0)

∂2f

∂x1∂x2
(x0)

∂2f

∂x2
2

(x0) . . .
∂2f

∂xn∂x2
(x0)

...
...

∂2f

∂x1∂xn
(x0) . . . . . .

∂2f

∂x2
n

(x0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

is called Hessian matrix of f at x0 (Hessian for short).

The Hessian matrix is also commonly denoted by Hessf (x0), or Hf (x0).
If the mixed derivatives are continuous at x0, the matrix Hf(x0) is symmet-

ric by Schwarz’s Theorem. Then the order of differentiation is irrelevant, and
fxixj

(x0), fij(x0) is the same as fxjxi
(x0), fji(x0).

The Hessian makes its appearance when studying the local behaviour of f at
x0, as explained in Sect. 5.6.

Examples 5.19

i) For the map f(x, y) = x sin(x+ 2y) we have

∂f

∂x
(x, y) = sin(x + 2y) + x cos(x+ 2y) ,

∂f

∂y
(x, y) = 2x cos(x+ 2y) ,

so that
∂2f

∂x2
(x) = 2 cos(x + 2y)− x sin(x+ 2y) ,

∂2f

∂x∂y
(x) =

∂2f

∂y∂x
(x) = 2 cos(x+ 2y)− 2x sin(x+ 2y) ,

∂2f

∂y2
(x) = −4x sin(x+ 2y) .

At the origin x0 = 0 the Hessian of f is

Hf(0) =

(
2 2
2 0

)
.

ii) Given the symmetric matrix A ∈ Rn×n, a vector b ∈ Rn and a constant
c ∈ R, we define the map f : Rn → R by

f(x) = x ·Ax+ b · x+ c =

n∑
p=1

xp

(
n∑

q=1

apqxq

)
+

n∑
p=1

bpxp + c .
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For the product Ax to make sense, we are forced to write x as a column vector,
as will happen for all vectors considered in the example. By the chain rule

∂f

∂xi
(x) =

n∑
p=1

∂xp

∂xi

(
n∑

q=1

apqxq

)
+

n∑
p=1

xp

(
n∑

q=1

apq
∂xq

∂xi

)
+

n∑
p=1

bp
∂xp

∂xi
.

For each pair of indices p, i between 1 and n,

∂xp

∂xi
= δpi =

{
1 if p = i ,
0 if p �= i ,

so

∂f

∂xi
(x) =

n∑
q=1

aiqxq +

n∑
p=1

xpapi + bi .

On the other hand A is symmetric and the summation is index arbitrary, so
n∑

p=1

xpapi =

n∑
p=1

aipxp =

n∑
q=1

aiqxq .

Then

∂f

∂xi
(x) = 2

n∑
q=1

aiqxq + bi ,

i.e.,

∇f(x) = 2Ax+ b .
Differentiating further,

hij =
∂2f

∂xj∂xi
(x) = 2aij , 1 ≤ i, j ≤ n ,

Hf(x) = 2A .

Note the Hessian of f is independent of x.

iii) The kinetic energy of a body with massm moving at velocity v is K = 1
2mv2.

Then

∇K(m, v) =
(1
2
v2,mv

)
and HK(m, v) =

(
0 v
v m

)
.

Note that
∂K

∂m

∂2K

∂v2
= K . �

5.4 Higher-order partial derivatives

The second partial derivatives
∂2f

∂xj∂xi
of f have been defined as first partial deriv-

atives of the functions
∂f

∂xi
; under Schwarz’s Theorem, the order of differentiation

is inessential. Similarly one defines the partial derivatives of order three as first de-

rivatives of the maps
∂2f

∂xj∂xi
(assuming this is possible, of course). In general, by
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successive differentiation one defines kth partial derivatives (or partial deriv-
atives of order k) of f , for any integer k ≥ 1. Supposing that the mixed partial
derivatives of all orders are continuous, and thus satisfy Schwarz’s Theorem, one
indicates by

∂kf

∂xα1
1 ∂xα2

2 . . . ∂ xαn
n

(x0)

the kth partial derivative of f at x0, obtained differentiating α1 times with respect
to x1, α2 times with respect to x2, . . . , αn times with respect to xn. The exponents
αi are integers between 0 and k such that α1+α2+ . . .+αn = k. Frequent symbols
include Dαf(x0), that involves the multi-index α = (α1, α2, . . . , αn) ∈ Nn, but
also, e.g., fxxy to denote differentiation in x twice, in y once.

One last piece of notation concerns functions f , called of class Ck (k ≥ 1)
over an open set Ω ⊆ dom f if the partial derivatives of any order ≤ k exist and
are continuous everywhere on Ω. The set of such maps is indicated by Ck(Ω).
By extension, C0(Ω) will be the set of continuous maps on Ω, and C∞(Ω) the
set of maps belonging to Ck(Ω) for any k, hence the functions admitting partial
derivatives of any order on Ω. Notice the inclusions

C∞(Ω) ⊂ . . . ⊂ Ck(Ω) ⊂ Ck−1(Ω) ⊂ . . . ⊂ C0(Ω) .

Thanks to Propostion 5.8, a function in C1(Ω) is differentiable everywhere on Ω.

Instead of the open set Ω, we may take the closure Ω, and assume Ω is con-

tained in dom f . If so, we write f ∈ C0(Ω) if f is continuous at any point of Ω;

for 1 ≤ k ≤ ∞, we write f ∈ Ck(Ω), or say f is Ck on Ω, if there is an open set

Ω′ with Ω ⊂ Ω′ ⊆ dom f and f ∈ Ck(Ω′).

5.5 Taylor expansions; convexity

Taylor expansions allow to approximate, locally, a function using a polynomial in
the independent variables by the knowledge of certain partial derivatives, just as in
dimension one. We already encountered examples; for a differentiable map formula
(5.5) holds, which is the Taylor expansion at first order with Peano’s remainder.
Note

Tf1,x0(x) = f(x0) +∇f(x0) · (x− x0)

is a polynomial of degree less or equal than 1 in the xi, called Taylor polynomial
of f at x0 of order 1. Besides, if f is C1 on a neighbourhood of x0, then (5.11)
holds with a = x0 and b = x arbitrarily chosen in the neighbourhood, so

f(x) = f(x0) +∇f(x) · (x− x0) , x ∈ S[x,x0] . (5.14)
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Viewing the constant f(x0) as a 0-degree polynomial, the formula gives the Taylor
expansion of f at x0 of order 0, with Lagrange’s remainder.

Increasing the map’s regularity we can find Taylor formulas that are more and
more precise. For C2 maps we have the following results, whose proofs are given
in Appendix A.1.2, p. 513 and p. 514.

Theorem 5.20 A function f of class C2 around x0 admits at x0 the Taylor
expansion of order one with Lagrange’s remainder:

f(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
(x− x0) ·Hf(x)(x− x0) , (5.15)

where x is interior to the segment S[x,x0].

Formulas (5.4) and (5.15) are two different ways of writing the remainder of f
in the degree-one Taylor polynomial Tf1,x0(x).

The expansion of order two is given by

Theorem 5.21 A function f of class C2 around x0 admits at x0 the follow-
ing Taylor expansion of order two with Peano’s remainder:

f(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
(x− x0) ·Hf(x0)(x− x0)

+o(‖x− x0‖2) , x→ x0 .

(5.16)

The expression

Tf2,x0(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
(x− x0) ·Hf(x0)(x− x0)

is a polynomial of degree ≤ 2 in the xi, called Taylor polynomial of f at
x0 of order 2. It gives the best quadratic approximation of the map on the
neighbourhood of x0 (see Fig. 5.5 for an example).

For clarity’s sake, let us render (5.16) explicit for an f(x, y) of two variables:

f(x, y) = f(x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0)

+
1

2
fxx(x0, y0)(x− x0)

2 + fxy(x0, y0)(x − x0)(y − y0) +
1

2
fyy(x0, y0)(y − y0)

2

+o
(
(x− x0)

2 + (y − y0)
2
)
, (x, y)→ (x0, y0) .

For the quadratic term we used the fact that the Hessian is symmetric by Schwarz’s
Theorem.

Taylor formulas of arbitrary order n can be written assuming f is Cn around
x0. These, though, go beyond the scope of the present text.
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P0 f

Tf2,x0

Figure 5.5. Graph of the order-two Taylor polynomial of f at x0 (osculating paraboloid
at P0)

5.5.1 Convexity

The idea of convexity, both global and local, for one-variable functions (Vol. I,
Sect. 6.9) can be generalised to several variables.

Global convexity goes through the convexity of the set of points above the
graph, and namely: take f : C ⊆ Rn → R with C a convex set, and define

Ef =
{
(x, y) ∈ Rn+1 : x ∈ C, y ≥ f(x)

}
.

Then f is convex on C if the set Ef is convex.

Local convexity depends upon the mutual position of f ’s graph and the tangent
plane. Precisely, f differentiable at x0 ∈ dom f is said convex at x0 if there is a
neighbourhood Br(x0) such that

f(x) ≥ f(x0) +∇f(x0) · (x− x0) , ∀x ∈ Br(x0) ;

f is strictly convex at x0 if the inequality is strict for any x �= x0.

It can be proved that the local convexity of a differentiable map f at any point
in a convex subset C ⊆ dom f is equivalent to the global convexity of f on C.

Take a C2 map f around a point x0 in dom f . Using Theorem 5.21 and the
properties of the symmetric matrix Hf(x0) (see Sect. 4.2), we can say that

Hf(x0) is positive semi-definite ⇐⇒ f is convex at x0

Hf(x0) is positive definite =⇒ f is strictly convex at x0 .
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5.6 Extremal points of a function; stationary points

Extremum values and extremum points (local or global) in several variables are
defined in analogy to dimension one.

Definition 5.22 A point x0 ∈ dom f is a relative (or local) maximum
point for f if, on a neighbourhood Br(x0) of x0,

∀x ∈ Br(x0) ∩ dom f, f(x) ≤ f(x0).

The value f(x0) is a relative maximum of f .
Moreover, x0 is said an absolute, or global, maximum point for f if

∀x ∈ dom f, f(x) ≤ f(x0),

and correspondingly f(x0) is the absolute maximum of f . Either way, the
maximum is strict if f(x) < f(x0) when x �= x0.

Inverting the inequalities defines relative and absolute minimum points.
Minimum and maximum points alike are called extrema, or extremum points,
for f .

Examples 5.23

i) The map f(x) = ‖x‖ has a strict global minimum at the origin, for f(0) = 0
and f(x) > 0 for any x �= 0. Clearly f has no maximum points (neither relative,
nor absolute) on Rn.

ii) The function f(x, y) = x2(e−y2 − 1) is always ≤ 0, since x2 ≥ 0 and e−y2 ≤ 1
for all (x, y) ∈ R2. Moreover, it vanishes if x = 0 or y = 0, i.e., f(0, y) = 0 for
any y ∈ R and f(x, 0) = 0 for all x ∈ R. Hence all points on the coordinate axes
are global maxima (not strict). �

Extremum points as of Definition 5.22 are commonly called unconstrained, be-
cause the independent variable is “free” to roam the whole domain of the function.
Later (Sect. 7.3) we will see the notion of “constrained” extremum points, for which
the independent variable is restricted to a subset of the domain, like a curve or a
surface.

A sufficient condition for having extrema in several variables is Weierstrass’s
Theorem (seen in Vol. I, Thm. 4.31); the proof is completely analogous.

Theorem 5.24 (Weierstrass) Let f be continuous on a compact set K ⊆
dom f . Its image f(K) is a closed and bounded subset of R, and in particular,
f(K) is a closed interval if K is connected.
Consequently, f has on K a maximum and a minimum value.
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For example, f(x) = ‖x‖ admits absolute maximum on every compact set
K ⊂ Rn.

There is also a notion of critical point for functions of several variables.

Definition 5.25 A point x0 at which f is differentiable is critical or sta-
tionary for f if ∇f(x0) = 0. If, instead, ∇f(x0) �= 0, x0 is said a regular
point for f .

By (5.8) a stationary point annihilates all directional derivatives of f .

In two variables stationary points have a neat geometric interpretation. Re-
calling (5.7), a point is stationary if the tangent plane to the graph is horizontal
(Fig. 5.6).

It is Fermat’s Theorem that justifies the interest in finding stationary points;
we state it below for the several-variable case.

Theorem 5.26 (Fermat) Let f be differentiable at the extremum point x0.
Then x0 is stationary for f .

Proof. By assumption the map of one variable

x �→ f(x01, . . . , x0,i−1, x, x0,i+1, . . . , x0n)

is, for any i, defined and differentiable on a neighbourhood of x0i; the latter
is an extremum point. Thus, Fermat’s Theorem for one-variable functions

gives
∂f

∂xi
(x0) = 0 . �
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Figure 5.6. Tangent planes at stationary points in two variables
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In the light of this result, we make a few observations on the relationship
between extrema and stationary points.

i) Having an extremum point for f does not mean f is differentiable at it, nor
that the point is stationary. This is exactly what happens to f(x) = ‖x‖ of Ex-
ample 5.23 i): the origin is an absolute minimum, but f does not admit partial
derivatives there. In fact f behaves, along each direction, as the absolute value,
for f(0, . . . , 0, x, 0, . . . , 0) = |x|.
ii) For maps that are differentiable on the whole domain, Fermat’s Theorem
provides a necessary condition for an extremum point; this means extremum points
are to be found among stationary points.

iii) That said, not all stationary points are extrema. Consider f(x, y) = x3y3: the
origin is stationary, yet neither a maximum nor a minimum point. This map is
zero along the axes in fact, positive in the first and third quadrants, negative in
the others.

Taking all this into consideration, it makes sense to search for sufficient con-
ditions ensuring a stationary point x0 is an extremum point. Apropos which, the
Hessian matrixHf(x0) is useful when the function f is at least C2 around x0. With
these assumptions and the fact that x0 is stationary, we have Taylor’s expansion
(5.16)

f(x)− f(x0) = Q(x− x0) + o(‖x− x0‖2) , x→ x0 , (5.17)

where Q(v) = 1
2v ·Hf(x0)v is the quadratic form associated to the symmetric

matrix Hf(x0) (see Sect. 4.2).
Now we do have a sufficient condition for a stationary point to be extremal.

Theorem 5.27 Let f be C2 on some neighbourhood of x0, a stationary point
for f . Then

i) if x0 is a minimum (respectively, maximum) point for f , Hf(x0) is pos-
itive (negative) semi-definite;

ii) if Hf(x0) is positive (negative) definite, the point x0 is a local strict min-
imum (maximum) for f .

Proof. i) To fix ideas let us suppose x0 is a local minimum for f , and Br(x0) is a
neighbourhood of x0 where f(x) ≥ f(x0). Choosing an arbitrary v ∈ Rn,
let x = x0+ εv with ε > 0 small enough so that x ∈ Br(x0). From (5.17),

Q(x− x0) + o(‖x− x0‖2) ≥ 0 , x→ x0 .

But Q(x−x0) = Q(εv) = ε2Q(v), and o(‖x−x0‖2) = o(ε2‖v‖2) = ε2o(1)
as ε→ 0+. Therefore

ε2Q(v) + ε2o(1) ≥ 0 , ε→ 0+ ,
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i.e.,
Q(v) + o(1) ≥ 0 , ε→ 0+ .

Taking the limit ε → 0+ and noting Q(v) does not depend on ε, we get
Q(v) ≥ 0. But as v is arbitrary, Hf(x0) is positive semi-definite.

ii) Let Hf(x0) be positive definite. Then Q(v) ≥ α‖v‖2 for any v ∈ Rn,
where α = λ∗/2 and λ∗ > 0 denotes the smallest eigenvalue of Hf(x0)
(see (4.18)). By (5.17),

f(x)− f(x0) ≥ α‖x− x0‖2 + ‖x− x0‖2o(1)
=
(
α+ o(1)

)‖x− x0‖2 , x→ x0 .

On a neighbourhood Br(x0) of sufficiently small radius, α+o(1) > 0 hence
f(x) ≥ f(x0). �

As corollary of the theorem, on a neighbourhood of a minimum point x0 for
f , where Hf(x0) is positive definite, the graph of f is well approximated by the
quadratic map g(x) = f(x0) + Q(x − x0), an elliptic paraboloid in dimension 2.
Furthermore, the level sets are approximated by the level sets of Q(x−x0); as we
recalled in Sect. 4.2, these are ellipses (in dimension 2) or ellipsoids (in dimension
3) centred at x0.

Remark 5.28 One could prove that if f is C2 on its domain and Hf(x) every-
where positive (or negative) definite, then f admits at most one stationary point
x0, which is also a global minimum (maximum) for f . �

Examples 5.29

i) Consider

f(x, y) = 2xe−(x2+y2)

on R2 and compute

∂f

∂x
(x, y) = 2(1− 2x2)e−(x2+y2) ,

∂f

∂y
(x, y) = −4xye−(x2+y2) .

The zeroes of these expressions are the stationary points x1 =
(√

2
2 , 0
)
and

x2 =
(− √

2
2 , 0
)
. Moreover,

∂2f

∂x2
(x, y) = 4x(2x2 − 3)e−(x2+y2) ,

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) = 4y(2x2 − 1)e−(x2+y2) ,

∂2f

∂y2
(x, y) = 4x(2y2 − 1)e−(x2+y2) ,

so

Hf
(√2
2

, 0
)
=

(−4√2e−1/2 0

0 −2√2e−1/2

)
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Figure 5.7. Graph and level curves of f(x, y) = 2xe−(x2+y2)

and

Hf
(− √

2

2
, 0
)
=

(
4
√
2e−1/2 0

0 2
√
2e−1/2

)
.

The Hessian matrices are diagonal, whence Hf(x1) is negative definite while
Hf(x2) positive definite. In summary, x1 and x2 are local extrema (a local
maximum and a local minimum, respectively). Fig. 5.7 shows the graph and the
level curves of f .

ii) The function

f(x, y, z) =
1

x
+ y2 +

1

z
+ xz

is defined on dom f = {(x, y, z) ∈ R3 : x �= 0 and z �= 0} . As
∇f(x, y, z) =

(
− 1

x2
+ z, 2y,− 1

z2
+ x

)
,

imposing ∇f(x, y, z) = 0 produces only one stationary point x0 = (1, 0, 1). Then

Hf(x, y, z) =

⎛⎜⎝
2/x3 0 1

0 2 0

1 0 2/z3

⎞⎟⎠ , whence Hf(1, 0, 1) =

⎛⎜⎜⎝
2 0 1

0 2 0

1 0 2

⎞⎟⎟⎠ .

The characteristic equation of A = Hf(1, 0, 1) reads

det(A− λI) = (2 − λ)
(
(2 − λ)2 − 1

)
= 0 ,

solved by λ1 = 1, λ2 = 2, λ3 = 3. Therefore the Hessian at x0 is positive definite,
making x0 a local minimum point. �

5.6.1 Saddle points

Recalling what an indefinite matrix is (see Sect. 4.2), statement i) of Theorem 5.27
may be formulated in the following equivalent way.
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Proposition 5.30 Let f be of class C2 around a stationary point x0. If
Hf(x0) is indefinite, x0 is not an extremum point.

A stationary point x0 for f such that Hf(x0) is indefinite is called a saddle
point. The name stems from the shape of the graph in the following example
around x0.

Example 5.31

Consider f(x, y) = x2−y2: as ∇f(x, y) = (2x,−2y), there is only one stationary
point, the origin. The Hessian matrix

Hf(x, y) =

(
2 0

0 −2
)

is independent of the point, hence indefinite. Therefore the origin is a saddle
point.
It is convenient to consider in more detail the behaviour of f around such a
point. Moving along the x-axis, the map f(x, 0) = x2 has a minimum at the
origin. Along the y-axis, by contrast, the function f(0, y) = −y2 has a maximum
at the origin:

f(0, 0) = min
x∈R

f(x, 0) = max
x∈R

f(0, y) .

Level curves and the graph (from two viewpoints) of the function f are shown
in Fig. 5.8 and 5.9. �

The kind of behaviour just described is typical of stationary points at which
the Hessian matrix is indefinite and non-singular (the eigenvalues are non-zero and
have different signs). Let us see more examples.

x

y

Figure 5.8. Level curves of f(x, y) = x2 − y2
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Figure 5.9. Graphical view of the function f(x, y) = x2 − y2 from different angles

Examples 5.32

i) For the map f(x, y) = xy we have

∇f(x, y) = (y, x) and Hf(x, y) =

(
0 1

1 0

)
.

As before, x0 = (0, 0) is a saddle point, because the eigenvalues of the Hessian are
λ1 = 1 and λ2 = −1. Moving along the bisectrix of the first and third quadrant,
f has a minimum at x0, while along the orthogonal bisectrix f has a maximum
at x0:

f(0, 0) = min
x∈R

f(x, x) = max
x∈R

f(x,−x) .
The directions of these lines are those of the eigenvectors w1 = (1, 1), w2 =
(−1, 1) associated to the eigenvalues λ1, λ2.

Changing variables x = u− v, y = u + v (corresponding to a rotation of π/4 in
the plane, see Sect. 6.6 and Example 6.31 in particular), f becomes

f(x, y) = (u− v)(u + v) = u2 − v2 = f̃(u, v) ,

the same as in the previous example in the new variables u, v.

ii) The function f(x, y, z) = x2+y2−z2 has gradient∇f(x, y, z) = (2x, 2y,−2z),
with unique stationary point the origin. The matrix

Hf(x, y, z) =

⎛⎜⎝
2 0 0

0 2 0

0 0 −2

⎞⎟⎠
is indefinite, and the origin is a saddle point.
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A closer look uncovers the hidden structure of the saddle point. Moving on the
xy-plane, we see that the origin is a minimum point for f(x, y, 0) = x2 + y2. At
the same time, along the z-axis the origin is a maximum for f(0, 0, z) = −z2.
Thus

f(0, 0, 0) = min
(x,y)∈R2

f(x, y, 0) = max
z∈R

f(0, 0, z) .

iii) A slightly more elaborate situation is provided by the function f(x, y, z) =
x2 + y3 − z2. Since ∇f(x, y, z) = (2x, 3y2,−2z) the origin is again stationary.
The Hessian

Hf(0, 0, 0) =

⎛⎜⎝
2 0 0

0 0 0

0 0 −2

⎞⎟⎠
is indefinite, making the origin a saddle point. More precisely, (0, 0, 0) is a min-
imum if we move along the x-axis, a maximum along the z-axis, but on the y-axis
we have an inflection point. �

The notion of saddle points can be generalised to subsume stationary points
where the Hessian matrix is (positive or negative) semi-definite. In such a case, the
mere knowledge of Hf(x0) is not sufficient to determine the nature of the point.
In order to have a genuine saddle point x0 one must additionally require that there
exist a direction along which f has a maximum point at x0 and a direction along
which f has a minimum at x0. Precisely, there should be vectors v1, v2 such that
the maps t �→ f(x0 + tvi), i = 1, 2, have a strict minimum and a strict maximum
point respectively, for t = 0.

As an example take f(x, y) = x2−y4. The origin is stationary, and the Hessian

at that point is Hf(0, 0) =

(
2 0

0 0

)
, hence positive semi-definite. Since f(x, 0) =

x2 has a minimum at x = 0 and f(0, y) = −y4 has a maximum at y = 0, the above
requirement holds by taking v1 = i = (1, 0), v2 = j = (0, 1). We still call x0 a
saddle point.

Consider now f(x, y) = x2−y3, for which the origin is stationary the Hessian is
the same as in the previous case. Despite this, for any m ∈ R the map f(x,mx) =
x2 −m3x3 has a minimum at x = 0, and f(0, y) = −y3 has an inflection point at
y = 0. Therefore no vector v2 exists that maximises t �→ f(tv2) at t = 0. For this
reason x0 = 0 will not be called a saddle point.

We note that if x0 is stationary andHf(x0) is positive semi-definite, then every
eigenvector w associated to an eigenvalue λ > 0 ensures that t �→ f(x0 + tw) has
a strict minimum point at t = 0 (whence w can be chosen as vector v1); in fact,
(5.17) gives

f(x0 + tw) = f(x0) +
1

2
λ‖w‖2t2 + o(t2) , t→ 0 .
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Then x0 is a saddle point if and only if we can find a vector v2 in the kernel of
the matrix Hf(x0) such that t �→ f(x0 + tv2) has a strict maximum at t = 0.
Similarly when Hf(x0) is negative semi-definite.

To conclude the chapter, we wish to provide the reader with a simple procedure
for classifying stationary points in two variables. The whole point is to determine
the eigenvalues’ sign in the Hessian matrix, which can be done without effort for
2 × 2 matrices. If A is a symmetric matrix of order 2, the determinant is the
product of the two eigenvalues. Therefore if detA > 0 the eigenvalues have the
same sign and A is definite, positive or negative according to the sign of either
diagonal term a11 or a22. If detA < 0, the eigenvalues have different sign, making
A indefinite. If detA = 0, the matrix is semi-definite, not definite.

Recycling this discussion with the Hessian Hf(x0) of a stationary point, and
bearing in mind Theorem 5.27, gives

detHf(x0) > 0 ⇒
{
x0 strict local minimum point, if fxx(x0) > 0

x0 strict local maximum point, if fxx(x0) < 0

detHf(x0) < 0 ⇒ x0 saddle point

detHf(x0) = 0 ⇒ the nature of x0 cannot be determined by Hf(x0) only .

In the first case detHf(x0) > 0, the dichotomy maximum vs. minimum may be
sorted out by the sign of fyy(x0), which is also the sign of fxx(x0).

Example 5.33

The first derivatives of f(x, y) = 2xy + e−(x+y)2 are

fx(x, y) = 2
(
y − (x+ y) e−(x+y)2

)
, fy(x, y) = 2

(
x− (x+ y) e−(x+y)2

)
,

and the second derivatives read

fxx(x, y) = fyy(x, y) = −2e−(x+y)2
(
1− 2(x+ y)2

)
,

fxy(x, y) = fxy(x, y) = 2− 2e−(x+y)2
(
1− 2(x+ y)2

)
.

There are three stationary points

x0 = (0, 0) , x1 =
(1
2

√
log 2,

1

2

√
log 2
)
, x2 = −x1 ,

and correspondingly,

Hf(x0) =

(−2 0
0 −2

)
, Hf(x1) = Hf(x2) =

(
1− 2 log 2 1 + 2 log 2
1 + 2 log 2 1− 2 log 2

)
.

Therefore x0 is a maximum point, for Hf(x0) is negative definite, while x1 and
x2 are saddle points since detHf(x1) = detHf(x2) = −8 log 2 < 0. �
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5.7 Exercises

1. Compute the first partial derivatives at the points indicated:

a) f(x, y) =
√
3x+ y2 at (x0, y0) = (1, 2)

b) f(x, y, z) = yex+yz at (x0, y0, z0) = (0, 1,−1)

c) f(x, y) = 8x2 +

∫ y

1

e−t2 dt at (x0, y0) = (3, 1)

2. Compute the first partial derivatives of:

a) f(x, y) = log(x+
√
x2 + y2)

b) f(x, y) =

∫ y

x

cos t2 dt

c) f(x, y, z, t) =
x− y

z − t

d) f(x1, . . . , xn) = sin(x1 + 2x2 + . . .+ nxn)

3. Compute the partial derivative indicated:

a) f(x, y) = x3y2 − 3xy4 , fyyy

b) f(x, y) = x sin y ,
∂3f

∂x∂y2

c) f(x, y, z) = exyz , fxyx

d) f(x, y, z) = xaybzc ,
∂6f

∂x∂y2∂z3

4. Determine which maps f satisfy fxx + fyy = 0, known as Laplace equation:

a) f(x, y) = x2 + y2 b) f(x, y) = x3 + 3xy2

c) f(x, y) = log
√

x2 + y2 d) f(x, y) = e−x cos y − e−y cosx

5. Check that f(x, t) = e−t sin kx satisfies the so-called heat equation ft =
1

k2
fxx.

6. Check that the following maps solve ftt = fxx, known as wave equation:

a) f(x, t) = sinx sin t b) f(x, t) = sin(x− t) + log(x+ t)
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7. Given

f(x, y) =

⎧⎨⎩
x3y − xy3

x2 + y2
if (x, y) �= (0, 0) ,

0 if (x, y) = (0, 0) ,

a) compute fx(x, y) and fy(x, y) for any (x, y) �= (0, 0);
b) calculate fx(0, 0), fy(0, 0) using the definition of second partial derivative;
c) discuss the results obtained in the light of Schwarz’s Theorem 5.17.

8. Determine the gradient map of:

a) f(x, y) = arctan
x+ y

x− y
b) f(x, y) = (x+ y) log(2x− y)

c) f(x, y, z) = sin(x+ y) cos(y − z) d) f(x, y, z) = (x+ y)z

9. Compute the directional derivatives along v, at the indicated points:

a) f(x, y) = x
√
y − 3 v = (−1, 6) x0 = (2, 12)

b) f(x, y, z) =
1

x+ 2y − 3z
v = (12,−9,−4) x0 = (1, 1,−1)

10. Determine the tangent plane to the graph of f(x, y) at the point P0 =(
x0, y0, f(x0, y0)

)
:

a) f(x, y) = 3x2 − y2 + 3y at P0 = (−1, 2, f(−1, 2))
b) f(x, y) = ey

2−x2

at P0 = (−1, 1, f(−1, 1))
c) f(x, y) = x log y at P0 = (4, 1, f(4, 1))

11. Relying on the definition, check the maps below are differentiable at the given
point:

a) f(x, y) = y
√
x at (x0, y0) = (4, 1)

b) f(x, y) = |y| log(1 + x) at (x0, y0) = (0, 0)

c) f(x, y) = xy − 3x2 at (x0, y0) = (1, 2)

12. Given

f(x, y) =

⎧⎨⎩
xy

x2 + y2
if (x, y) �= (0, 0) ,

0 if (x, y) = (0, 0) ,

compute fx(0, 0) and fy(0, 0). Is f differentiable at the origin?
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13. Study the differentiability at (0, 0) of

f(x, y) =

⎧⎨⎩
x2y3

x4 + y4
if (x, y) �= (0, 0) ,

0 if (x, y) = (0, 0) .

14. Discuss the differentiability of

f(x, y) = |x| sin(x2 + y2)

at any point of the plane.

15. Study continuity and differentiability at the origin of

f(x, y) =

{ |y|α sinx if y �= 0 ,

0 if y = 0

as α varies in the reals.

16. Study the differentiability at (0, 0, 0) of

f(x, y, z) =

⎧⎨⎩ (x2 + y2 + z2) sin
1√

x2 + y2 + z2
if (x, y, z) �= (0, 0, 0) ,

0 if (x, y, z) = (0, 0, 0) .

17. Given f(x, y) = x2 + 3xy − y2, find its differential at (x0, y0) = (2, 3). If x
varies between 2 and 2.05, and y between 3 and 2.96, compare the increment
Δf with the corresponding differential df(x0,y0).

18. Determine the differential at a generic point (x0, y0) of the functions:

a) f(x, y) = ex cos y b) f(x, y) = x sinxy

c) f(x, y, z) = log(x2 + y2 + z2) d) f(x, y, z) =
x

y + 2z

19. Find the differential of f(x, y, z) = x3
√
y2 + z2 at (2, 3, 4) and then use it to

approximate the number 1.983
√
3.012 + 3.972.

20. Tell whether

f(x, y) =
1

x+ y + 1

is Lipschitz over the rectangle R = [0, 2]× [0, 1]; if yes compute the Lipschitz
constant.
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21. Determine if, how and where in R3 is

f(x, y, z) = e−(3x2+2y4+z6)

a Lipschitz map.

22. Write the Taylor polynomial of order two for the following functions at the
point given:

a) f(x, y) = cosx cos y at (x0, y0) = (0, 0)

b) f(x, y, z) = ex+y+z at (x0, y0, z0) = (1, 1, 1)

c) f(x, y, z) = cos(x+ 2y − 3z) at (x0, y0, z0) = (0, 0, 1)

23. Determine the stationary points (if existent), specifying their nature:

a) f(x, y) = x2y + x2 − 2y b) f(x, y) = y log(x+ y)

c) f(x, y) = x+
1

6
x6 + y2(y2 − 1) d) f(x, y) = xye−

x
5 − y

6

e) f(x, y) =
x

y
+
8

x
− y f) f(x, y) = 2y log(2− x2) + y2

g) f(x, y) = e3x
2−6xy+2y3

h) f(x, y) = y log x

i) f(x, y) = log(x2 + y2 − 1) �) f(x, y, z) = xyz +
1

x
+
1

y

1

z

24. Determine and draw the domain of

f(x, y) =
√

y2 − x2 .

Find stationary points and extrema.

25. Determine domain and stationary points of

f(x, y) = x2 log(1 + y) + x2y2 .

What is their nature?

5.7.1 Solutions

1. Partial derivatives of maps:

a)
∂f

∂x
(1, 2) =

3

2
√
7
,

∂f

∂y
(1, 2) =

2√
7
.



5.7 Exercises 187

b)
∂f

∂x
(0, 1,−1) = e−1 ,

∂f

∂y
(0, 1,−1) = 0 ,

∂f

∂z
(0, 1,−1) = e−1 .

c) We have
∂f

∂x
(x, y) = 16x and

∂f

∂y
(x, y) = e−y2

,

the latter computed by means of the Fundamental Theorem of Integral Cal-
culus. Thus

∂f

∂x
(3, 1) = 48 and

∂f

∂y
(3, 1) = e−1 .

2. Partial derivatives:

a) We have

fx(x, y) =
1√

x2 + y2
, fx(x, y) =

1

x+
√
x2 + y2

· y√
x2 + y2

.

b) Using the Fundamental Theorem of Integral Calculus we have

fx(x, y) = − ∂

∂x

∫ x

y

cos t2 dt = − cosx2 ,

fy(x, y) =
∂

∂y

∫ y

x

cos t2 dt = cos y2 .

c) We have

fx(x, y, z, t) =
1

z − t
, fy(x, y, z, t) =

1

t− z
,

fz(x, y, z, t) =
y − x

(z − t)2
, ft(x, y, z, t) =

x− y

(z − t)2
.

d) We have

∂f

∂x1
(x1, . . . , xn) = cos(x1 + 2x2 + . . .+ nxn) ,

∂f

∂x2
(x1, . . . , xn) = 2 cos(x1 + 2x2 + . . .+ nxn) ,

...

∂f

∂xn
(x1, . . . , xn) = n cos(x1 + 2x2 + . . .+ nxn) , .

3. Partial derivatives:

a) fyyy = −72xy . b) fyyx = − sin y . c) fxyx = yz2exyz(2 + xyz) .

d) fzzzyyx = abc(b− 1)(c− 1)(c− 2)xa−1yb−2zc−3 .
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4. Solutions of the Laplace equation:

a) No. b) No.

c) Since f(x, y) = 1
2 log(x

2 + y2),

fx =
x

x2 + y2
, fxx =

y2 − x2

(x2 + y2)2
,

fy =
y

x2 + y2
, fyy =

x2 − y2

(x2 + y2)2
,

hence fxx + fyy = 0 , ∀x, y �= 0. Therefore the function is a solution of the
Laplace equation on R2 \ {0}.

d) Since

fx = −e−x cos y + e−y sinx , fxx = e−x cos y + e−y cosx ,

fy = −e−x sin y + e−y cosx , fyy = −e−x cos y − e−y cosx ,

we have fxx + fyy = 0 , ∀(x, y) ∈ R2, and the function satisfies Laplace’s
equation on R2.

5. The assertion follows from

ft = −e−t sin kx , fx = ke−t cos kx , fxx = −k2e−t sin kx .

6. Solutions of the wave equation:

a) From

fx = cosx sin t , fxx = − sinx sin t ,

ft = sinx cos t , ftt = − sinx sin t

follows fxx = ftt , ∀(x, t) ∈ R2.

b) As

fx = cos(x− t) +
1

x+ t
, fxx = − sin(x− t)− 1

(x+ t)2
,

ft = − cos(x − t) +
1

x+ t
, ftt = − sin(x− t)− 1

(x+ t)2
,

we have fxx = ftt , ∀(x, t) ∈ R2 such that x+ t > 0.

7. a) Using the usual rules, for (x, y) �= (0, 0) we have

fx(x, y) =
(3x2y − y3)(x2 + y2)− 2x(x3y − xy3)

(x2 + y2)2
=

y(x4 + 4x2y2 − y4)

(x2 + y2)2
,

fy(x, y) =
(x3 − 3xy2)(x2 + y2)− 2y(x3y − xy3)

(x2 + y2)2
=

x(x4 − 4x2y2 − y4)

(x2 + y2)2
.
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b) To compute fx(0, 0) and fy(0, 0) let us resort to the definition:

fx(0, 0) = lim
x→0

f(x, 0)− f(0, 0)

x
= lim

x→0
0 = 0 ,

fy(0, 0) = lim
y→0

f(0, y)− f(0, 0)

y
= lim

y→0
0 = 0 .

Moreover,

fxy(0, 0) =
∂2f

∂y∂x
(0, 0) = lim

y→0

fx(0, y)− fx(0, 0)

y
= lim

y→0
−y5

y5
= −1 ,

fyx(0, 0) =
∂2f

∂x∂y
(0, 0) = lim

x→0

fy(x, 0)− fy(0, 0)

x
= lim

x→0

x5

x5
= 1 .

c) Schwarz’s Theorem 5.17 does not apply, as the partial derivatives fxy, fyx are
not continuous at (0, 0) (polar coordinates show that the limits lim

(x,y)→(0,0)
fxy(x, y)

and lim
(x,y)→(0,0)

fyx(x, y) do not exist).

8. Gradients:

a) ∇f(x, y) =

(
− y

x2 + y2
,

x

x2 + y2

)
.

b) ∇f(x, y) =

(
log(2x− y) +

2(x+ y)

2x− y
, log(2x− y)− x+ y

2x− y

)
.

c) ∇f(x, y, z) =
(
cos(x+ y) cos(y − z) , cos(x+ 2y − z) , sin(x+ y) sin(y − z)

)
.

d) ∇f(x, y, z) =
(
z(x+ y)z−1 , z(x+ y)z−1 , (x+ y)z log(x+ y)

)
.

9. Directional derivatives:

a)
∂f

∂v
(x0) = −1 . b)

∂f

∂v
(x0) = −1

6
.

10. Tangent planes:

a) z = −6x− y + 1 .

b) By (5.7), we compute

fx(x, y) = −2xey2−x2

, fy(x, y) = 2yey
2−x2

,

f(−1, 1) = 1 , fx(−1, 1) = 2 , fy(−1, 1) = 2 .

The equation is thus

z = f(−1, 1) + fx(−1, 1)(x+ 1) + fy(−1, 1)(y − 1) = 2x+ 2y + 1 .

c) z = 4y − 4 .
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11. Checking differentiability:

a) From fx(x, y) =
y

2
√
x
and fy(x, y) =

√
x follows

f(4, 1) = 2 , fx(4, 1) =
1

4
, fy(4, 1) = 2 .

Then f is differentiable at (4, 1) if and only if

lim
(x,y)→(4,1)

f(x, y)− f(4, 1)− fx(4, 1)(x− 4)− fy(4, 1)(y − 1)√
(x− 4)2 + (y − 1)2

= 0

i.e.,

L = lim
(x,y)→(4,1)

y
√
x− 2− 1

4 (x− 4)− 2(y − 1)√
(x− 4)2 + (y − 1)2

= 0 .

Put x = 4 + r cos θ e y = 1 + r sin θ and observe that for r → 0,

√
4 + r cos θ = 2

√
1 +

r

4
cos θ = 2

(
1 +

r

8
cos θ + o(r)

)
,

so that

y
√
x− 2− 1

4
(x− 4)− 2(y − 1) = 2(1 + r sin θ)

(
1 +

r

8
cos θ + o(r)

)
+

−2− 1

4
r cos θ − 2r sin θ = o(r) , r → 0 .

Hence

L = lim
r→0

o(r)

r
= lim

r→0
o(1) = 0 .

b) Note f(x, 0) = f(0, y) = 0, so fx(0, 0) = fy(0, 0) = 0. Differentiability at the
origin is the same as proving

lim
(x,y)→(0,0)

f(x, y)− f(0, 0)−∇f(0, 0) · (x, y)√
x2 + y2

= 0 ,

i.e., given that f(0, 0) = 0,

lim
(x,y)→(0,0)

|y| log(1 + x)√
x2 + y2

= 0 .

Polar coordinates come to the rescue:∣∣∣∣∣y log(1 + x)√
x2 + y2

∣∣∣∣∣ = r| sin θ log(1 + r cos θ)|
r

≤ 2r| sin θ cos θ| ≤ 2r ;

Proposition 4.28 with g(r) = 2r allows to conclude.
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c) We have f(1, 2) = −1, fx(1, 2) = −4 and fy(1, 2) = 1; f is differentiable at
(1, 2) precisely when

L = lim
(x,y)→(1,2)

xy − 3x2 + 1 + 4(x− 1)− (y − 2)√
(x− 1)2 + (y − 2)2

= 0 .

Setting x = 1 + r cos θ , y = 2 + r sin θ and computing,

L = lim
r→0

r cos θ(sin θ − 3 cos θ).

The limit is zero by Proposition 4.28 with g(r) = 4r.

12. Observe f(x, 0) = f(0, y) = 0, so

fx(0, 0) = lim
x→0

f(x, 0)− f(0, 0)

x
= lim

x→0
0 = 0 ,

fy(0, 0) = lim
y→0

f(0, y)− f(0, 0)

y
= lim

y→0
0 = 0 .

The map is certainly not differentiable at the origin because it is not even con-
tinuous; in fact lim

(x,y)→(0,0)
f(x, y) does not exist, as one sees taking the limit along

the coordinate axes,
lim
x→0

f(x, 0) = lim
y→0

f(0, y) = 0 ,

and then along the line y = x,

lim
x→0

f(x, x) =
1

2
.

13. The function is not differentiable.

14. The map is certainly differentiable at all points (x, y) ∈ R2 with x �= 0, by
Proposition 5.8. To study the points on the axis, let us fix (0, y0) and compute the
derivatives. No problems arise with fy since

fy(x, y) = 2|x|y sin(x2 + y2) , ∀(x, y) ∈ R2 ,

and fy(0, y0) = 0. As far as fx is concerned,

lim
x→0

f(x, y0)− f(0, y0)

x
= lim

x→0

|x| sin(x2 + y20)

x
.

If y0 = ±√nπ, with n ∈ N, we have

fx(0,±
√
nπ) = lim

x→0

|x|
x
(−1)n sinx2 = 0 ,
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otherwise

lim
x→0+

|x|
x
sin(x2 + y20) = sin y20 ,

while

lim
x→0−

|x|
x
sin(x2 + y20) = − sin y20 .

Thus fx(0, y0) exists only for y0 = ±√nπ, where f is continuous and therefore
differentiable.

15. The map is continuous if α ≥ 0; it is differentiable if α > 0.

16. Observe f(x, 0, 0) = x2 sin 1
|x| , hence fx(0, 0, 0) = 0, since

fx(0, 0, 0) = lim
x→0

f(x, 0, 0)− f(0, 0, 0)

x
= lim

x→0
x sin

1

|x| = 0 .

Similarly, fy(0, 0, 0) = fz(0, 0, 0) = 0. For differentiability at the origin we consider

lim
(x,y,z)→(0,0,0)

f(x, y, z)√
x2 + y2 + z2

= lim
(x,y,z)→(0,0,0)

√
x2 + y2 + z2 sin

1√
x2 + y2 + z2

.

The limit is zero by the Squeeze rule:

0 ≤
∣∣∣∣∣√x2 + y2 + z2 sin

1√
x2 + y2 + z2

∣∣∣∣∣ ≤√x2 + y2 + z2 ,

for all (x, y, z) �= (0, 0, 0).

17. Since fx(x, y) = 2x+ 3y , fy(x, y) = 3x− 2y we have

df(2,3)(Δx,Δy ) = ∇f(2, 3) · (x− 2, y − 3) = 13(x− 2) .

Let now Δx = (2.05− x0, 2.96− y0) =
(

5
100 ,− 4

100

)
, so

Δf = f(2.05, 2.96)− f(2, 3) = 0.6449

and

df(2,3)
( 5

100
,− 4

100

)
= 0.65 .

18. Differentials:

a) As fx(x, y) = ex cos y and fy(x, y) = −ex sin y, the differential is

df(x0,y0)(Δx,Δy ) = ∇f(x0, y0) · (Δx,Δy ) = ex0 cos y0 Δx− ex0 sin y0 Δy .

b) df(x0,y0)(Δx,Δy ) = (sin x0y0 + x0y0 cosx0y0)Δx+ x2
0 cosx0y0 Δy .



5.7 Exercises 193

c) df(x0,y0,z0)(Δx,Δy,Δz ) =
2x0

x2
0 + y20 + z20

Δx+
2y0

x2
0 + y20 + z20

Δy+

+
2z0

x2
0 + y20 + z20

Δz .

d) df(x0,y0,z0)(Δx,Δy,Δz ) =
1

y0 + 2z0
Δx− x0

(y0 + 2z0)2
Δy − 2x0

(y0 + 2z0)2
Δz .

19. From

fx(x, y, z) = 3x2
√
y2 + z2 , fy(x, y, z) =

x3y√
y2 + z2

, fz(x, y, z) =
x3z√
y2 + z2

follows

df(2,3,4)(Δx,Δy,Δz ) = 60Δx+
24

5
Δy +

32

5
Δz .

Set Δx =
(− 2

100 ,
1

100 ,− 3
100

)
, so that

df(2,3,4)
(− 2

100
,
1

100
,− 3

100

)
= −1.344 .

By linearising, we may approximate 1.983
√
3.012 + 3.972 by

f(2, 3, 4) + df(2,3,4)
(− 2

100
,
1

100
,− 3

100

)
= 40− 1.344 = 38.656 .

20. First of all
∂f

∂x
(x, y) =

∂f

∂y
(x, y) = − 1

(x+ y + 1)2
,

and secondly

sup
(x,y)∈R

∣∣∣∂f
∂x

(x, y)
∣∣∣ = sup

(x,y)∈R

∣∣∣∂f
∂x

(x, y)
∣∣∣ = 1 ;

Proposition 5.16 then tells us f is Lipschitz on R, with L =
√
2.

21. The map is Lipschitz on the entire R3.

22. Taylor polynomials:

a) We have to find the Taylor polynomial for f at x0 of order 2

Tf2,x0(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
(x− x0) ·Hf(x0)(x− x0) .

Let us begin by computing the partial derivatives involved:

fx(x, y) = − sinx cos y so fx(0, 0) = 0

fy(x, y) = − cosx sin y so fy(0, 0) = 0

fxx(x, y) = − cosx cos y so fxx(0, 0) = −1
fyy(x, y) = − cosx cos y so fyy(0, 0) = −1
fxy(x, y) = fyx(x, y) = sinx sin y so fxy(0, 0) = fyx(0, 0) = 0
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As f(0, 0) = 1,

Tf2,(0,0)(x, y) = 1 +
1

2
(x, y) ·

(−1 0

0 −1

)
·
(
x

y

)

= 1 +
1

2
(x, y) · (−x,−y) = 1− 1

2
x2 − 1

2
y2 .

Alternatively, we might want to recall that, for x→ 0 and y → 0,

cosx = 1− 1

2
x2 + o(x2) , cos y = 1− 1

2
y2 + o(y2) ;

which we have to multiply. As the Taylor polynomial is unique, we find imme-
diately Tf2,(0,0)(x, y) = 1− 1

2x
2 − 1

2y
2.

b) Computing directly,

Tf2,(1,1,1)(x, y, z) = e3
(
1 + (x− 1) + (y − 1) + (z − 1) +

+
1

2

(
(x− 1)2 + (y − 1)2 + (z − 1)2

)
+

+(x− 1)(y − 1) + (x − 1)(z − 1) + (y − 1)(z − 1)
)
.

c) We have

Tf2,(0,0,1)(x, y, z) = cos 3 + sin 3
(
x+ 2y − 3(z − 1)

)
+

+
1

2
cos 3

(− x2 − 4y2 − 9(z − 1)2
)
+

+cos 3
(− 2xy + 6x(z − 1) + 6y(z − 1)

)
.

23. Stationary points and type:

a) From
∂f

∂x
(x, y) = 2x(y + 1) ,

∂f

∂y
(x, y) = x2 − 2

and the condition∇f(x, y) = 0 we obtain the stationary points P1 = (
√
2,−1),

P2 = (−√2,−1). Since
∂2f

∂x2
(x, y) = 2(y + 1) ,

∂2f

∂y2
(x, y) = 0 ,

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) = 2x ,

the Hessians at those points read

Hf(P1) =

(
0 2

√
2

2
√
2 0

)
, Hf(P2) =

(
0 −2√2

−2√2 0

)
.

In either case the determinant is negative, so P1, P2 are saddle points.
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b) The function is defined for x+ y > 0, i.e., on the half-plane dom f = {(x, y) ∈
R2 : y > −x}. As

∂f

∂x
(x, y) =

y

x+ y
,

∂f

∂y
(x, y) = log(x+ y) +

y

x+ y
,

imposing ∇f(x, y) = 0 yields the system⎧⎪⎨⎪⎩
y

x+ y
= 0

log(x+ y) +
y

x+ y
= 0

whose unique solution is the stationary point P = (1, 0) ∈ dom f . We have
then

∂2f

∂x2
(x, y) = − y

(x+ y)2
,

∂2f

∂y2
(x, y) =

1

x+ y
+

x

(x+ y)2
,

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) =

x

(x+ y)2
,

so

Hf(P ) =

(
0 1

1 2

)
.

The Hessian determinant is −1 < 0, making P a saddle point.

c) From
∂f

∂x
(x, y) = 1 + x5 ,

∂f

∂y
(x, y) = 4y3 − 2y

and ∇f(x, y) = 0 we find three stationary points

P1 = (−1, 0) , P2 =
(− 1,

√
2

2

)
, P3 =

(− 1,−
√
2

2

)
.

Then

∂2f

∂x2
(x, y) = 5x4 ,

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) = 0 ,

∂2f

∂y2
(x, y) = 12y2 − 2 .

Consequently,

Hf(−1, 0) =
(
5 0

0 −2
)

, Hf
(− 1,

√
2

2

)
= Hf

(− 1,−
√
2

2

)
=

(
5 0

0 4

)
.

The Hessians are diagonal; the one of P1 is indefinite, so P1 is a saddle point;
the other two are positive definite, and P2, P3 are local minimum points.
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d) The partial derivatives read

∂f

∂x
(x, y) = y

(
1− x

5

)
e−

x
5− y

6 ,
∂f

∂y
(x, y) = x

(
1− y

6

)
e−

x
5 − y

6 .

The equation ∇f(x, y) = 0 implies⎧⎪⎨⎪⎩
y
(
1− x

5

)
= 0

x
(
1− y

6

)
= 0 ,

hence P1 = (0, 0) and P2 = (5, 6) are the stationary points. Now,

∂2f

∂x2
(x, y) =

1

5
y
(x
5
− 2
)
e−

x
5− y

6 ,

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) =

(
1− x

5

) (
1− y

6

)
e−

x
5 − y

6 ,

∂2f

∂y2
(x, y) =

1

6
x
(y
6
− 2
)
e−

x
5− y

6 ,

so that

Hf(0, 0) =

(
0 1

1 0

)
, Hf(5, 6) =

(− 6
5e

−2 0

0 − 5
6e

−2

)
.

Since detHf(0, 0) = −1 < 0, P1 is a saddle point for f , while detHf(5, 6) =

e−4 > 0 and
∂2f

∂x2
(5, 6) < 0 mean P2 is a relative maximum point. This last fact

could also have been established by noticing both eigenvectors are negative,
so the matrix is negative definite.

e) The map is defined on the plane minus the coordinate axes x = 0, y = 0. As

∂f

∂x
(x, y) =

1

y
− 8

x2
,

∂f

∂y
(x, y) = − x

y2
− 1 ,

∇f(x, y) = 0 has one solution P = (−4, 2) only. What this point is is readily
said, for

∂2f

∂x2
(x, y) =

16

x3
,

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) = − 1

y2
,

∂2f

∂y2
(x, y) =

2x

y3
,

and

Hf(−4, 2) =
(− 1

4 − 1
4

− 1
4 −1

)
.

Since detHf(−4, 2) = 3

16
> 0 and

∂2f

∂x2
(−4, 2) = −1

4
< 0, P is a relative

maximum.
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f) The function is defined on

dom f = {(x, y) ∈ R2 : 2− x2 > 0} ,
which is the horizontal strip between the lines y = ±√2. From

∂f

∂x
(x, y) = − 4xy

2− x2
,

∂f

∂y
(x, y) = 2 log(2 − x2) + 2y ,

equation ∇f(x, y) = 0 gives points P1 = (1, 0), P2 = (−1, 0), P3 = (0,− log 2).
The second derivatives read:

∂2f

∂x2
(x, y) = −4y(x2 + 2)

(2− x2)2
,

∂2f

∂y2
(x, y) = 2 ,

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) = − 4x

2− x2
,

so

Hf(1, 0) =

(
0 −4
−4 2

)
, Hf(−1, 0) =

(
0 4

4 2

)
,

Hf(0,− log 2) =

(
2 log 2 0

0 2

)
.

As detHf(1, 0) = detHf(−1, 0) = −16 < 0, P1 and P2 are saddle points; P3

is a relative minimum because the Hessian Hf(P3) is positive definite.

g) Using

∂f

∂x
(x, y) = 6(x− y)e3x

2−6xy+2y3

,
∂f

∂y
(x, y) = 6(y2 − x)e3x

2−6xy+2y3

,

∇f(x, y) = 0 produces two stationary points P1 = (0, 0), P2 = (1, 1). As for
second-order derivatives,

∂2f

∂x2
(x, y) = 6

(
1 + 6(x− y)2

)
e3x

2−6xy+2y3

,

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) = 6

(− 1 + 6(y2 − x)(x − y)
)
e3x

2−6xy+2y3

,

∂2f

∂y2
(x, y) = 6

(
2y + 6(y2 − x)2

)
e3x

2−6xy+2y3

,

so

Hf(0, 0) =

(
6 −6
−6 0

)
, Hf(1, 1) =

(
6e−1 −6e−1

−6e−1 12e−1

)
.

The first is a saddle point, for detHf(0, 0) = −36 < 0; as for the other point,

detHf(1, 1) = 36e−1 > 0 and
∂2f

∂x2
(1, 1) = 6e−1 > 0 imply P2 is a relative

minimum.
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h) The function is defined on x > 0. The derivatives

∂f

∂x
(x, y) =

y

x
,

∂f

∂y
(x, y) = log x

are zero at the point P = (1, 0). Since

∂2f

∂x2
(x, y) = − y

x2
,

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) =

1

x
,

∂2f

∂y2
(x, y) = 0 ,

we have

Hf(1, 0) =

(
0 1

1 0

)
and detHf(1, 0) = −1 < 0, telling that P is a saddle point.

i) There are no stationary points because

∇f(x, y) =
( 2x

x2 + y2 − 1
,

2y

x2 + y2 − 1

)
vanishes only at (0, 0), which does not belong to the domain of f ; in fact
dom f = {(x, y) ∈ R2 : x2 + y2 > 1} consists of the points lying outside the
unit circle centred in the origin.

�) Putting

∂f

∂x
(x, y, z) = yz − 1

x2
,

∂f

∂y
(x, y, z) = xz − 1

y2
,

∂f

∂z
(x, y, z) = xy − 1

z2

all equal 0 gives P1 = (1, 1, 1) and P2 = −P1. Moreover,

fxx(x, y) =
2

x3
, fyy(x, y) =

2

y3
, fzz(x, y) =

2

z3

fxy(x, y) = fyx = z , fxz(x, y) = fzx = y , fyz(x, y) = fzy = x ,

so the Hessians Hf(P1), Hf(P2) are positive definite (the eigenvalues are
λ1 = 1, with multiplicity 2, and λ2 = 4 in both cases). Therefore P1 and P2

are local minima for f .

24. The domain reads

dom f = {(x, y) ∈ R2 : y2 − x2 ≥ 0} .

The inequality y2 − x2 ≥ 0 is (y − x)(y + x) ≥ 0, satisfied if the factors (y − x),
(y + x) have the same sign. Thus

dom f = {(x, y) ∈ R2 : y ≥ x and y ≥ −x} ∪ {(x, y) ∈ R2 : y ≤ x and y ≤ −x} ,
see Fig. 5.10.
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y = x

x

y

y = −x

Figure 5.10. Domain of f(x, y) =
√

y2 − x2

The first derivatives are

∂f

∂x
(x, y) = − x√

y2 − x2
,

∂f

∂y
(x, y) =

y√
y2 − x2

.

The lines y = x, y = −x are not contained in the domain of the partial derivatives,
preventing the possibility of having stationary points.

On the other hand it is easy to see that

f(x, x) = f(x,−x) = 0 and f(x, y) ≥ 0 , ∀(x, y) ∈ dom f .

All points on y = x and y = −x, i.e., those of coordinates (x, x) and (x,−x), are
therefore absolute minima for f .

25. First of all the function is defined on

dom f = {(x, y) ∈ R2 : 1 + y > 0} ,

which is the open half-plane determined by the line y = −1.
Secondly, the points annihilating the gradient function

∇f(x, y) =

(
∂f

∂x
(x, y),

∂f

∂y
(x, y)

)
=

(
2x log(1 + y) + 2xy2,

x2

1 + y
+ 2x2y

)
are the solutions of ⎧⎨⎩

2x
(
log(1 + y) + y2

)
= 0

x2

(
1

1 + y
+ 2y

)
= 0 .
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We find (0, y), with y > −1 arbitrary. Thirdly, we compute the second derivatives

∂2f

∂x2
(x, y) = 2

(
log(1 + y) + y2

)
,

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) = 2x

(
1

1 + y
+ 2y

)
,

∂2f

∂y2
(x, y) = x2

(
2− 1

(1 + y)2

)
.

These tell that the Hessian at the stationary points is

Hf(0, y) =

(
2
(
log(1 + y) + y2

)
0

0 0

)
,

which unfortunately does not help to understand the points’ nature.
This can be accomplished by direct inspection of the function. Write f(x, y) =

α(x)β(y) with α(x) = x2 and β(y) = log(1+y)+y2. Note also that f(0, y) = 0, for
any y > −1. It is not difficult to see that β(y) > 0 when y > 0, and β(y) < 0 when
y < 0 (just compare the graphs of the elementary functions ϕ(y) = log(1 + y) and
ψ(y) = −y2). For any (x, y) in a suitable neighbourhood of (0, y) then,

f(x, y) ≥ 0 if y > 0 and f(x, y) ≤ 0 if y < 0 .

In conclusion, for y > 0 the points (0, y) are relative minima, whereas for y < 0
they are relative maxima. The origin is neither.
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Differential calculus for vector-valued functions

In resuming the study of vector-valued functions started in Chapter 4, we begin
by the various definitions concerning differentiability, and introduce the Jacobian
matrix, which gathers the gradients of the function’s components, and the basic
differential operators of order one and two. Then we will present the tools of differ-
ential calculus; among them, the so-called chain rule for differentiating composite
maps has a prominent role, for it lies at the core of the idea of coordinate-system
changes. After discussing the general theory, we examine in detail the special,
but of the foremost importance, frame systems of polar, cylindrical, and spherical
coordinates.

The second half of the chapter devotes itself to regular, or piecewise-regular,
curves and surfaces, from a differential point of view. The analytical approach,
that focuses on the functions, gradually gives way to the geometrically-intrinsic
aspects of curves and surfaces as objects in the plane or in space. The fundamental
vectors of a curve (the tangent, normal, binormal vectors and the curvature) are
defined, and we show how to choose one of the two possible orientations of a curve.
For surfaces we introduce the normal vector and the tangent plane, then discuss
the possibility of fixing a way to cross the surface, which leads to the dichotomy
between orientable and non-orientable surfaces, plus the notions of boundary and
closed surface. All this will be the basis upon which to build, in Chapter 9, an
integral calculus on curves and surfaces, and to establish the paramount Theorems
of Gauss, Green and Stokes.

6.1 Partial derivatives and Jacobian matrix

Given x0 ∈ domf , suppose every component fi of f admits at x0 all first partial

derivatives
∂fi
∂xj

, j = 1, . . . , n, so that to have the gradient vector

∇fi(x0) =
( ∂fi
∂xj

(x0)
)
1≤j≤n

=
( ∂fi
∂x1

(x0), . . . ,
∂fi
∂xn

(x0)
)
,

here written as row vector.

C. Canuto, A. Tabacco:Mathematical Analysis II, 2nd Ed.,
UNITEXT – La Matematica per il 3+2 85, DOI 10.1007/978-3-319-12757-6_6,
© Springer International Publishing Switzerland 2015
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Definition 6.1 The matrix with m rows and n columns

Jf(x0) =
( ∂fi
∂xj

(x0)
)

1 ≤ i ≤ m
1 ≤ j≤ n

=

⎛⎜⎝ ∇f1(x0)
...

∇fm(x0)

⎞⎟⎠
is called Jacobian matrix of f at the point x0.

The Jacobian (matrix) is also indicated by Jf (x0) or Df(x0).
In particular if f = f is a scalar map (m = 1), then

Jf(x0) = ∇f(x0) .

Examples 6.2

i) The function f : R3 → R2, f(x, y, z) = xyz i+(x2+y2+z2) j has components
f1(x, y, z) = xyz and f2(x, y, z) = x2+y2+z2, whose partial derivatives we write
as entries of

Jf(x, y, z) =

(
yz xz xy

2x 2y 2z

)
.

ii) Consider

f : Rn → Rn , f(x) = Ax+ b ,
where A = (aij) 1≤ i≤m

1≤j≤n

∈ Rm×n is an m × n matrix and b = (bi)1≤i≤m ∈ Rm.

The ith component of f is

fi(x) =
n∑

j=1

aijxj + bi ,

whence
∂fi
∂xj

(x) = aij for all j = 1, . . . , n x ∈ Rn. Therefore Jf(x) = A. �

6.2 Differentiability and Lipschitz functions

Now we shall see if and how the previous chapter’s results extend to vector-valued
functions. Starting from differentiability, let us suppose each component of f is
differentiable at x0 ∈ domf (see Definition 5.5),

fi(x) = fi(x0) +∇fi(x0) · (x− x0) + o(‖x− x0‖) , x→ x0

for any i = 1, . . . , n. The dot product ∇fi(x0) · (x − x0) is to be thought of as a
matrix product between the row vector ∇fi(x0) and the column vector x− x0.
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By definition of Jacobian matrix, we may write, vectorially,

f(x) = f(x0) + Jf(x0)(x− x0) + o(‖x− x0‖) , x→ x0 . (6.1)

One says then f is differentiable at x0.
Let us consider a special case: putting Δx = x− x0, we rewrite the above as

f(x0 +Δx) = f(x0) + Jf(x0)Δx+ o(‖Δx‖) , Δx→ 0 ;

the linear map dfx0 from Rn to Rm defined by

dfx0 : Δx �→ Jf(x0)Δx

is called differential of f at x0. Up to infinitesimals of order greater than one,
the formula says the increment Δf = f(x0+Δx)−f(x0) is approximated by the
value of the differential dfx0 = Jf(x0)Δx.

As for scalar functions, equation (6.1) linearises f at x0, written

f(x) ∼ f(x0) + Jf(x0)(x− x0)

on a neighbourhood of x0; in other words it approximates f by means of a degree-
one polynomial in x (the Taylor polynomial of order 1 at x0).

Propositions 5.7 and 5.8 carry over, as one sees by taking one component at a
time.

Also vectorial functions can be Lipschitz. The next statements generalise Defin-
ition 5.14 and Proposition 5.16. Let R be a region inside domf .

Definition 6.3 The map f is Lipschitz on R if there is a constant L ≥ 0
such that

‖f(x1)− f(x2)‖ ≤ L‖x1 − x2‖ , ∀x1,x2 ∈ R . (6.2)

The smallest such L is the Lipschitz constant of f on R.

Clearly f is Lipschitz on R if and only if all its components are.

Proposition 6.4 Let R be a connected region in domf . Suppose f is dif-
ferentiable on such region and assume there is an M ≥ 0 such that∣∣∣∣ ∂fi∂xj

(x)

∣∣∣∣ ≤M , ∀x ∈ R, i = 1, . . . ,m , j = 1, . . . , n .

Then f is Lipschitz on R with L =
√
nmM .
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The proof is an easy consequence of Proposition 5.16 applied to each component
of f .

Vector-valued functions do not have an analogue of the Mean Value The-
orem 5.12, since there might not be an x ∈ S[a, b] such that f(b) − f(a) =
Jf(x)(b− a) (whereas for each component fi there clearly is a point xi ∈ S[a, b]
satisfying (5.11)). A simple counterexample is the curve f : R→ R2, f(t) = (t2, t3)
with a = 0, b = 1, for which f(1)− f(0) = (1, 1) but Jf(t) = (2t, 3t2). We cannot

find any t such that Jf(t)(b − a) = (2t, 3t
2
) = (1, 1).

Nevertheless, one could prove, under hypotheses similar to Lagrange’s state-
ment 5.12, that

‖f(b)− f(a)‖ ≤ sup
x∈S[a,b]

‖Jf(x)‖ ‖b− a‖ ,

where the Jacobian’s norm is defined as in Sect. 4.2.

At last, we extend the notion of functions of class Ck, see Sect. 5.4. A map f is
of class Ck (0 ≤ k ≤ ∞) on the open set Ω ⊆ domf if all components are of class
Ck on Ω; we shall write f ∈ (Ck(Ω))n. A similar definition is valid if we take Ω
instead of Ω.

6.3 Basic differential operators

Given a real function ϕ, defined on an open set Ω in Rn and differentiable on Ω,
we saw in Sect. 5.2 how to associate to such a scalar field on Ω the (first) partial

derivatives
∂ϕ

∂xj
with respect to the coordinates xj , j = 1, . . . , n; these are still

scalar fields on Ω. Each mapping ϕ �→ ∂ϕ

∂xj
is a linear operator, because

∂

∂xj
(λϕ+ μψ) = λ

∂ϕ

∂xj
+ μ

∂ψ

∂xj

for any pair of functions ϕ, ψ differentiable on Ω and any pair of numbers λ, μ ∈ R.
The operator maps C1(Ω) to C0(Ω): each partial derivative of a C1 function on Ω

is of class C0 on Ω; in general, each operator
∂

∂xj
maps Ck(Ω) to Ck−1(Ω), for any

k ≥ 1.

6.3.1 First-order operators

Using operators involving (first) partial derivatives we can introduce a host of
linear differential operators of order one that act on (scalar or vector) fields defined
and differentiable on Ω, and return (scalar or vector) fields on Ω. The first we wish
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to describe is the gradient operator; as we know, it associates to a differentiable
scalar field the vector field of first derivatives:

gradϕ = ∇ϕ =

(
∂ϕ

∂xj

)
1≤j≤n

=
∂ϕ

∂x1
e1 + · · ·+ ∂ϕ

∂xn
en .

Thus if ϕ ∈ C1(Ω), then gradϕ ∈ (C0(Ω))n, meaning the gradient is a linear

operator from C1(Ω) to (C0(Ω))n.
Let us see two other fundamental linear differential operators.

Definition 6.5 The divergence of a vector field f = f1e1 + · · · + fnen,
differentiable on Ω ⊆ Rn, is the scalar field

div f =
∂f1
∂x1

+ · · ·+ ∂fn
∂xn

=

n∑
j=1

∂fj
∂xj

. (6.3)

The divergence operator maps
(C1(Ω))n to C0(Ω).

Definition 6.6 The curl of a vector field f = f1i+ f2j+ f3k, differentiable
on Ω ⊆ R3, is the vector field

curl f =

(
∂f3
∂x2

− ∂f2
∂x3

)
i +

(
∂f1
∂x3

− ∂f3
∂x1

)
j +

(
∂f2
∂x1

− ∂f1
∂x2

)
k

= det

⎛⎜⎜⎜⎝
i j k

∂

∂x1

∂

∂x2

∂

∂x3

f1 f2 f3

⎞⎟⎟⎟⎠
(6.4)

(the determinant is computed along the first row). The curl operator maps(C1(Ω))3 to
(C0(Ω))3. Another symbol used in many European countries is

rot, standing for rotor.

We remark that the curl, as above defined, acts only on three-dimensional vector
fields. In dimension 2, one defines the curl of a vector field f , differentiable on an
open set Ω ⊆ R2, as the scalar field

curlf =
∂f2
∂x1

− ∂f1
∂x2

. (6.5)
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Note that this is the only non-zero component (the third one) of the curl of
Φ(x1, x2, x3) = f1(x1, x2)i+ f2(x1, x2)j + 0k, associated to f ; in other words

curlΦ = 0i+ 0j + (curlf)k . (6.6)

Sometimes, in dimension 2, the curl of a differentiable scalar field ϕ on an open
set Ω ⊆ R2 is also defined as the (two-dimensional) vector field

curlϕ =
∂ϕ

∂x2
i− ∂ϕ

∂x1
j . (6.7)

Here, too, the definition is suggested by a suitable three-dimensional curl: setting
Φ(x1, x2, x3) = 0i+ 0j + ϕ(x1, x2)k, we see immediately

curlΦ = curlϕ+ 0k .

Higher-dimensional curl operators exist, but go beyond the purposes of this book.

Occasionally one finds useful to have a single formalism to represent the three
operators gradient, divergence and curl. To this end, denote by ∇ the symbolic

vector whose components are the partial differential operators
∂

∂x1
, . . . ,

∂

∂xn
:

∇ =

(
∂

∂xj

)
1≤j≤n

=
∂

∂x1
e1 + · · ·+ ∂

∂xn
en .

In this way the gradient of a scalar field ϕ, denoted ∇ϕ, may be thought of as
obtained from the multiplication (on the right) of the vector ∇ by the scalar ϕ.
Similarly, (6.3) shows the divergence of a vector field f is the dot product of the
two vectors ∇ and f , whence one writes

div f = ∇ · f .

In dimension 3 at last, the curl of a vector field f can be obtained, as (6.4) suggests,
computing the cross product of the vectors ∇ and f , allowing one to write

curl f = ∇ ∧ f .

Let us illustrate the geometric meaning of the divergence and the curl of a
three-dimensional vector field, and show that the former is related to the change
in volume of a portion of mass moving under the effect of the vector field, while
the latter has to do with the rotation of a solid around a point. So let f : R3 → R3

be a C1 vector field, which we shall assume to have bounded first derivatives on the
whole R3. For any x ∈ R3 let Φ(t,x) be the trajectory of f passing through x at
time t = 0 or, equivalently, the solution of the Cauchy problem for the autonomous
differential system
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Φ′ = f(Φ) , t > 0 ,

Φ(0,x) = x .

We may also suppose that the solution exists at any time t ≥ 0 and is differentiable
with continuity with respect to both t and x (that this is true will be proved in
Ch. 10). Fix a bounded open set Ω0 and follow its evolution in time by looking at
its images under Φ

Ωt = Φ(t,Ω 0) = {z = Φ(t,x) : x ∈ Ω0} .

We will introduce in Chapter 8 the triple integral of a map g defined on Ωt,∫
Ωt

g(x, y, z) dxdy dz ,

and show that, when g is the constant function 1, the integral represents the
volume of the set Ωt. Well, one can prove that

d

dt

∫
Ωt

dxdy dz =

∫
Ωt

div f dxdy dz ,

which shows it is precisely the divergence of f that governs the volume variation
along the field’s trajectories. In particular, if f is such that div f = 0 on R3, the
volume of the image of any open set Ω0 is constant with time (see Fig. 6.1 for a
picture in dimension two).
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Figure 6.1. The area of a surface evolving in time under the effect of a two-dimensional
field with zero divergence does not change
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Let now f(x) = Ax be a particular rigid motion of a three-dimensional solid
S, namely a (clockwise) rotation around the z-axis by an angle θ. Then A is
orthogonal (viz. it does not affect distances); precisely, it takes the form

A =

⎛⎜⎝
cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎞⎟⎠ .

It is easy to see that
curl f = 0i+ 0j − 2 sin θk ;

so the curl of f has only one non-zero component, in the direction of rotation,
that depends on the angle.

After this digression we return to the general properties of the operators gradi-
ent, divergence and curl, we observe that also the latter two are linear, like the
gradient

div (λf + μg) = λdiv f + μ div g ,

curl (λf + μg) = λ curl f + μ curl g

for any pair of fields f , g and scalars λ, μ. Moreover, we have a list of properties
expressing how the operators interact with various products between (scalar and
vector) fields of class C1:

grad (ϕψ) = ψ gradϕ+ ϕgradψ ,

grad (f · g) = g Jf + f Jg ,

div (ϕf) = gradϕ · f + ϕdiv f ,

div (f ∧ g) = g · curl f − f · curl g ,

curl (ϕf) = gradϕ ∧ f + ϕ curl f ,

curl (f ∧ g) = f div g − g div f + g Jf − f Jg .

Their proof is straightforward from the definitions and the rule for differentiating
a product.

In two special cases, the successive action of two of grad , div , curl on a
sufficiently regular field gives the null vector field. The following results ensue
from the definitions by using Schwarz’s Theorem 5.17.
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Proposition 6.7 i) Let ϕ be a scalar field of class C2 on an open set Ω of
R3. Then

curl gradϕ = ∇∧ (∇ϕ) = 0 on Ω .

ii) Let Φ be a C2 vector field on an open set Ω of R3. Then

div curlΦ = ∇ · (∇ ∧Φ) = 0 on Ω .

The two-dimensional version of the above results reads

Proposition 6.8 Let ϕ be a scalar field of class C2 on an open set Ω in R2.
Then

curlgradϕ = 0 and div curlϕ = 0 on Ω .

These propositions steer us to the examination of fields with null gradient,
null curl or zero divergence on a set Ω, a study with relevant applications. It is
known (Proposition 5.13) that a scalar field ϕ has null gradient on Ω if and only
if ϕ is constant on connected components of Ω. For the other two operators we
preliminarly need some terminology.

Definition 6.9 i) A vector field f , differentiable on an open set Ω in R3

and such that curl f = 0, is said irrotational (or curl-free) on Ω.
ii) A vector field f , differentiable on an open set Ω of Rn and such that

div f = 0 is said divergence-free on Ω.

Definition 6.10 i) A vector field f on an open set Ω of Rn is conservative
in Ω if there exists a scalar field ϕ such that f = gradϕ on Ω. The
function ϕ is called a (scalar) potential of f .

ii) A vector field f on an open set Ω of R3 is of curl type if there exists
a vector field Φ such that f = curlΦ on Ω. The function Φ is called a
(vector) potential for f .

Taking these into consideration, Proposition 6.7 modifies as follows: i) if a C1
vector field f on an open set Ω of R3 is conservative (and so admits a scalar
potential of class C2), then it is necessarily irrotational. ii) If a C1 vector field f on
an open set Ω of R3 admits a C2 vector potential, it is divergence-free. Equivalently,
we may concisely say that: i) f conservative implies f irrotational; ii) f of curl
type implies f divergence-free.

The natural question is whether the above necessary conditions are also suf-
ficient to guarantee the existence of a (scalar or vectorial) potential for f . The
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answer will be given in Sect. 9.6, at least for fields with no curl. But we can say
that in the absence of additional assumptions on the open set Ω the answer is neg-
ative. In fact, open subsets of R3 exist, on which there are irrotational vector fields
of class C1 that are not conservative. Notwithstanding these counterexamples, we
will provide conditions on Ω turning the necessary condition into an equivalence.
In particular, each C1 vector field on an open, convex subset of R3 (like the in-
terior of a cube, of a sphere, of an ellipsoid) is irrotational if and only if it is
conservative.

Comparable results hold for divergence-free fields, in relationship to the exist-
ence of vector potentials.

Examples 6.11

i) Let f be the affine vector field

f : R3 → R3 , f(x) = Ax+ b

defined by the 3× 3 matrix A and the vector b of R3. Immediately we have

div f = a11 + a22 + a33 ,

curl f = (a32 − a23)i+ (a31 − a13)j + (a21 − a12)k .

Therefore f has no divergence on R3 if and only if the trace of A, trA =
a11 + a22 + a33, is zero. The field is, instead, irrotational on R3 if and only if A
is symmetric.
Since R3 is clearly convex, to say f has no curl is the same as asserting f is
conservative. In fact if A is symmetric, a (scalar) potential for f is

ϕ(x) =
1

2
x ·Ax− b · x .

Similarly, f is divergence-free if and only if it is of curl type, for if trA is zero,
a vector potential for f is

Φ(x) =
1

3
(Ax) ∧ x+

1

2
b ∧ x .

Note at last the field

f(x) = (y + z) i+ (x − z) j + (x− y)k ,

corresponding to

A =

⎛⎜⎝
0 1 1

1 0 −1
1 −1 0

⎞⎟⎠ and b = 0 ,

is an example of a simultaneously irrotational and divergence-free field.

ii) Given f ∈ (C1(Ω))3, and x0 ∈ Ω, consider the Jacobian Jf(x0) of f at x0.

Then (divf)(x0) = 0 if and only if tr
(
Jf(x0)

)
= 0, while

(
curl f

)
(x0) = 0 if

and only if Jf(x0) is symmetric. In particular, the curl of f measures the failure
of the Jacobian to be symmetric. �
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Finally, we state without proof a theorem that casts some light on Defini-
tions 6.5 and 6.6.

Theorem 6.12 Let Ω be an open convex subset of R3. Every C1 vector field
on Ω decomposes (not uniquely) into the sum of an irrotational field and a

field with no divergence. In other terms, for any f ∈ (C1(Ω))3 there exist

f (irr) ∈ (C1(Ω))3 with curl f (irr) = 0 on Ω, and f (divfree) ∈ (C1(Ω))3 with

div f (divfree) = 0 on Ω, such that

f = f (irr) + f (divfree) .

Such a representation is known as Helmholtz decomposition of f .

Example 6.13

We return to the affine vector field on R3 (Example 6.11 i)). Let us decompose
the matrix A in the sum of its symmetric part A(sym) = 1

2 (A+AT ) and skew-

symmetric part A(skew) = 1
2 (A−AT ),

A = A(sym) +A(skew) .

Setting f (irr)(x) = A(sym)x+b and f (divfree)(x) = A(skew)x realises the Helm-
holtz decomposition of f : f (irr) is irrotational as A(sym) is symmetric, f (divfree)

is divergence-free as the diagonal of a skew-symmetric matrix is zero. Adding to
A(sym) an arbitrary traceless diagonal matrix D and subtracting the same from
A(skew) gives new fields f (irr) and f (divfree) for a different Helmholtz decom-
position of f . �

6.3.2 Second-order operators

The consecutive action of two linear, first-order differential operators typically pro-
duces a linear differential operator of order two, obviously defined on a sufficiently-
regular (scalar or vector) field. We have already remarked (Proposition 6.7) how
letting the curl act on the gradient, or computing the divergence of the curl, of
a C2 field produces the null operator. We list a few second-order operators with
crucial applications.

i) The operator divgrad maps a scalar field ϕ ∈ C2(Ω) to the C0(Ω) scalar field

divgradϕ = ∇ · ∇ϕ =

n∑
j=1

∂2ϕ

∂x2
j

, (6.8)

sum of the second partial derivatives of ϕ of pure type. The operator divgrad is
known as Laplace operator, or simply Laplacian, and often denoted by Δ.
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Therefore

Δ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

,

and (6.8) reads Δϕ. Another possibility to denote Laplace’s operator is ∇2, which
intuitively reminds the second equation of (6.8). Note ∇2ϕ cannot be confused
with ∇(∇ϕ), a meaningless expression as ∇ acts on scalars, not on vectors; ∇2ϕ
is purely meant as a shorthand symbol for ∇ · (∇ϕ).
A map ϕ such that Δϕ = 0 on an open set Ω is called harmonic on Ω. Harmonic
maps enjoy key mathematical properties and intervene in the description of several
physical phenomena. For example, the electrostatic potential generated in vacuum
by an electric charge at the point x0 ∈ R3 is a harmonic function defined on the
open set R3 \ {x0}.
ii) The Laplace operator acts (component-wise) on vector fields as well, and one
sets

Δf = Δf1e1 + · · ·+Δfnen

where f = f1e1+· · · fnen. Thus the vector Laplacian maps
(C2(Ω))n to (C0(Ω))n.

iii) The operator grad div transforms vector fields into vector fields, and precisely
it maps

(C2(Ω))n to
(C0(Ω))n.

iv) Similarly the operator curl curl goes from
(C2(Ω))3 to (C0(Ω))3.

The latter three operators are related by the formula

Δf − grad div f + curl curl f = 0 .

6.4 Differentiating composite functions

Let
f : domf ⊆ Rn → Rm and g : dom g ⊆ Rm → Rp

be two maps and x0 ∈ domf a point such that y0 = f(x0) ∈ domg, so that the
composite

h = g ◦ f : domh ⊆ Rn → Rp ,

for x0 ∈ domh, is well defined. We know the composition of continuous functions
is continuous (Proposition 4.23).

As far as differentiability is concerned, we have a result whose proof is similar
to the case n = m = p = 1.

Theorem 6.14 Let f be differentiable at x0 ∈ domh and g differentiable at
y0 = f(x0). Then h = g ◦f is differentiable at x0 and its Jacobian matrix is

J(g ◦ f)(x0) = Jg(y0)Jf(x0) (6.9)
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Note Jf(x0) is m× n, Jg(y0) is p×m, hence the product of matrices on the
right-hand side is well defined and produces a p× n matrix.

We shall make (6.9) explicit by writing the derivatives of the components of h
in terms of the derivatives of f and g. For this, set x = (xj)1≤j≤n and

y = f(x) =
(
fk(x)

)
1≤k≤m

, z = g(y) =
(
gi(y)

)
1≤i≤p

,

z = h(x) =
(
hi(x)

)
1≤i≤p

.

The entry on row i and column j of Jh(x0) is

∂hi

∂xj
(x0) =

m∑
k=1

∂gi
∂yk

(y0)
∂fk
∂xj

(x0) . (6.10)

To remember these equations, we can write them as

∂zi
∂xj

(x0) =

m∑
k=1

∂zi
∂yk

(y0)
∂yk
∂xj

(x0) , 1 ≤ i ≤ p , 1 ≤ j ≤ n , (6.11)

also known as the chain rule for differentiating composite maps.

Examples 6.15

i) Let f = (f1, f2) : R
2 → R2 and g : R2 → R be differentiable. Call h = g ◦ f :

R2 → R the composition, h(x, y) = g
(
f1(x, y), f2(x, y)

)
. Then

∇h(x) = ∇g
(
f(x)

)
Jf(x) ; (6.12)

putting u = f1(x, y), v = f2(x, y), this becomes

∂h

∂x
(x, y) =

∂g

∂u
(u, v)

∂f1
∂x

(x, y) +
∂g

∂v
(u, v)

∂f2
∂x

(x, y)

∂h

∂y
(x, y) =

∂g

∂u
(u, v)

∂f1
∂y

(x, y) +
∂g

∂v
(u, v)

∂f2
∂y

(x, y) .

ii) Let ϕ : I ⊆ R → R be a differentiable map and f : R2 → R a scalar
differentiable function. The composite h(x) = f

(
x,ϕ (x)

)
is differentiable on I,

and

h′(x) =
dh

dx
(x) =

∂f

∂x

(
x,ϕ (x)

)
+

∂f

∂y

(
x,ϕ (x)

)
ϕ′(x) ,

as follows from Theorem 6.14, since h = f◦ΦwithΦ : I → R2,Φ(x) =
(
x,ϕ (x)

)
.

When a function depends on one variable only, the partial derivative symbol
in (6.9) should be replaced by the more precise ordinary derivative.
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iii) Consider a curve γ : I ⊆ R → R3 of differentiable components γi, together
with a differentiable map f : R3 → R. Let h = f ◦γ : I → R be the composition.
Then

h′(t) = ∇f
(
γ(t)
) · γ′(t) , (6.13)

or, putting (x, y, z) = γ(t),

dh

dt
(t) =

∂f

∂x
(x, y, z)

dγ1
dt

(t) +
∂f

∂y
(x, y, z)

dγ2
dt

(t) +
∂f

∂z
(x, y, z)

dγ3
dt

(t) .

�

Theorem 6.14 can be successfully applied to extend the one-variable res-
ult, known to the student, about the derivative of the inverse function (Vol. I,
Thm. 6.9). We show that under suitable hypotheses the Jacobian of the inverse
function is roughly speaking the inverse Jacobian matrix. Sect. 7.1.1 will give us
a sufficient condition for the following corollary to hold.

Corollary 6.16 Let f : domf ⊆ Rn → Rn be differentiable at x0 with non-
singular Jf(x0). Assume further that f is invertible on a neighbourhood of
x0, and that the inverse map f−1 is differentiable at y0 = f(x0). Then

J(f−1)(y0) =
(
Jf(x0)

)−1
.

Proof. Applying the theorem with g = f−1 will meet our needs, because
h = f−1 ◦ f is the identity map (h(x) = x for any x around x0), hence
Jh(x0) = I. Therefore

J(f−1)(y0)Jf(x0) = I ,

whence the claim, as Jf(x0) is invertible. �

6.4.1 Functions defined by integrals

We encounter a novel way to define a function, a way that takes a given map of
two (scalar or vectorial) variables and integrates it with respect to one of them.
This kind of map has many manifestations, for instance in the description of elec-
tromagnetic fields. In the sequel we will restrict to the case of two scalar variables,
although the more general treatise is not, conceptually, that more difficult.

Let then g be a real map defined on the set R = I × J ⊂ R2, where I is an
arbitrary real interval and J = [a, b] is closed and bounded. Suppose g is continuous
on R and define

f(x) =

∫ b

a

g(x, y) dy ; (6.14)
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this is a one-variable map defined on I, because for any x ∈ I the function y �→
g(x, y) is continuous hence integrable on J .

Our function f satisfies the following properties, whose proof can be found in
Appendix A.1.3, p. 516.

Proposition 6.17 The function f of (6.14) is continuous on I. Moreover, if

g admits continuous partial derivative
∂g

∂x
on R, then f is of class C1 on I

and

f ′(x) =
∫ b

a

∂g

∂x
(x, y) dy .

This proposition spells out a rule for differentiating integrals: differentiating in
one variable and integrating in the other are commuting operations, namely

d

dx

∫ b

a

g(x, y) dy =

∫ b

a

∂g

∂x
(x, y) dy .

The above formula extends to higher derivatives:

f (k)(x) =

∫ b

a

∂kg

∂xk
(x, y) dy , k ≥ 1 ,

provided the integrand exists and is continuous on R.
A more general form of (6.14) is

f(x) =

∫ β(x)

α(x)

g(x, y) dy , (6.15)

where α and β are defined on I with values in [a, b].
Notice that the integral function

f(x) =

∫ x

a

g(y) dy ,

considered in Vol. I, Sect. 9.8, is a special case.
Proposition 6.17 generalises in the following manner.

Proposition 6.18 If α and β are continuous on I, the map f defined
by (6.15) is continuous on I. If moreover g admits continuous partial de-

rivative
∂g

∂x
on R and α, β are C1 on I, then f is C1 on I, and

f ′(x) =
∫ β(x)

α(x)

∂g

∂x
(x, y) dy + β′(x)g

(
x,β (x)

) − α′(x)g
(
x,α (x)

)
. (6.16)
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Proof. We shall only prove the formula, referring to Appendix A.1.3, p. 517, for
the rest of the proof.
Define on I × J2 the map

F (x, p, q) =

∫ q

p

g(x, y) dy ;

it admits continuous first derivatives everywhere on its domain

∂F

∂x
(x, p, q) =

∫ q

p

∂g

∂x
(x, y) dy ,

∂F

∂p
(x, p, q) = −g(x, p) , ∂F

∂q
(x, p, q) = g(x, q) .

The last two descend from the Fundamental Theorem of Integral Calculus.
The assertion now follows from the fact that f(x) = F

(
x,α (x), β(x)

)
by

applying the chain rule

df

dx
(x) =

∂F

∂x

(
x,α (x), β(x)

)
+

+
∂F

∂p

(
x,α (x), β(x)

)
α′(x) +

∂F

∂q

(
x,α (x), β(x)

)
β′(x) . �

Example 6.19

The map

f(x) =

∫ x2

x

e−xy2

y
dy

is of the form (6.15) if we set g(x, y) = e−xy2

y , α(x) = x, β(x) = x2. As g is
not integrable in elementary functions with respect to y, we cannot compute
f(x) explicitly. But g is C1 on any closed region contained in the first quadrant
x > 0, y > 0, while α and β are regular everywhere. Invoking Proposition 6.18
we deduce f is C1 on (0,+∞), with derivative

f ′(x) = −
∫ x2

x

ye−xy2

dy + g(x, x2) 2x− g(x, x)

=
e−xy2

y

∣∣∣y=x2

y=x
+
2

x
e−x5 − 1

x
e−x3

=
5

2x
e−x5 − 3

2x
e−x3

.

Using this we can deduce the behaviour of f around the point x0 = 1. Firstly,
f(1) = 0 and f ′(1) = e−1; secondly, differentiating f ′(x) once more gives f ′′(1) =
−7e−1. Therefore

f(x) =
1

e
(x− 1)− 7

2e
(x− 1)2 + o

(
(x− 1)2

)
, x→ 1 ,

implying f is positive, increasing and concave around x0. �
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T (t)

S(t)

σ
γ(t)

PΔt = γ(t0 +Δt)

γ′(t0)

P0 = γ(t0)

Figure 6.2. Tangent and secant vectors to a curve at P0

6.5 Regular curves

Curves were introduced in Sect. 4.6. A curve γ : I → Rm is said differentiable
if its components xi : I → R, i ≤ i ≤ m, are differentiable on I (recall a map
is differentiable on an interval I if differentiable at all interior points of I, and
at the end-points of I where present). We denote by γ′ : I → Rm the derivative
γ′(t) =

(
x′
i(t)
)
1≤i≤m

=
∑m

i=1 x
′
i(t)ei.

Definition 6.20 A curve γ : I → Rm is regular if it is differentiable on I
with continuous derivative (the components are C1 on I) and if γ′(t) �= 0, for
any t ∈ I.

A curve γ : I → Rm is piecewise regular if I is the finite union of intervals
on which γ is regular.

If γ is a regular curve and t0 ∈ I, we can interpret the vector γ′(t0) geomet-
rically (Fig. 6.2). Calling P0 = γ(t0) and taking t0 +Δt ∈ I such that the point
PΔt = γ(t0 +Δt) is distinct from P0, we consider the lines through P0 and PΔt;
by (4.26), a secant line can be parametrised as

S(t) = P0 +
(
PΔt − P0

) t− t0
Δt

= γ(t0) +
γ(t0 +Δt)− γ(t0)

Δt
(t− t0) . (6.17)

Letting now Δt tend to 0, the point PΔt moves towards P0 (in the sense that each
component of PΔt tends to the corresponding component of P0). Meanwhile, the

vector σ = σ(t0, Δ t) =
γ(t0 +Δt)− γ(t0)

Δt
tends to γ′(t0) by regularity.
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The limit position of (6.17) is thus

T (t) = γ(t0) + γ′(t0)(t− t0) , t ∈ R ,

the tangent line to the trace of the curve at P0. For this reason we introduce

Definition 6.21 Let γ : I → Rm be a regular curve, and t0 ∈ I. The vector
γ′(t0) is called tangent vector to the trace of the curve at P0 = γ(t0).

To be truly rigorous, the tangent vector at P0 is the position vector
(
P0,γ

′(t0)
)
,

but it is common practice to denote it by γ′(t0). Later on we shall see the tangent
line at a point is an intrinsic object, and does not depend upon the chosen para-
metrisation; its length and orientation, instead, do depend on the parametrisation.

In kinematics, a curve in R3 models the trajectory of a point-particle occupying
the position γ(t) at time t. When the curve is regular, γ′(t) is the particle’s velocity
at the instant t.

Examples 6.22

i) All curves considered in Examples 4.34 are regular.

ii) Let ϕ : I → R denote a continuously-differentiable map on I; the curve

γ(t) =
(
t,ϕ (t)

)
, t ∈ I ,

is regular, and has the graph of ϕ as trace. In fact,

γ′(t) =
(
1, ϕ′(t)

) �= (0, 0) , for any t ∈ I .

iii) The arc γ : [0, 2]→ R2 defined by

γ(t) =

{
(t, 1) , t ∈ [0, 1) ,
(t, t) , t ∈ [1, 2] ,

parametrises the polygonal path ABC (see Fig. 6.3, left); the arc

γ(t) =

⎧⎪⎨⎪⎩
(t, 1) , t ∈ [0, 1) ,

(t, t) , t ∈ [1, 2) ,(
4− t, 2− 1

2 (t− 2)
)
, t ∈ [2, 4] ,

parametrises the path ABCA (Fig. 6.3, right). Both curves are piecewise regular.

iv) The curves

γ(t) =
(
1 +

√
2 cos t,

√
2 sin t

)
, t ∈ [0, 2π] ,

γ̃(t) =
(
1 +

√
2 cos 2t,−

√
2 sin 2t

)
, t ∈ [0, π] ,

are different parametrisations (counter-clockwise and clockwise, respectively) of
the same circle C, whose centre is (1, 0) and radius

√
2.
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1

1 2

A B

C

O

1

1 2

A B

C

O

Figure 6.3. The polygonal paths ABC (left) and ABCA (right) of Example 6.22 iii)

They are regular with derivatives

γ′(t) =
√
2
(− sin t, cos t

)
, γ̃′(t) = 2

√
2
(− sin 2t,− cos 2t

)
.

The point P0 = (0, 1) ∈ C is the image under γ of t0 =
3
4π, and of t̃0 =

5
8π under

γ̃: P0 = γ(t0) = γ̃(t̃0). In the first case the tangent vector is γ′(t0) = (−1,−1)
and the tangent line at P0

T (t) = (0, 1)− (1, 1)
(
t− 3

4
π
)
=
(− t+

3

4
π, 1− t+

3

4
π
)
, t ∈ R ;

in the second case γ̃′(t̃0) = (2, 2) and

T̃ (t) = (0, 1) + (2, 2)
(
t− 5

8
π
)
=
(
2(t− 5

8
π), 1 + 2(t− 5

8
π)
)
, t ∈ R .

The tangent vectors at P0 have different length and orientation, but the same
direction. Recalling Example 4.34 i), in both cases y = 1+ x is the tangent line.

v) The curve γs : R→ [0,+∞)× R2, defined in spherical coordinates by

γs(t) =
(
r(t), ϕ(t), θ(t)

)
=
(
1,

π

2
(1 +

1

2
sin 8t), t

)
,

describes the periodic motion, on the unit sphere, of the point P (t) that re-
volves around the z-axis and simultaneously oscillates between the parallels of
colatitude ϕmin =

π
4 and ϕmax =

3
4π (Fig. 6.4). The curve is regular, for

γ′
s(t) = (0, 2π cos 8t, 1) .

�
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Figure 6.4. A point moving on a sphere (Example 6.22 v))

6.5.1 Congruence of curves; orientation

Now we discuss some useful relationships between curves parametrising the same
trace.

Definition 6.23 Let γ : I → Rm and δ : J → Rm be regular curves. They
are called congruent if there is a bijection ϕ : J → I, differentiable with
non-zero continuous derivative, such that

δ = γ ◦ ϕ

(hence δ(τ) = γ
(
ϕ(τ)
)
for any τ ∈ J).

For the sequel we remark that congruent curves have the same trace, for x =
δ(τ) if and only if x = γ(t) with t = ϕ(τ). In addition, the tangent vectors at the
point P0 = γ(t0) = δ(τ0) are collinear, because differentiating δ(τ) = γ

(
ϕ(τ)
)
at

τ0 gives
δ′(τ0) = γ′(ϕ(τ0))ϕ′(τ0) = γ′(t0)ϕ′(τ0) , (6.18)

with ϕ′(τ0) �= 0. Consequently, the tangent line at P0 is the same for the two
curves.

The map ϕ, relating the congruent curves γ, δ as in Definition 6.23, has ϕ′

always > 0 or always < 0 on J ; in fact, by assumption ϕ′ is continuous and never
zero on J , hence has constant sign by the Theorem of Existence of Zeroes. This
entails we can divide congruent curves in two classes.

Definition 6.24 The congruent curves γ : I → Rm, δ : J → Rm are equi-
valent if the bijection ϕ : J → I has strictly positive derivative, while they
are anti-equivalent if ϕ′ is strictly negative.

Here is an example of two anti-equivalent curves.
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Definition 6.25 Let γ : I → Rm be a regular curve. Denoting by −I the
interval {t ∈ R : −t ∈ I}, the curve −γ : −I → Rm, (−γ)(t) = γ(−t) is said
opposite to γ, and is anti-equivalent to γ.

We may write (−γ) = γ ◦ ϕ, where ϕ : −I → I is the bijection ϕ(t) = −t. If
γ : [a, b] → Rm is a regular arc then −γ is still a regular arc defined on the
interval [−b,−a].

If we take anti-equivalent curves γ and δ we may also write

δ(τ) = γ
(
ϕ(τ)
)
= γ
(− (−ϕ(τ))) = (−γ)(ψ(τ))

where ψ : J → −I, ψ(τ) = −ϕ(τ). Since ψ′(τ) = −ϕ′(τ) > 0, the curves δ and
(−γ) will be equivalent. In conclusion,

Property 6.26 Congruent curves are either equivalent or one is equivalent
to the opposite of the other.

Due to this observation we shall adopt the notation δ ∼ γ to denote two
equivalent curves, and δ ∼ −γ for anti-equivalent ones.

By (6.18) now, equivalent curves have tangent vectors pointing in the same
direction, whereas anti-equivalent curves have opposite tangent vectors.

Assume from now on that curves are simple. It is immediate to verify that all
curves congruent to a simple curve are themselves simple. Moreover, one can prove
the following property.

Proposition 6.27 If Γ denotes the trace of a simple, regular curve γ, any
other simple regular curve δ having Γ as trace is congruent to γ.

Thus all parametrisations of Γ by simple regular curves are grouped into two
classes: two curves belong to the same class if they are equivalent, and live in
different classes if anti-equivalent. To each class we associate an orientation of
Γ . Given any parametrisation of Γ in fact, we say the point P2 = γ(t2) follows
P1 = γ(t1) on γ if t2 > t1 (Fig. 6.5). Well, it is easy to see that if δ is equivalent
to γ, P2 follows P1 also in this parametrisation, in other words P2 = δ(τ2) and
P1 = δ(τ1) with τ2 > τ1. Conversely, if δ is anti-equivalent to γ, then P2 = δ(τ2)
and P1 = δ(τ1) with τ2 < τ1, so P1 will follow P2.

As observed earlier, the orientation of Γ can be also determined from the
orientation of its tangent vectors.

The above discussion explains why simple regular curves are commonly thought
of as geometrical objects, rather than as parametrisations, and often the two no-
tions are confused, on purpose. This motivates the following definition.
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x

y

z

P1

P2Γ

Figure 6.5. An arc Γ in R3 and an orientation on it

Definition 6.28 A subset Γ of Rm is called a simple regular curve if it
can be described as the trace of a curve with the same properties.

If necessary one associates to Γ one of the two possible orientations. The choice
of Γ and of an orientation on it determine a class of simple regular curves all
equivalent to each other; within this class, one might select the most suitable
parametrisation for the specific needs.

Every definition and property stated for regular curves adapts easily to
piecewise-regular curves.

6.5.2 Length and arc length

We define the length of the regular arc γ : [a, b]→ Rm as the number

�(γ) =

∫ b

a

‖γ′(t)‖ dt =
∫ b

a

√√√√ m∑
i=1

(
x′
i(t)
)2
dt . (6.19)

The reason is geometrical (see Fig. 6.6). We subdivide [a, b] using a = t0 < t1 <
. . . , tK−1 < tK = b and consider the points Pk = γ(tk) ∈ Γ , k = 0, . . . ,K. They
determine a polygonal path in Rm (possibly degenerate) whose length is

�(t0, t1, . . . , tK) =

K∑
k=1

dist (Pk−1, Pk) ,

where dist (Pk−1, Pk) = ‖Pk−Pk−1‖ is the Euclidean distance of two points. Note

‖Pk − Pk−1‖ =
√√√√ m∑

i=1

(
xi(tk)− xi(tk−1)

)2
=

√√√√ m∑
i=1

(
Δxi

Δt

)2
k

Δtk
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P0 = γ(t0)

Pk−1

Pk

PK = γ(tK)

Figure 6.6. Approximation of the trace of an arc by a polygonal path

where Δtk = tk − tk−1 and(
Δxi

Δt

)
k

=

(
xi(tk)− xi(tk−1)

tk − tk−1

)
.

Therefore

�(t0, t1, . . . , tK) =

K∑
k=1

√√√√ m∑
i=1

(
Δxi

Δt

)2
k

Δtk ;

notice the analogy with the last integral in (6.19), of which the above is an approx-
imation. One could prove that if the curve is piecewise regular, the least upper
bound of �(t0, t1, . . . , tK) over all possible partitions of [a, b] is finite, and equals
�(γ).

The length (6.19) of an arc depends not only on the trace Γ , but also on the
chosen parametrisation. For example, parametrising the circle x2 + y2 = r2 by
γ1(t) = (r cos t, r sin t), t ∈ [0, 2π], we have

�(γ1) =

∫ 2π

0

r dt = 2πr ,

as is well known from elementary geometry. But if we take γ2(t) = (r cos 2t, r sin 2t),
t ∈ [0, 2π], then

�(γ2) =

∫ 2π

0

2r dt = 4πr .

In the latter case we went around the origin twice. Recalling (6.18), it is easy to
see that two congruent arcs have the same length (see also Proposition 9.3 below,
where f = 1). We shall prove in Sect. 9.1 that the length of a simple (or Jordan)
arc depends only upon the trace Γ ; it is called length of Γ , and denoted by �(Γ ).
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In the previous example γ1 is simple while γ2 is not; the length �(Γ ) of the circle
is �(γ1).

Let γ be a regular curve defined on the interval I, on which we fix an arbitrary
point t0 ∈ I, and introduce the function s : I → R

s(t) =

∫ t

t0

‖γ′(τ)‖ dτ . (6.20)

Recalling expression (6.19) for the length of an arc, we have

s(t) =

⎧⎨⎩
�(γ|[t0,t]) , t > t0 ,
0 , t = t0 ,
−�(γ|[t,t0]) , t < t0 .

The function s allows to define an equivalent curve that gives a new paramet-
risation of the trace of γ. By the Fundamental Theorem of Integral Calculus, in
fact,

s′(t) = ‖γ′(t)‖ > 0 , ∀t ∈ I ,

so s is a strictly increasing map, and hence invertible on I. Call J = s(I) the
image interval under s, and let t : J → I ⊆ R be the inverse map of s. In
other terms we write t as a function of another parameter s, t = t(s). The curve
γ̃ : J → Rm, γ̃(s) = γ(t(s)) is equivalent to γ (in particular it has the same trace
Γ ). If P1 = γ(t1) is an arbitrary point on Γ , then P1 = γ̃(s1) with t1 and s1
related by t1 = t(s1). The number s1 is the arc length of P1.

Recalling the rule for differentiating an inverse function,

γ̃′(s) =
dγ̃

ds
(s) =

dγ

dt

(
t(s)
) dt
ds
(s) =

γ′(t)
‖γ′(t)‖ ,

whence
‖γ̃′(s)‖ = 1 , ∀s ∈ J . (6.21)

This means that the arc length parametrises the curve with constant “speed” 1.

The definitions of length of an arc and arc length extend to piecewise-regular
curves.

Example 6.29

The curve γ : R → R3, γ(t) = (cos t, sin t, t) has trace the circular helix (see

Example 4.34 vi)). Then

‖γ′(t)‖ = ‖(− sin t, cos t, 1)‖ = (sin2 t+ cos2 t+ 1)1/2 =
√
2 .

Choosing t0 = 0,

s(t) =

∫ t

0

‖γ′(τ)‖ dτ =
√
2

∫ t

0

dτ =
√
2t .
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Therefore t = t(s) =
√
2
2 s, s ∈ R, and the helix can be parametrised anew by arc

length

γ̃(s) =

(
cos

√
2

2
s, sin

√
2

2
s,

√
2

2
s

)
. �

6.5.3 Elements of differential geometry for curves

This section is dedicated to the intrinsic geometry of curves in R3, and is not
strictly essential for the sequel. As such it may be skipped at first reading.

We consider a regular, simple curve Γ in R3 parametrised by arc length s
(defined from an origin point P ∗). Call γ = γ(s) such parametrisation, defined on
an interval J ⊆ R, and suppose γ is of class C2 on J .

If t(s) = γ′(s) is the tangent vector to Γ at P = γ(s), by (6.21) we have

‖t(s)‖ = 1 , ∀s ∈ J ,

making t(s) a unit vector. Differentiating once more in s gives t′(s) = γ′′(s), a
vector orthogonal to t(s); in fact differentiating

‖t(s)‖2 =
3∑

i=1

t2i (s) = 1 , ∀s ∈ J ,

we find

2
3∑

i=1

ti(s)t
′
i(s) = 0 ,

i.e., t(s) · t′(s) = 0. Recall now that if γ(s) is the trajectory of a point-particle
in time, its velocity t(s) has constant speed = 1. Therefore t′(s) represents the
acceleration, and depends exclusively on the change of direction of the velocity
vector. Thus the acceleration is perpendicular to the direction of motion.

If at P0 = γ(s0) the vector t
′(s0) is not zero, we may define

n(s0) =
t′(s0)
‖t′(s0)‖ , (6.22)

called principal normal (vector) to Γ at P0. The orthonormal vectors t(s0) and
n(s0) lie on a plane passing through P0, the osculating plane to the curve Γ at
P0. Among all planes passing through P0, the osculating plane is the one that best
adapts to the curve; to be precise, the distance of a point γ(s) on the curve from
the osculating plane is infinitesimal of order bigger than s − s0, as s → s0. The
osculating plane of a plane curve is, at each point, the plane containing the curve.

The orientation of the principal normal has to do with the curve’s convexity
(Fig. 6.7). If the curve is plane, in the frame system of t and n the curve can be
represented around P0 as the graph of a convex function.
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P0 = γ(s0)

Γ

Π

n

t b

Figure 6.7. Osculating plane and tangent, normal, binormal vectors of Γ at P0

The number K(s0) = ‖t′(s0)‖ is the curvature of Γ at P0, and its inverseR(s0)
is called curvature radius. These names arise from the following considerations.
For simplicity suppose the curve is plane, and let us advance by R(s0) in the
direction of n, starting from P0(s0); the point C(s0) thus reached is the centre
of curvature (Fig. 6.8). The circle with centre C(s0) and radius R(s0) is tangent
to Γ at P0, and among all tangent circles we are considering the one that best
approximates the curve around P0 (osculating circle).

The orthogonal vector to the osculating plane,

b(s0) = t(s0) ∧ n(s0) , (6.23)

is known as the binormal (vector) to Γ at P0. This completes a positively-oriented
triple (t,n, b) of orthonormal vectors, that defines a moving frame along a curve.

The binormal unit vector, being orthogonal to the osculating plane, is constant
along the curve if the latter is plane. Therefore, its variation measures how far the
curve is from being plane. If the curve is C3 it makes sense to consider the vector
b′(s0), the torsion vector of the curve at P0. Differentiating definition (6.23)
gives

b′(s0) = t′(s0) ∧ n(s0) + t(s0) ∧ n′(s0) = t(s0) ∧ n′(s0)

as n(s0) is parallel to t′(s0). This explains why n′(s0) is orthogonal to t(s0). At
the same time, differentiating ‖b(s0)‖2 = 1 gives b′(s0) · b(s0) = 0, making b′(s0)
orthogonal to b(s0) as well. Therefore b′(s0) is parallel to n(s0), and there must
exist a scalar τ(s0), called torsion of the curve, such that b′(s0) = τ(s0)n(s0). It
turns out that a curve is plane if and only if the torsion vanishes identically.

Differentiating the equation n(s) = b(s) ∧ t(s) gives

n′(s0) = b(s0) ∧ t′(s0) + b′(s0) ∧ t(s0)

= b(s0) ∧ K(s0)n(s0) + τ(s0)n(s0) ∧ t(s0)

= −K(s0)t(s0)− τ(s0)b(s0) .
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P0 = γ(s0)

Π

n

t

R(s0)
C(s0)

Figure 6.8. Osculating circle, centre and radius of curvature at P0

To summarise, the unit vectors t,n, b of a C3 curve Γ satisfy the Frenet formulas

t′ = Kn , n′ = −Kt− τb , b′ = τn . (6.24)

We conclude by pointing out that the vectors t,n, b admit a representation in
terms of an arbitrary parametrisation of Γ .

6.6 Variable changes

Let R be a region of Rn. The generic point P ∈ R is completely determined by its
Cartesian coordinates x1, x2, . . . , xn which, as components of a vector x, allow to
identify P = x. For i = 1, . . . , n the line

Ri = x+ Rei = {xt = (x1, . . . , xi−1, xi + t, xi+1, . . . , xn) : t ∈ R}

contains P and is parallel to the ith canonical unit vector ei. Thus the lines Ri,
called coordinate lines through P , are mutually orthogonal.

Definition 6.30 Let R′ be another region of Rn, with interior A′. A vector
field Φ : R′ →R defines a change of variables, or change of coordinates,
on R if Φ is:

i) a bijective map between R′ and R;
ii) of class C1 on A′;
iii) regular on A′, or equivalently, the Jacobian JΦ is non-singular everywhere

on A′.
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τ2 Γ1

R
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Figure 6.9. Change of variables in R

Let A indicate the image Φ(A′): then it is possible to prove that A is open, and

consequently A ⊆
◦
R; furthermore, Φ(∂R′) = Φ(∂A′) is contained in R \A.

Denote by Q = u the generic point of R′, with Cartesian coordinates
u1, . . . , un. Given P0 = x0 ∈ A, part i) implies there exists a unique point
Q0 = u0 ∈ A′ such that P0 = Φ(Q0), or x0 = Φ(u0). Thus we may determ-
ine P0, besides by its Cartesian coordinates x01, . . . , x0n, also by the Cartesian
coordinates u01, . . . , u0n of Q0; the latter are called curvilinear coordinates of
P0 (relative to the transformation Φ). The coordinate lines through Q0 produce
curves in R passing through P0. Precisely, the set

Γi = {x = Φ(u0 + tei) : u0 + tei ∈ R′ with t ∈ Ii} ,

where i = 1, . . . , n and Ii is an interval containing the origin, is the trace of the
curve (simple, by i))

t �→ γi(t) = Φ(u0 + tei)

defined on Ii. These sets are the coordinate lines through the point P0 (relative
to Φ); see Fig. 6.9.

If P0 ∈ A these are regular curves (by iii)), so tangent vectors at P0 exist

τi = γ′
i(0) = JΦ(u0) · ei = ∂Φ

∂ui
(u0) , 1 ≤ i ≤ n . (6.25)

They are the columns of the Jacobian matrix of Φ at u0. (Warning: the reader
should pay attention not to confuse these with the row vectors ∇ϕi(u0), which are
the gradients of the components of Φ = (ϕi)1≤i≤n.) Therefore by iii), the vectors
τi, 1 ≤ i ≤ n, are linearly independent (hence, non-zero), and so they form a basis
of Rn. We shall denote by ti = τi/‖τi‖ the corresponding unit vectors. If at every
P0 ∈ A the tangent vectors are orthogonal, i.e., if the matrix JΦ(u0)

TJΦ(u0) is
diagonal, the change of variables will be called orthogonal. If so, {t1, . . . , tn} will
be an orthonormal basis of Rn relative to the point P0.
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Properties ii) and iii) have yet another important consequence. The map u �→
detJΦ(u) is continuous onA′ because the determinant depends continuously upon
the matrix’ entries; moreover, detJΦ(u) �= 0 for any u ∈ A′. We therefore deduce

detJΦ(u) > 0 , ∀u ∈ A′ , or detJΦ(u) < 0 , ∀u ∈ A′ . (6.26)

In fact, if detJΦ were both positive and negative on A′, which is open and con-
nected, then Theorem 4.30 would necessarily force the determinant to vanish at
some point of A′, contradicting iii).

Now we focus on low dimensions. In dimension 2, the first (second, respectively)
of (6.26) says that for any u0 ∈ A′ the vector τ1 can be aligned to τ2 by a
counter-clockwise (clockwise) rotation of θ ∈ (0, π]. Identifying in fact each τi with
τ̃i = τi + 0k ∈ R3, we have

τ̃1 ∧ τ̃2 =
(
detJΦ(u0)

)
k , (6.27)

orienting the triple (τ̃1, τ̃2,k) positively (negatively).
In dimension 3, the triple (τ1, τ2, τ3) is positively-oriented (negatively-oriented)

if the first (second) of (6.26) holds; in fact, (τ1 ∧ τ2) · τ3 = detJΦ(u0).

Changes of variable on a region in Rn are of two types, depending on the
sign of the Jacobian determinant. If the sign is plus, the variable change is said
orientation-preserving, if the sign is minus, orientation-reversing.

Example 6.31

The map

x = Φ(u) = Au+ b ,

with A a non-singular matrix of order n, defines an affine change of variables
in Rn. For example, the change in the plane (x = (x, y), u = (u, v))

x =
1√
2
(v + u) + 2 , y =

1√
2
(v − u) + 1 ,

is a translation of the origin to the point (2, 1), followed by a counter-clockwise
rotation of the axes by π/4 (Fig. 6.10). The coordinate lines u = constant (v =
constant) are parallel to the bisectrix of the first and third quadrant (resp. second
and fourth).

xy

u

v

1

2

Figure 6.10. Affine change of variables in the plane
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The new frame system is still orthogonal, confirmed by the matrix

A =

( 1√
2

1√
2

− 1√
2

1√
2

)
,

which is orthogonal since ATA = I. (In general, an affine change of variables
is orthogonal if the associated matrix is orthogonal.) The change preserves the
orientation, for detA = 1 > 0. �

6.6.1 Special frame systems

We examine the changes of variables associated to relevant transformations of the
plane and of space.

i) Polar coordinates. Denote

Φ : [0,+∞)× R→ R2 , (r,θ ) �→ (x, y) = (r cos θ, r sin θ)

the map transforming polar coordinates into Cartesian ones (Fig. 6.11, left). It is
differentiable, and its Jacobian

JΦ(r,θ ) =

( ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
(6.28)

has determinant
detJΦ(r,θ ) = r cos2 θ + r sin2 θ = r . (6.29)

Its positivity on (0,+∞)× R makes the Jacobian invertible; in terms of r and θ,
we have

JΦ(r,θ )−1 =

(
∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

)
=

(
cos θ sin θ

− sin θ

r

cos θ

r

)
. (6.30)

Therefore,Φ is a change of variables in the plane if we choose, for example, R = R2

and R′ = (0,+∞) × (−π,π ] ∪ {(0, 0)}. The interior A′ = (0,+∞) × (−π,π ) has
open image under Φ given by A = R2 \ {(x, 0) ∈ R2 : x ≤ 0}, the plane minus
the negative x-axis. The change is orthogonal, as JΦTJΦ = diag (1, r2), and
preserves the orientation, because detJΦ > 0 on A′.

Rays emanating from the origin (for θ constant) and circles centred at the origin
(r constant) are the coordinate lines. The tangent vectors τi, i = 1, 2, columns of
JΦ, will henceforth be indicated by τr, τθ and written as row vectors

τr = (cos θ, sin θ) , τθ = r(− sin θ, cos θ) .

Normalising the second one we obtain an orthonormal basis of R2

tr = (cos θ, sin θ) , tθ = (− sin θ, cos θ) (6.31)



6.6 Variable changes 231
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i
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tθ

tr

Figure 6.11. Polar coordinates in the plane (left); coordinate lines and unit tangent
vectors (right)

formed by the unit tangent vectors to the coordinate lines, at each point P ∈
R2 \ {(0, 0)} (Fig. 6.11, right).

Take a scalar map f(x, y) defined on a subset of R2 not containing the origin.
In polar coordinates it will be

f̃(r,θ ) = f(r cos θ, r sin θ) ,

or f̃ = f◦Φ. Supposing f differentiable on its domain, the chain rule (Theorem 6.14
or, more precisely, formula (6.12)) gives

∇(r,θ)f̃ = ∇f(x,y) JΦ ,

whose inverse is ∇f(x,y) = ∇(r,θ)f̃ JΦ−1. Dropping the symbol ∼ for simplicity,
those identities become, by (6.28), (6.30),

∂f

∂r
=

∂f

∂x
cos θ +

∂f

∂y
sin θ ,

∂f

∂θ
= −∂f

∂x
r sin θ +

∂f

∂y
r cos θ (6.32)

and

∂f

∂x
=

∂f

∂r
cos θ − ∂f

∂θ

sin θ

r
,

∂f

∂y
=

∂f

∂r
sin θ +

∂f

∂θ

cos θ

r
. (6.33)

Any vector field g(x, y) = g1(x, y)i + g2(x, y)j on a subset of R2 without the
origin can be written, at each point (x, y) = (r cos θ, r sin θ) of the domain, using
the basis {tr, tθ}:

g = grtr + gθtθ (6.34)

(here and henceforth the subscripts r, θ do not denote partial derivatives, rather
components).
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As the basis is orthonormal,

gr = g · tr = (g1i+ g2j) · tr = g1 cos θ + g2 sin θ ,

gθ = g · tθ = (g1i+ g2j) · tθ = −g1 sin θ + g2 cos θ .
(6.35)

In particular, if g is the gradient of a differentiable function, grad f =
∂f

∂x
i+

∂f

∂y
j,

by (6.32) we have

gr =
∂f

∂x
cos θ +

∂f

∂y
sin θ =

∂f

∂r
, gθ = −∂f

∂x
sin θ +

∂f

∂y
cos θ =

1

r

∂f

∂θ
;

therefore the gradient in polar coordinates reads

grad f =
∂f

∂r
tr +

1

r

∂f

∂θ
tθ . (6.36)

The divergence of a differentiable vector field g in polar coordinates is, similarly,

div g =
∂g1
∂x

+
∂g2
∂y

=
∂g1
∂r

cos θ − ∂g1
∂θ

sin θ

r
+

∂g2
∂r

sin θ +
∂g2
∂θ

cos θ

r

=
∂

∂r
(g1 cos θ + g2 sin θ)+

1

r

[∂
∂θ

(−g1 sin θ + g2 cos θ)+(g1 cos θ + g2 sin θ)
]
;

using (6.34) and (6.35), we find

divg =
∂gr
∂r

+
1

r
gr +

1

r

∂gθ
∂θ

. (6.37)

Combining this with (6.36) yields the polar representation of the Laplacian Δf of
a C2 map on a plane region without the origin. Setting g = grad f in (6.37),

Δf =
∂2f

∂r2
+
1

r

∂f

∂r
+

1

r2
∂2f

∂θ2
. (6.38)

Let us return to (6.34), and notice that – in contrast to the canonical unit
vectors i, j – the unit vectors tr, tθ vary from point to point; from (6.31), in
particular, follow

∂tr
∂r

= 0 ,
∂tr
∂θ

= tθ ;
∂tθ
∂r

= 0 ,
∂tθ
∂θ

= −tr . (6.39)

To differentiate g with respect to r and θ then, we will use the usual product rule

∂g

∂r
=

∂gr
∂r

tr +
∂gθ
∂r

tθ ,

∂g

∂θ
=
(∂gr
∂θ

− gθ

)
tr +

(∂gθ
∂θ

+ gr

)
tθ .
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ii) Cylindrical coordinates. Consider the C∞ transformation

Φ : [0,+∞)× R2 → R3 , (r, θ, t) �→ (x, y, z) = (r cos θ, r sin θ, t)

describing the passage from cylindrical to Cartesian coordinates (Fig. 6.12, left).
The Jacobian

JΦ(r, θ, t) =

⎛⎝ cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

⎞⎠ (6.40)

has determinant
detJΦ(r, θ, t) = r , (6.41)

strictly positive on (0,+∞)×R2, so the matrix is invertible. Moreover, JΦTJΦ =
diag (1, r2, 1).

Thus Φ is an orthogonal, orientation-preserving change of coordinates from
R′ = (0,+∞) × (−π,π ] × R ∪ {(0, 0, t) : t ∈ R} to R = R3. The interior of
R′ is A′ = (0,+∞) × (−π,π ) × R, whose image under Φ is the open set A =
R3 \ {(x, 0, z) ∈ R3 : x ≤ 0, z ∈ R}, the whole space minus half a plane.

The coordinate lines are: horizontal rays emanating from the z-axis, horizontal
circles centred along the z-axis, and vertical lines. The corresponding unit tangent
vectors at P ∈ R3 \ {(0, 0, z) : z ∈ R} are, with the obvious notations,

tr = (cos θ, sin θ, 0) , tθ = (− sin θ, cos θ, 0) , tt = (0, 0, 1) . (6.42)

They form an orthonormal frame at P (Fig. 6.12, right).
A scalar map f(x, y, z), differentiable on a subset of R3 not containing the axis

z, is
f̃(r, θ, t) = f(r cos θ, r sin θ, t) ;

x

O

y

z

rθ

P = (x, y, z)

P ′ = (x, y, 0) y
x

z

O

P0

i j

k

tθ

tt

tr

Figure 6.12. Cylindrical coordinates in space (left); coordinate lines and unit tangent
vectors (right)
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spelling out ∇(r,θ,t)f̃ = ∇f(x,y,z)JΦ gives

∂f

∂r
=

∂f

∂x
cos θ +

∂f

∂y
sin θ ,

∂f

∂θ
= −∂f

∂x
r sin θ +

∂f

∂y
r cos θ ,

∂f

∂t
=

∂f

∂z
.

The inverse formulas are

∂f

∂x
=

∂f

∂r
cos θ − ∂f

∂θ

sin θ

r
,

∂f

∂y
=

∂f

∂r
sin θ +

∂f

∂θ

cos θ

r
,

∂f

∂z
=

∂f

∂t
.

At last, this is how the basic differential operators look like in cylindrical coordin-
ates

grad f =
∂f

∂r
tr +

1

r

∂f

∂θ
tθ +

∂f

∂t
tt ,

div f =
∂fr
∂r

+
1

r
fr +

1

r

∂fθ
∂θ

+
∂ft
∂t

,

curl f =
(1
r

∂ft
∂θ

− ∂fθ
∂t

)
tr +

(∂fr
∂t

− ∂ft
∂r

)
tθ +

(∂fθ
∂r

− 1

r

∂fr
∂θ

+
1

r
fθ

)
tt ,

Δf =
∂2f

∂r2
+
1

r

∂f

∂r
+

1

r2
∂2f

∂θ2
+

∂2f

∂t2
.

iii) Spherical coordinates. The function

Φ : [0,+∞)× R2 → R3 , (r, ϕ,θ ) �→ (x, y, z) = (r sinϕ cos θ, r sinϕ sin θ, r cosϕ)

is differentiable infinitely many times, and describes the passage from spherical
coordinates to Cartesian coordinates (Fig. 6.13, left). As

JΦ(r, ϕ,θ ) =

⎛⎜⎝ sinϕ cos θ r cosϕ cos θ −r sinϕ sin θ
sinϕ sin θ r cosϕ sin θ r sinϕ cos θ

cosϕ −r sinϕ 0

⎞⎟⎠ , (6.43)

we compute the determinant by expanding along the last row; recalling sin2 θ +
cos2 θ = 1 and sin2 ϕ+ cos2 ϕ = 1, we find

detJΦ(r, ϕ,θ ) = r2 sinϕ , (6.44)

strictly positive on (0,+∞)×(0, π)×R. The Jacobian is invertible on that domain.
Furthermore, JΦTJΦ = diag (1, r(cos2 ϕ+ r sin2 ϕ), r2 sinϕ).

Then Φ is an orthogonal, orientation-preserving change of variables mapping
R′ = (0,+∞) × [0, π] × (−π,π ] ∪ {(0, 0, 0)} onto R = R3. The interior of R′
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x

O

y

z

r

θ

ϕ
P = (x, y, z)

P ′ = (x, y, 0)

yx

z

O

P0

i j

k

tθ

tϕ

tr

Figure 6.13. Spherical coordinates in space (left); coordinate lines and unit tangent
vectors (right)

is A′ = (0,+∞) × (0, π) × (−π,π ), whose image is in turn the open set A =
R3 \ {(x, 0, z) ∈ R3 : x ≤ 0, z ∈ R}, as for cylindrical coordinates.

There are three types of coordinate lines, namely rays from the origin, vertical
half-circles centred at the origin (the Earth’s meridians), and horizontal circles
centred on the z-axis (the parallels). The unit tangent vectors at P ∈ R3\{(0, 0, 0)}
result from normalising the columns of JΦ

tr = (sinϕ cos θ, sinϕ sin θ, cosϕ) ,

tϕ = (cosϕ cos θ, cosϕ sin θ,− sinϕ) ,

tθ = (− sin θ, cos θ, 0) .

(6.45)

They are an orthonormal basis of R3 at the point P (Fig. 6.13, right).

Given a scalar map f(x, y, z), differentiable away from the origin, in spherical
coordinates

f̃(r, ϕ,θ ) = f(r sinϕ cos θ, r sinϕ sin θ, r cosϕ) ,

we express ∇(r,ϕ,θ)f̃ = ∇f(x,y,z)JΦ (dropping ∼) as

∂f

∂r
=

∂f

∂x
sinϕ cos θ +

∂f

∂y
sinϕ sin θ +

∂f

∂z
cosϕ

∂f

∂ϕ
=

∂f

∂x
r cosϕ cos θ +

∂f

∂y
r cosϕ sin θ − ∂f

∂z
r sinϕ

∂f

∂θ
= −∂f

∂x
r sinϕ sin θ +

∂f

∂y
r sinϕ cos θ .
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The inverse relationships read

∂f

∂x
=

∂f

∂r
sinϕ cos θ +

∂f

∂ϕ

cosϕ cos θ

r
− ∂f

∂θ

sin θ

r sinϕ
∂f

∂y
=

∂f

∂r
sinϕ sin θ +

∂f

∂ϕ

cosϕ sin θ

r
+

∂f

∂θ

cos θ

r sinϕ
∂f

∂z
=

∂f

∂r
cosϕ− ∂f

∂ϕ

sinϕ

r
.

The usual differential operators in spherical coordinates read

grad f =
∂f

∂r
tr +

1

r

∂f

∂ϕ
tϕ +

1

r sinϕ

∂f

∂θ
tθ ,

div f =
∂fr
∂r

+
2

r
fr +

1

r

∂fϕ
∂ϕ

+
tanϕ

r
fϕ +

1

r sinϕ

∂fθ
∂θ

,

curl f =
(1
r

∂fθ
∂ϕ

+
tanϕ

r
fθ − ∂fϕ

∂θ

)
tr +

( 1

r sinϕ

∂fr
∂θ

− ∂fθ
∂r

− 1

r
fθ

)
tϕ

+
(∂fϕ
∂r

+
1

r
fϕ − ∂fr

∂ϕ

)
tθ ,

Δf =
∂2f

∂r2
+
2

r

∂f

∂r
+

1

r2
∂2f

∂ϕ2
+
tanϕ

r2
∂f

∂ϕ
+

1

r2 sin2 ϕ

∂2f

∂θ2
.

6.7 Regular surfaces

Surfaces, and in particular compact ones (defined by a compact region R), were
introduced in Sect. 4.7.

Definition 6.32 A surface σ : R → R3 is regular if σ is C1 on A =
◦
R

and the Jacobian matrix Jσ has maximal rank (= 2) at every point of A.
A compact surface is regular if it is the restriction to R of a regular surface
defined on an open set containing R.

The condition on Jσ is equivalent to the fact that the vectors
∂σ

∂u
(u0, v0) and

∂σ

∂v
(u0, v0) are linearly independent for any (u0, v0) ∈ A. By Definition 6.1, such

vectors form the columns of the Jacobian Jσ

Jσ =
(
∂σ

∂u

∂σ

∂v

)
. (6.46)
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Examples 6.33

i) The surfaces seen in Examples 4.37 i), iii), iv) are regular, as simple calculations
will show.

ii) The surface of Example 4.37 ii) is regular if (and only if) ϕ is C1 on A. If so,

Jσ =

⎛⎜⎜⎝
1 0

0 1

∂ϕ

∂u

∂ϕ

∂v

⎞⎟⎟⎠ ,

whose first two rows grant the matrix rank 2.

iii) The surface σ : R× [0, 2π]→ R3,

σ(u, v) = u cos v i+ u sin vj + uk

parametrises the cone
x2 + y2 − z2 = 0 .

Its Jacobian is

Jσ =

⎛⎝ cos v −u sin v
sin v u cos v

1 0

⎞⎠ .

As the determinants of the first minors are u, u sin v, −u cos v, the surface is not
regular: at points (u0, v0) = (0, v0), mapped to the cone’s apex, all minors are
singular. �

Before we continue, let us point out the use of terminology. Although Defin-
ition 4.36 privileges the analytical aspects, the prevailing (by standard practice)
geometrical viewpoint uses the term surface to mean the trace Σ ⊂ R3 as well,
retaining for the function σ the role of parametrisation of the surface. We follow
the mainstream and adopt this language, with the additional assumption that all
parametrisations σ be simple. In such a way, many subsequent notions will have
a more immediate, and intuitive, geometrical representation. With this matter
settled, we may now see a definition.

Definition 6.34 A subset Σ of R3 is a regular and simple surface if Σ
admits a regular and simple parametrisation σ : R→ Σ.

Let then Σ ⊂ R3 be a regular simple surface parametrised by σ : R → Σ,

and P0 = σ(u0, v0) the point on Σ image of (u0, v0) ∈ A =
◦
R. Since the vectors

∂σ

∂u
(u0, v0),

∂σ

∂v
(u0, v0) are by hypothesis linearly independent, we introduce the

map Π : R2 → R3,

Π(u, v) = σ(u0, v0) +
∂σ

∂u
(u0, v0) (u − u0) +

∂σ

∂v
(u0, v0) (v − v0) , (6.47)
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that parametrises a plane through P0 (recall Example 4.37 i)). It is called the
tangent plane to the surface at P0. Justifying the notation, notice that the
functions

u �→ σ(u, v0) and v �→ σ(u0, v)

define two regular curves lying on Σ and passing through P0. Their tangent vectors

at P0 are
∂σ

∂u
(u0, v0) and

∂σ

∂v
(u0, v0); therefore the tangent lines to such curves at

P0 lie on the tangent plane, and actually they span it by linear combination. In
general, the tangent plane contains the tangent vector to any regular curve passing
through P0 and lying on the surface Σ.

Definition 6.35 The vector

ν(u0, v0) =
∂σ

∂u
(u0, v0) ∧ ∂σ

∂v
(u0, v0) (6.48)

is the surface’s normal (vector) at P0. The corresponding unit normal will

be indicated by n(u0, v0) =
ν(u0, v0)

‖ν(u0, v0)‖ .

Due to the surface’s regularity, ν(u0, v0) is non-zero. It is also orthogonal to
∂σ

∂u
(u0, v0) and

∂σ

∂v
(u0, v0), so if we compute it at P0 it will be orthogonal to

the tangent plane at P0; this explains the name (Fig. 6.14).
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Figure 6.14. Tangent plane Π and normal vector ν at P0
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Figure 6.15. Normal vector of a surface

Example 6.36

i) The regular surface σ : R→ R3, σ(u, v) = u i+v j+ϕ(u, v)k, with ϕ ∈ C1(R)
(see Example 6.33 ii)), has

ν(u, v) = −∂ϕ

∂u
(u, v) i− ∂ϕ

∂v
(u, v) j + k . (6.49)

Note that, at any point, the normal vector points upwards, because ν · k > 0
(Fig. 6.15).

ii) Let σ : [0, π]× [0, 2π]→ R3 be the parametrisation of the ellipsoid with centre
the origin and semi-axes a, b, c > 0 (see Example 4.37 iv)). Then

∂σ

∂u
(u, v) = a cosu cos v i+ b cosu sin v j − c sinuk ,

∂σ

∂v
(u, v) = −a sinu sin v i+ b sinu cos v j + 0k ,

whence

ν(u, v) = bc sin2u cos v i+ ac sin2u sin v j + ab sinu cosuk .

If the surface is a sphere of radius r (when a = b = c = r),

ν(u, v) = r sinu(r sinu cos v i+ r sinu sin v j + r cosuk)

so the normal ν at x is proportional to x, and thus aligned with the radial
vector. �

Just like with the tangent to a curve, one could prove that the tangent plane is
intrinsic to the surface, in other words it does not depend on the parametrisation.
As a result the normal’s direction is intrinsic as well, while length and orientation
vary with the chosen parametrisation.



240 6 Differential calculus for vector-valued functions

6.7.1 Changing parametrisation

Suppose Σ is regular, with two parametrisations σ : R→ Σ and σ̃ : R̃ → Σ.

Definition 6.37 The parametrisations σ̃ and σ are congruent if there
is a change of variables Φ : R̃ → R such that σ̃ = σ ◦ Φ. If Σ is a compact
surface, Φ is required to be the restriction of a change of variables between
open sets containing R̃ and R.

Although the definition does not require the parametrisations to be simple, we
shall assume they are throughout. The property of being regular and simple is
preserved by congruence.

Bearing in mind the discussion of Sect. 6.6, if A and Ã are the interiors of R
and R̃, then either

detJΦ > 0 on Ã or detJΦ < 0 on Ã .

In the former case σ̃ is equivalent to σ, while in the latter σ̃ is anti-equivalent
to σ. In other terms, an orientation-preserving (orientation-reversing) change of
variables induces a parametrisation equivalent (anti-equivalent) to the given one.

The tangent vectors
∂σ̃

∂ũ
and

∂σ̃

∂ṽ
can be easily expressed as linear combinations

of
∂σ

∂u
and

∂σ

∂v
. As it happens, recalling (6.46) and the chain rule (6.9), and

omitting to write the point (u0, v0) = Φ(ũ0, ṽ0) of differentiation, we have(
∂σ̃

∂ũ

∂σ̃

∂ṽ

)
=
(
∂σ

∂u

∂σ

∂v

)
JΦ ;

setting JΦ =

(
m11 m12

m21 m22

)
, these become

∂σ̃

∂ũ
= m11

∂σ

∂u
+m21

∂σ

∂v
,

∂σ̃

∂ṽ
= m12

∂σ

∂u
+m22

∂σ

∂v
.

They show, on one hand, that
∂σ̃

∂ũ
and

∂σ̃

∂ṽ
generate the same plane of

∂σ

∂u
and

∂σ

∂v
, as prescribed by (6.47); therefore

the tangent plane to a surface Σ is invariant for congruent parametrisations.

On the other hand, the previous expressions and property (4.8) imply

∂σ̃

∂ũ
∧ ∂σ̃

∂ṽ
= m11m12

∂σ

∂u
∧ ∂σ

∂u
+m11m22

∂σ

∂u
∧ ∂σ

∂v
+
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+m21m12
∂σ

∂v
∧ ∂σ

∂u
+m21m22

∂σ

∂v
∧ ∂σ

∂v

= (m11m22 −m12m21)
∂σ

∂u
∧ ∂σ

∂v
.

From these follows that the normal vectors at the point P0 satisfy

ν̃ = (detJΦ)ν , (6.50)

which in turn corroborates that

two congruent parametrisations generate parallel normal vectors; the two ori-
entations are the same for equivalent parametrisations (orientation-preserving
change of variables), otherwise they are opposite (orientation-reversing
change).

6.7.2 Orientable surfaces

Proposition 6.27 guarantees two parametrisations of the same regular, simple curve
Γ of Rm are congruent, hence there are always two orientations to choose from.
The analogue result for surfaces cannot hold, and we will see counterexamples (the
Möbius strip, the Klein bottle). Thus the following definition makes sense.

Definition 6.38 A regular simple surface Σ ⊂ R3 is said orientable if any
two regular and simple parametrisations are congruent.

The name comes from the fact that the surface may be endowed with two ori-
entations (näıvely, the crossing directions) depending on the normal vector. All
equivalent parametrisations will have the same orientation, whilst anti-equivalent
ones will have opposite orientations. It can be proved that a regular and simple
surface parametrised by an open plane region R is always orientable.

When the regular, simple surface is parametrised by a non-open region, the
picture becomes more complicated and the surface may, or not, be orientable. With
the help of the next two examples we shed some light on the matter. Consider first
the cylindrical strip of radius 1 and height 2, see Fig. 6.16, left.

We parametrise this compact surface by the map

σ : [0, 2π]× [−1, 1]→ R3 , σ(u, v) = cosu i+ sinu j + vk , (6.51)

regular and simple because, for instance, injective on [0, 2π)× [−1, 1]. The associ-
ated normal

ν(u, v) = cosu i+ sinu j + 0k
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constantly points outside the cylinder. To nurture visual intuition, we might say
that a person walking on the surface (staying on the plane xy, for instance) can
return to the starting point always keeping the normal vector on the same side.
The surface is orientable, it has two sides – an inside and an outside – and if the
person wanted to go to the opposite side it would have to cross the top rim v = 1
or the bottom one v = −1. (The rims in question are the surface’s boundaries, as
we shall see below.)

The second example is yet another strip, called Möbius strip, and shown in
Fig. 6.16, right. To construct it, start from the previous cylinder, cut it along a
vertical segment, and then glue the ends back together after twisting one by 180◦.
The precise parametrisation σ : [0, 2π]× [−1, 1]→ R3 is

σ(u, v) =
(
1− v

2
cos

u

2

)
cosu i+

(
1− v

2
cos

u

2

)
sinu j − v

2
sin

u

2
k .

For u = 0, i.e., at the point P0 = (1, 0, 0) = σ(0, 0), the normal vector is ν = 1
2k.

As u increases, the normal varies with continuity, except that as we go back to
P0 = σ(2π, 0) after a complete turn, we have ν = − 1

2k, opposite to the one we
started with. This means that our imaginary friend starts from P0 and after one
loop returns to the same point (without crossing the rim) upside down! The Möbius
strip is a non-orientable surface; it has one side only and one boundary: starting
at any point of the boundary and going around the origin twice, for instance, we
reach all points of the boundary, in contrast to what happens for the cylinder.

At any rate the Möbius strip embodies a somehow “pathological” situation.
Surfaces (compact or not) delimiting elementary solids – spheres, ellipsoid, cylin-
ders, cones and the like – are all orientable. More generally,

Proposition 6.39 Every regular simple surface Σ contained in the boundary
∂Ω of an open, connected and bounded set Ω ⊂ R3 is orientable.

We can thus choose for Σ either the orientation from inside towards outside
Ω, or the converse. In the first case the unit normal n points outwards, in the
second it points inwards.
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Figure 6.16. Cylinder (left) and Möbius strip (right)
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6.7.3 Boundary of a surface; closed surfaces

The other important object concerning a surface is the boundary, mentioned above.
This is a rather delicate notion if one wishes to discuss it in full generality, but we
shall present the matter in an elementary way.

Let Σ ⊂ R3 be a regular and simple surface, which we assume to be a closed
subset Σ = Σ of R3 (in the sense of Definition 4.5). Then let σ : R ⊂ R2 → Σ be

a parametrisation over the closed region R. Calling A =
◦
R the interior of R, the

image Σ◦
σ = σ(A) is a subset of Σ = σ(R). The difference set

∂Σσ = Σ \Σ◦
σ

will be called boundary of Σ (relative to σ). Subsequent examples will show
that ∂Σσ contains all points that are obvious boundary points of Σ in purely
geometrical terms, but might also contain points that depend on the chosen para-
metrisation; this justifies the subscript σ. It is thus logical to define the boundary
of Σ (viewed as an intrinsic object to the surface) as the set

∂Σ =
⋂
σ

∂Σσ ,

where the intersection is taken over all possible parametrisations (non-regular as
well) of Σ. We point out that the symbol ∂Σ denoted in Sect. 4.3 the frontier of
Σ, seen as subset of R3; for regular surfaces this set coincides with Σ = Σ, since
no interior points are present. Our treatise of surfaces will only involve the notion
of boundary, not of frontier. Here are the promised examples.

Examples 6.40

i) The upper hemisphere with centre (0, 0, 1) and radius 1

Σ = {(x, y, z) ∈ R3 : x2 + y2 + (z − 1)2 = 1, z ≥ 1}
is a closed set Σ = Σ inside R3. Geometrically, it is quite intuitive (Fig. 6.17,
left) that its boundary is the circle

∂Σ = {(x, y, z) ∈ R3 : x2 + y2 + (z − 1)2 = 1, z = 1} .
If one parametrises Σ by

σ : R = {(u, v) ∈ R2 : u2+v2 ≤ 1} → R3 , σ(u, v) = ui+vj+(1+
√
u2 + v2)k ,

it follows that

Σ◦
σ = {(x, y, z) ∈ R3 : x2 + y2 + (z − 1)2 = 1, z > 1} ,

so Σ \Σ◦
σ is precisely the boundary we claimed. Parametrising Σ with spherical

coordinates, instead,

σ̃ : R̃ = [0,
π

2
]×[0, 2π]→ R3 , σ̃(u, v) = sinu cos v i+sinu sin v j+(1+cosu)k ,

so Ã = (0, π
2 ) × (0, 2π), we obtain Σ◦

σ̃ as the portion of surface lying above the
plane z = 1, without the equatorial arc joining the North pole (0, 0, 2) to (1, 0, 1)
on the plane xz (Fig. 6.17, right); analytically,
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Figure 6.17. The hemisphere of Example 6.40 i)

Σ◦
σ̃ = {(x, y, z) ∈ R3 : x2 + y2 + (z − 1)2 = 1, z > 1}

\{(x, y, z) ∈ R3 : x > 0, y = 0, x2 + (z − 1)2 = 1} .
Besides the points on the geometric boundary, Σ◦

σ̃ consists of the aforementioned

arc, which is image of part of the boundary of R̃; these points depend on the
particular parametrisation we have chosen.

ii) Let

Σ = {(x, y, z) ∈ R3 : x2 + y2 = 1, |z| ≤ 1}
be the (closed) cylinder of Fig. 6.18, whose boundary ∂Σ consists of the circles
x2 + y2 = 1, z = ±1. Given u0 ∈ [0, 2π], we may parametrise Σ by

σu0 : [0, 2π]× [−1, 1]→ R3 , σu0(u, v) = cos(u− u0) i+ sin(u− u0) j + vk ,

generalising the parametrisation σ = σ0 seen in (6.51). Then

Σ◦
σu0

= {(x, y, z) ∈ R3 : x2 + y2 = 1, |z| < 1}
\{(cosu0, sinu0, z) ∈ R3 : |z| < 1} ,

and ∂Σσu0
contains, apart from the two circles giving ∂Σ, also the vertical

segment {(cosu0, sinu0, z) ∈ R3 : |z| < 1}. Intersecting all sets ∂Σσu0
– any two

of them is enough – gives the geometric boundary of Σ.

iii) Consider at last the surface

Σ =
{
(x, y, z) ∈ R3 : (x, y) ∈ Γ, 0 ≤ z ≤ 1

}
,

where Γ is the Jordan arc in the plane xy defined by

γ : [0, 1]→ R2 , γ1(t) = ϕ(t) = t(1− t)2 and γ2(t) = ψ(t) = (1− t)t2
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Figure 6.18. The cylinder relative to Example 6.40 ii)

(see Fig. 6.19, left). Let us first parametrise Σ with σ : R → R3, where R =
[0, 1]2 and σ(u, v) =

(
ϕ(u), ψ(u), v

)
. It is easy to convince ourselves that the

boundary ∂Σσ of σ is ∂Σσ = Γ0 ∪ Γ1 ∪ S0, where Γ0 = Γ × {0}, Γ1 = Γ × {1}
and S0 = {(0, 0)} × [0, 1] (Fig. 6.19, right). But if we extend the maps ϕ and
ψ periodically to the intervals [k, k + 1], we may consider, for any u0 ∈ R, the
parametrisations σu0 : R → R3 given by σu0(u, v) =

(
ϕ(u − u0), ψ(u − u0), z

)
,

for which Σ◦
σu0

= Γ0 ∪ Γ1 ∪ Su0 , Su0 = {γ(u0)} × [0, 1]. We conclude that the
vertical segment Su0 does depend upon the parametrisation, whereas the top
and bottom loops Γ0, Γ1 are common to all parametrisations. In summary, the
boundary of Σ is the union of the loops, ∂Σ = Γ0 ∪ Γ1. �
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Σ

Figure 6.19. The arc Γ and surface Σ of Example 6.40 iii)
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Among surfaces a relevant role is played by those that are closed. A regular,
simple surface Σ ⊂ R3 is closed if it is bounded (as a subset of R3) and has
no boundary (∂Σ = ∅). This notion, too, is heavily dependent on the surface’s
geometry, and differs from the topological closure of Definition 4.5 (namely, each
closed surface is necessarily a closed subset of R3, but there are topologically-
closed surfaces with non-empty boundary). Examples of closed surfaces include
the sphere and the torus, which we introduce now.

Examples 6.41

i) Arguing as in Example 6.40 i), we see that the parametrisation of the unit
sphere Σ = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} by spherical coordinates (Ex-
ample 4.37 iii)) has a boundary, the semi-circle from the North pole to the South
pole lying in the half-plane x ≥ 0, y = 0. Any rotation of the coordinate system
will produce another parametrisation whose boundary is a semi-circle joining
antipodal points. It is straightforward to see that the boundaries’ intersection is
empty.

ii) A torus is the surface Σ built by identifying the top and bottom boundaries
of the cylinder of Example 6.40 ii). It can also be obtained by a 2π-revolution
around the z-axis of a circle of radius r lying on a plane containing the axis,
having centre at a point of the plane xy at a distance R + r, R ≥ 0, from the
axis (see Fig. 6.20). A parametrisation is σ : [0, 2π]× [0, 2π]→ R3 with

σ(u, v) = (R+ r cosu) cos v i+ (R + r cosu) sin v j + r sinuk .

The boundary ∂Σσ is the union of the circle on z = 0 with centre the origin and
radius R+ r, and the circle on y = 0 centred at (R, 0, 0) with radius r.
Here, as well, changing the parametrisation shows the geometric boundary ∂Σ
is empty, making the torus a closed surface. �

The next theorem is the closest kin to the Jordan Curve Theorem 4.33 for
plane curves.
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Figure 6.20. The torus of Example 6.41 ii)
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Theorem 6.42 A closed orientable surface Σ divides the space R3 in two
open regions Ai, Ae whose common frontier is Σ. The region Ai (the in-
terior) is bounded, while the other region Ae (the exterior) is unbounded.

Nonetheless, there do exist closed non-orientable surfaces, which do not separ-
ate space in an inside and an outside. A traditional example is the Klein bottle,
built from the Möbius strip in the same fashion the torus is constructed by glueing
the cylinder’s two rims.

6.7.4 Piecewise-regular surfaces

This generalisation of regularity allows the surface to contain curves where differen-
tiability fails, and grants us a means of dealing with surfaces delimiting polyhedra
such as cubes, pyramids, and truncated pyramids, or solids of revolution like trun-
cated cones or cylinders. As in Sect. refsec:bordo, we shall assume all surfaces are
closed subsets of R3.

Definition 6.43 A subset Σ ⊂ R3 is a piecewise-regular, simple surface
if it is the union of finitely many regular, simple surfaces Σ1, . . . , ΣK whose
pairwise intersections Σh ∩Σk (if not empty or a point) are piecewise-regular
curves Γhk contained in the boundary of both Σh and Σk.
The analogue definition holds for piecewise-regular compact surfaces.

Each surface Σk is called a face (or component) of Σ, and the intersection
curve between any two faces is an edge of Σ .

A piecewise regular simple surface Σ is orientable if every component is ori-
entable in such a way that adjacent components have compatible orientations.
Proposition 6.39 then extends to (compact) piecewise-regular, simple surfaces.

The boundary ∂Σ of a piecewise-regular simple surface Σ is the closure of
the set of points belonging to the boundary of one, and one only, component.
Equivalently, consider the union of the single components’ boundaries, without
the points common to two or more components, and then take the closure of this
set: this is ∂Σ. A piecewise-regular simple surface is closed if bounded and with
empty boundary.

Examples 6.44

i) The frontier of a cube is piecewise regular, and has the cube’s six faces as
components; it is obviously orientable and closed (Fig. 6.21, left).

ii) The piecewise-regular surface obtained from the previous one by taking away
two opposite faces (Fig. 6.21, right) is still orientable, but no longer closed. Its
boundary is the union of the boundaries of the faces removed. �
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Figure 6.21. The cubes of Examples 6.44

Remark 6.45 Example ii) provides us with the excuse for explaining why one
should insist on the closure of the boundary, instead of taking the mere boundary.
Consider a cube aligned with the Cartesian axes, from which we have removed the
top and bottom faces. The union of the boundaries of the 4 faces left is given by
the 12 edges forming the skeleton. Getting rid of the points common to two faces
leaves us with the 4 horizontal top edges and the 4 bottom ones, without the 8
vertices. Closing what is left recovers the 8 missing vertices, so the boundary is
precisely the union of the 8 horizontal edges. �

6.8 Exercises

1. Find the Jacobian matrix of the following functions:

a) f(x, y) = e2x+y i+ cos(x+ 2y) j

b) f(x, y, z) = (x+ 2y2 + 3z3) i+ (x+ sin 3y + ez) j

2. Determine the divergence of the following vector fields:

a) f(x, y) = cos(x+ 2y) i+ e2x+y j

b) f(x, y, z) = (x+ y + z) i+ (x2 + y2 + z2) j + (x3 + y3 + z3)k

3. Compute the curl of the vector fields:

a) f(x, y, z) = x i+ y j + z k

b) f(x, y, z) = xyz i+ z sin y j + xey k

c) f(x, y) =
( y√

x2 + y2

)
i+
( x√

x2 + y2

)
j

d) f(x, y) = grad (logx y)
2
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4. Given f(x, y) = 3x+2y and g(u, v) = (u+ v) i+uv j, compute the composite
map f ◦ g explicitly and find its gradient.

5. Compute the composite of the following pairs of maps and the composite’s
gradient:

a) f(s, t) =
√
s+ t , g(x, y) = xy i+

x

y
j

b) f(x, y, z) = xyz , g(r, s, t) = (r + s) i+ (r + 3t) j + (s− t)k

6. Let f : R2 → R2 and g : R3 → R2 be defined by

f(x, y) = sin(2x+ y) i+ex+2y j , g(u, v, z) = (u+2v2+3z3) i+(u2− 2v) j .

a) Compute their Jacobians Jf and Jg .
b) Determine the composite h = f ◦ g and its Jacobian Jh at the point

(1,−1, 0).

7. Given the following maps, determine the first derivative and the monotonicity
on the interval indicated:

a) f(x) =

∫ x

0

arctanx2y

y
dy , t ∈ [1,+∞)

b) f(x) =

∫ √
1−x

0

y 3

√
8 + y4 − x

2
dy , t ∈ [0, 1]

8. Compute the length of the arcs:

a) γ(t) = (t, 3t2) , t ∈ [0, 1]

b) γ(t) = (t cos t, t sin t, t) , t ∈ [0, 2π]

c) γ(t) = (t2, t2, t3) , t ∈ [0, 1]

9. Determine the values of α ∈ R for which the length of γ(t) = (t, αt2, t3), t ∈
[0, T ], equals �(γ) = T + T 3.

10. Consider the closed arc γ whose trace is the union of the segment between
A = (− log 2, 1/2) and B = (1, 0), the circular arc x2 + y2 = 1 joining B to
C = (0, 1), and the arc γ3(t) = (t, et) from C to A. Compute its length.

11. Tell whether the following arcs are closed, regular or piecewise regular:

a) γ(t) =
(
t(t− π)2(t− 2πt), cos t

)
, t ∈ [0, 2π]

b) γ(t) = (sin2 2πt, t) , t ∈ [0, 1]
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12. What are the values of the parameter α ∈ R for which the curve

γ(t) =

{
(αt, t3, 0) if t < 0 ,

(sinα2t, 0, t3) if t ≥ 0

is regular?

13. Calculate the principal normal vector n(s), the binormal b(s) and the torsion
b′(s) for the circular helix γ(t) = (cos t, sin t, t), t ∈ R.

14. If a curve γ(t) = x(t)i + y(t)j is (r(t), θ(t)) in polar coordinates, verify that

‖γ′(t)‖2 =
(dr
dt

)2
+
(
r(t)

dθ

dt

)2
.

15. Check that if a curve γ(t) = x(t)i + y(t)j + z(t)k is given by
(
r(t), θ(t), z(t)

)
in cylindrical coordinates, then

‖γ′(t)‖2 =
(dr
dt

)2
+
(
r(t)

dθ

dt

)2
+
(dz
dt

)2
.

16. Check that the curve γ(t) = x(t)i+y(t)j+z(t)k, given in spherical coordinates
by
(
r(t), ϕ(t), θ(t)

)
, satisfies

‖γ′(t)‖2 =
(dr
dt

)2
+
(
r(t)
)2(dϕ

dt

)2
+
(
r(t) sinϕ(t)

)2(dθ
dt

)2
.

17. Using Exercise 15, compute the length of the arc γ(t) given in cylindrical
coordinates by

γ(t) =
(
r(t), θ(t), z(t)

)
=
(√

2 cos t,
1√
2
t, sin t

)
, t ∈ [0, π

2

]
.

18. Consider the parametric surface

σ(u, v) = uv i+ (1 + 3u) j + (v3 + 2u)k .

a) Tell whether it is simple.
b) Determine the set R on which σ is regular.
c) Determine the normal to the surface at every point of R.
d) Write the equation of the plane tangent to the surface at P0 = σ(u0, v0) =

(1, 4, 3).
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19. The surfaces

σ1(u, v) = cos(2− u) i+ sin(2− u) j + v2 k , (u, v) ∈ [0, 2π]× [0, 1]

and

σ2(u, v) = sin(3 + 2u) i+ cos(3 + 2u) j + (1 − v)k , (u, v) ∈ [0, π]× [0, 1]

parametrise the same set Σ in R3.
a) Determine Σ.
b) Say whether the orientations defined by σ1 and σ2 coincide or not.
c) Compute the unit normals to Σ, at P0 = (0, 1, 14 ), relative to σ1 and σ2.

20. Consider the surface σ : R2 → R3,

σ(u, v) = u i+ v j + (u2 + 3uv + v2)k .

a) What is the unit normal n(u, v) ?
b) Determine the points on the image Σ at which the normal is orthogonal to

the plane 8x+ 7y − 2z = 4.

6.8.1 Solutions

1. Jacobian matrices:

a) Jf(x, y) =

(
2e2x+y e2x+y

− sin(x+ 2y) −2 sin(x+ 2y)

)
b) Jf(x, y, z) =

(
1 4y 9z2

1 3 cos 3y ez

)
2. Vector fields’ divergence:

a) divf(x, y) = − sin(x + 2y) + e2x+y

b) divf(x, y, z) = 1 + 2y + 3z2

3. Curl of vector fields:

a) curl f(x, y, z) = 0

b) curl f(x, y, z) = (xey − sin y) i− (ey − xy) j − xz k

c) curl f(x, y) =
2xy

(x2 + y2)3/2

d) Since f is a gradient, Proposition 6.8 ensures its curl is null.
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4. We have

f ◦ g(u, v) = f
(
g(u, v)

)
= f(u+ v, uv) = 3(u+ v) + 2uv

and
∇f ◦ g(u, v) = (3 + 2v, 3 + 2u) .

5. Composite maps and gradients:

a) We have

f ◦ g(x, y) = f
(
g(x, y)

)
= f
(
xy,

x

y

)
=

√
xy +

x

y

and

∇f ◦ g(x, y) =
(
1

2

√
y

xy2 + x

(
y +

1

y

)
,
1

2

√
y

xy2 + x

(
x− x

y2

))
.

b) Since

f
(
g(r, s, t)

)
= f(r + s, r + 3t, s− t) = (r + s) (r + 3t) (s− t) ,

setting h = f ◦ g gives the gradient’s components

∂h

∂r
(r, s, t) = (r + 3t) (s− t) + (r + s) (s− t) = 2rs+ 2st− 2rt+ s2 − 3t2

∂h

∂s
(r, s, t) = (r + 3t) (s− t) + (r + s) (r + 3t) = 2rs+ 6st+ 2rt− 3t2 + r2

∂h

∂t
(r, s, t) = 3(r + s) (s− t)− (r + s) (r + 3t) = 2rs− 6rt− 6st+ 3s2 − r2 .

6. a) We have

Jf(x, y) =

(
2 cos(2x+ y) cos(2x+ y)

ex+2y 2ex+2y

)
, Jg(u, v, z) =

(
1 4v 9z2

2u −2 0

)
.

b) Since

h(u, v, z) = f(u + 2v2 + 3z3, u2 − 2v)

= sin(u2 + 4v2 + 6z3 + 2u− 2v) i+ e2u
2+2v2+3z3+u−4vj

and g(1,−1, 0) = (3, 3), it follows that

Jh(1,−1, 0) = Jf
(
g(1,−1, 0))Jg(1,−1, 0) = Jf(3, 3)Jg(1,−1, 0)

=

(
2 cos 9 cos 9
e9 2e9

)(
1 −4 0
2 −2 0

)
=

(
4 cos 9 −10 cos9 0
5e9 −8e9 0

)
.
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7. Derivatives of integral functions:

a) As

f ′(x) =
arctanx3

x
> 0 , ∀x ∈ R ,

the map is (monotone) increasing on [1,+∞).

b) Since

f ′(x) = −1

6

∫ √
1−x

0

y
(
8 + y4 − x

2

)−3/2
dy − 1

2
3

√
8 + (1 − x)2 − x

2

= −1

2

(1
3

∫ √
1−x

0

y
(
8 + y4 − x

2

)−3/2
dy +

3

√
x2 − 5

2
x+ 9

)
,

we obtain f ′(x) ≤ 0 for any x ∈ [0, 1]; hence f is decreasing on [0, 1].

8. Length of arcs:

We shall make use of the following indefinite integral (Vol. I, Example 9.13 v)):∫ √
1 + x2 dx =

1

2
x
√
1 + x2 +

1

2
log(
√
1 + x2 + x) + c .

a) From

γ′(t) = (1, 6t) and ‖γ′(t)‖ =
√
1 + 36t2

follows

�(γ) =

∫ 1

0

√
1 + 36t2 dt =

1

6

∫ 6

0

√
1 + x2 dx

=
1

6

[
1

2
x
√
1 + x2 +

1

2
log(
√
1 + x2 + x)

]6
0

=
1

2

√
37 +

1

12
log(

√
37 + 6) .

b) Since

γ′(t) = (cos t− t sin t, sin t+ t cos t, 1) and ‖γ′(t)‖ =
√
2 + t2 ,

we have

�(γ) =

∫ 2π

0

√
2 + t2 dt = 2

∫ √
2π

0

√
1 + x2 dx

= 2

[
1

2
x
√
1 + x2 +

1

2
log(
√
1 + x2 + x)

]√2π

0

=
√
2π
√
1 + 2π2 + log

(√
1 + 2π2 +

√
2π
)
.
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c) �(γ) = 1
27

(
17
√
17− 16

√
2
)
.

9. As γ′(t) = (1, 2αt, 3t2), we must have

�(γ) = T + T 3 =

∫ T

0

√
1 + 4α2t2 + 9t4 dt .

Set g(T ) = T + T 3: the Fundamental Theorem of Integral Calculus yields

g′(T ) = 1 + 3T 2 =
√
1 + 4α2T 2 + 9T 4 ,

i.e.,
(1 + 3T 2)2 = 1 + 4α2T 2 + 9T 4 .

From this, 4α2 = 6, so α = ±√3/2.

10. We have
�(γ) = �(γ1) + �(γ2) + �(γ3)

where

γ1(t) =
(
t,

1− t

2(1 + log 2)

)
, t ∈ [− log 2, 1] ,

γ2(t) = (cos t, sin t) , t ∈ [0, π
2

]
γ3(t) = (t, et) , t ∈ [− log 2, 0] .

From elementary geometry we know that

�(γ1) = d(A,B) =

√
(1 + log 2)2 +

1

4
=

√
5

4
+ 2 log 2 + log2 2 ,

�(γ2) =
2π

4
=

π

2
.

For �(γ3), observe that γ
′
3(t) = (1, et), so

�(γ3) =

∫ 0

− log 2

√
1 + e2t dt .

Now, setting u =
√
1 + e2t, we obtain e2t = u2 − 1 and du = e2t√

1+e2t
dt = u2−1

u dt.

Therefore

�(γ3) =

∫ √
2

√
5/2

u2

u2 − 1
du =

∫ √
2

√
5/2

(
1 +

1/2

u− 1
− 1/2

u+ 1

)
du

=

[
u+

1

2
log

∣∣∣∣u− 1

u+ 1

∣∣∣∣]
√
2

√
5/2

=
√
2−

√
5

2
+ log(

√
2− 1)(

√
5 + 2) .
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To sum up,

�(γ) =
π

2
+

√
5

4
+ 2 log 2 + log2 2 +

√
2−

√
5

2
+ log(

√
2− 1)(

√
5 + 2) .

11. Closed, regular, piecewise-regular arcs:

a) The arc is closed because γ(0) = (0, 1) = γ(2π).
Moreover, γ′(t) =

(
2(t− π)(2t2− 4πt+ π2),− sin t) implies that γ′(t) is C1 on

[0, 2π]. Next, notice sin t = 0 only when t = 0, π ,2π, and γ′(0) = (−2π3, 0) �= 0,
γ′(2π) = (−10π3, 0) �= 0, γ′(π) = 0. The only non-regular point is thus the
one corresponding to t = π. Altogether, the arc is piecewise regular.

b) The fact that γ(0) = (0, 0) and γ(1) = (0, 1) implies the arc is not closed.
What is more,

γ′(t) = (4π sin 2πt cos 2πt, 1) �= (0, 0) , ∀t ∈ [0, 1] ,

making the arc regular.

12. Note γ is continuous for any t ∈ R with

γ′(t) =
{
(α, 3t2, 0) if t < 0 ,

(α2 cosα2t, 0, 3t2) if t ≥ 0 .

Certainly γ′(t) �= 0 for t �= 0 and any α ∈ R. To study the point t = 0, observe
that

γ′(0−) = lim
t→0−

γ′(t) = (α, 0, 0) , γ′(0+) = lim
t→0+

γ′(t) = (α2, 0, 0) ,

so γ′(0) exists if α = α2, i.e., if α = 0 or α = 1. If α = 0 then γ′(0) = 0, while for
α = 1 we have γ′(0) = (1, 0, 0) �= 0. In conclusion, the only value of regularity is
α = 1.

13. Bearing in mind Example 6.29, we may re-parametrise the helix by arc length:

γ̃(s) =
(
cos

√
2

2
s, sin

√
2

2
s,

√
2

2
s
)
, s ∈ R .

For any s ∈ R then,

t(s) = γ̃′(s) =
(
−
√
2

2
sin

√
2

2
s,

√
2

2
cos

√
2

2
s,

√
2

2

)
,

and

t′(s) =
(
− 1

2
cos

√
2

2
s,−1

2
sin

√
2

2
s, 0
)

with curvature K(s) = ‖t′(s)‖ = 1/2. Therefore
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n(s) =
(
− cos

√
2

2
s,− sin

√
2

2
s, 0
)

and

b(s) = t(s) ∧ n(s) =
(√2
2

sin

√
2

2
s,−

√
2

2
cos

√
2

2
s,

√
2

2

)
.

At last,

b′(t) =
(1
2
cos

√
2

2
s,
1

2
sin

√
2

2
s, 0
)

and the scalar torsion is τ(s) = − 1
2 .

14. Remembering that

x = r cos θ , y = r sin θ ,

and using the chain rule,

x′(t) =
dx

dt
=

∂x

∂r

dr

dt
+

∂x

∂θ

dθ

dt
= cos θ

dr

dt
− r sin θ

dθ

dt

y′(t) =
dy

dt
=

∂y

∂r

dr

dt
+

∂y

∂θ

dθ

dt
= sin θ

dr

dt
+ r cos θ

dθ

dt
.

The required equation follows by using sin2 θ + cos2 θ = 1, for any θ ∈ R, and

‖γ′(t)‖2 = (x′(t)
)2
+
(
y′(t)
)2
.

16. Recalling

x = r sinϕ cos θ , y = r sinϕ sin θ , x = r cosϕ ,

and the chain rule, we have

x′(t) =
dx

dt
=

∂x

∂r

dr

dt
+

∂x

∂ϕ

dϕ

dt
+

∂x

∂θ

dθ

dt

= sinϕ cos θ
dr

dt
+ r cosϕ cos θ

dϕ

dt
− r sinϕ sin θ

dθ

dt

y′(t) =
dy

dt
=

∂y

∂r

dr

dt
+

∂y

∂ϕ

dϕ

dt
+

∂y

∂θ

dθ

dt

= sinϕ sin θ
dr

dt
+ r cosϕ sin θ

dϕ

dt
+ r sinϕ cos θ

dθ

dt

z′(t) =
dz

dt
=

∂z

∂r

dr

dt
+

∂z

∂ϕ

dϕ

dt
+

∂z

∂θ

dθ

dt

= cosϕ
dr

dt
− r sinϕ

dϕ

dt
.

Now using sin2 ξ + cos2 ξ = 1, for any ξ ∈ R, and ‖γ′(t)‖2 = (x′(t)
)2
+
(
y′(t)
)2
+(

z′(t)
)2
, a little computation gives the result.
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17. Since

r′(t) = −
√
2 sin t , θ ′(t) =

1√
2
, z′(t) = cos t ,

we have

�(γ) =

∫ π/2

0

√
2 sin2 t+

(
2 cos2 t

) 1
2
+ cos2 t dt =

√
2

∫ π/2

0

dt =

√
2

2
π .

Notice the arc’s trace lies on the surface of the ellipsoid x2 + y2 + 2z2 = 2. The
initial point is (

√
2, 0, 0), the end point (0, 0, 1) (see Fig. 6.22).

18. a) The surface is simple if, for (u1, v1), (u2, v2) ∈ R2, we have

σ(u1, v1) = σ(u2, v2) ⇒ (u1, v1) = (u2, v2) .

The left equation means {u1v1 = u2v2
1 + 3u1 = 1 + 3u2

v31 + 2u1 = v32 + 2u2 .

From the middle line we obtain u1 = u2, and then v1 = v2 by substitution.

b) Consider the Jacobian

Jσ =

⎛⎝ v u
3 0
2 3v2

⎞⎠ .

The three minors’ determinants are −3u, 9v2, 3v3 − 2u. The only point at which
they all vanish is the origin. Thus σ is regular on R = R2 \ {(0, 0)}.
c) For (u, v) �= 0,

ν(u, v) = det

⎛⎝ i j k

v 3 2
u 0 3v2

⎞⎠ = 9v2 i+ (2u− 3v3) j − 3uk .

 

 

 

 

 

 

x
y

z

(
√
2, 0, 0) (0,

√
2, 0)

(0, 0, 1)

Figure 6.22. The arc of Exercise 17
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d) Imposing
uv = 1 , 1 + 3u = 4 , v2 + 2u = 3

shows the point P0 = (1, 4, 3) is the image under σ of (u0, v0) = (1, 1). Therefore
the tangent plane in question is

Π(u, v) = σ(1, 1) +
∂σ

∂u
(1, 1) (u− 1) +

∂σ

∂v
(1, 1) (v − 1)

= (1, 4, 3) + (1, 3, 2)(u− 1) + (1, 0, 3)(v − 1)

= (u+ v − 1) i+ (3u+ 1) j + (2u+ 3v − 2)k .

Using Cartesian coordinates x = u+ v− 1, y = 3u+ 1, z = 2u+ 3v− 2, the plane
reads 9x− y − 3z + 4 = 0.

19. a) As u varies in [0, 2π], the vector cos(2 − u) i + sin(2 − u) j runs along the
unit circle in the plane z = 0, while for v in [0, 1], the vector v2 k describes the
segment [0, 1] on the z-axis. Consequently Σ is a cylinder of height 1 with axis on
the z’s.

b) Using formula (6.48) the normal vector defined by σ1 is

ν1(u, v) = −2v cos(2 − u) i− 2v sin(2− u) j ,

while the normal of σ2 is

ν2(u, v) = 2 sin(3 + 2u) i+ 2 cos(3 + 2u) j .

If P = σ(u1, v1) = σ2(u2, v2) is an arbitrary point on Σ, then

cos(2 − u1) = sin(3 + 2u2) and sin(2− u1) = cos(3 + 2u2) ,

and so
ν1(u1, v1) = −v1ν2(u2, v2) .

Since v1 is non-negative, the orientations are opposite.

c) We have P0 = σ
(
2−π

2 ,
1
2

)
= σ
(
π− 2

3 ,
3
4

)
. Hence ν1(P0) = −j, while ν2(P0) = 2j.

The unit normals then are n1(P0) = −j and n2(P0) = j.

20. a) Expression (6.49) yields

ν(u, v) = −(2u+ 3v) i− (3u+ 2v) j + k ,

normalising which produces

n(u, v) = − (2u+ 3v)

‖ν‖ i− (3u+ 2v)

‖ν‖ j +
1

‖ν‖ k ,

with ‖ν‖2 = 13(u2 + v2) + 24uv + 1.
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b) The orthogonality follows by imposing ν be parallel to the vector 8i+7j− 2k.
Thus we impose ⎧⎨⎩

−(2u+ 3v) = 8λ

−(3u+ 2v) = 7λ

1 = −2λ .
Solving the system gives λ = −1/2 and u = 1/2, v = 1. The required condition is
valid for the point P0 = σ

(
1
2 , 1
)
=
(
1
2 , 1,

11
4

)
.



7

Applying differential calculus

We conclude with this chapter the treatise of differential calculus for multivariate
and vector-values functions. Two are the themes of concern: the Implicit Function
Theorem with its applications, and the study of constrained extrema.

Given an equation in two or more independent variables, the Implicit Function
Theorem provides sufficient conditions to express one variable in terms of the
others. It helps to examine the nature of the level sets of a function, which, under
regularity assumptions, are curves and surfaces in space. Finally, it furnishes the
tools for studying the locus defined by a system of equations.

Constrained extrema, in other words extremum points of a map restricted to
a given subset of the domain, can be approached in two ways. The first method,
called parametric, reduces the problem to understading unconstrained extrema
in lower dimension; the other geometrically-rooted method, relying on Lagrange
multipliers, studies the stationary points of a new function, the Lagrangian of the
problem.

7.1 Implicit Function Theorem

An equation of type

f(x, y) = 0 (7.1)

sets up an implicit relationship between the variables x and y; in geometrical terms
it defines the locus of points P = (x, y) in the plane whose coordinates satisfy the
equation. Very often it is possible to write one variable as a function of the other
at least locally (in the neighbourhood of one solution), as y = ϕ(x) or x = ψ(y).
For example, the equation

f(x, y) = ax+ by + c = 0 , with a2 + b2 �= 0 ,

defines a line on the plane, and is equivalent to y = ϕ(x) = − 1
b (ax + c), if b �= 0,

or x = ψ(y) = − 1
a (by + c) if a �= 0.

C. Canuto, A. Tabacco:Mathematical Analysis II, 2nd Ed.,
UNITEXT – La Matematica per il 3+2 85, DOI 10.1007/978-3-319-12757-6_7,
© Springer International Publishing Switzerland 2015
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Instead,
f(x, y) = x2 + y2 − r2 = 0 , with r > 0

defines a circle centred at the origin with radius r; if (x0, y0) belongs to the circle
and y0 > 0, we may solve the equation for y on a neighbourhood of x0, and
write y = ϕ(x) =

√
r2 − x2; if x0 < 0, we can write x = ψ(y) = −

√
r2 − y2 on a

neighbourhood of y0. It is not possible to write y in terms of x on a neighbourhood
of x0 = r or −r, nor x as a function of y around y0 = r or −r, unless we violate
the definition of function itself. But in any of the cases where solving explicitly
for one variable is possible, one partial derivative of f is non-zero (∂f

∂y = b �= 0,
∂f
∂x = a �= 0 for the line, ∂f

∂y = 2y0 > 0, ∂f
∂x = 2x0 < 0 for the circle); conversely,

where one variable cannot be made a function of the other the partial derivative
is zero.

Moving on to more elaborate situations, we must distinguish between the ex-
istence of a map between the independent variables expressing (7.1) in an explicit
way, and the possibility of representing such map in terms of known elementary
functions. For example, in

y e2x + cos y − 2 = 0

we can solve for x explicitly,

x =
1

2
log(2 − cos y)− 1

2
log y ,

but we are not able to do the same with

x5 + 3x2y − 2y4 − 1 = 0 .

Nonetheless, analysing the graph of the function, e.g., around the solution (x0, y0) =
(1, 0), shows that the equation defines y in terms of x, and the study we are about
to embark on will confirm rigorously the claim (see Example 7.2). Thus there is
a huge interest in finding criteria that ensure a function y = y(x), say, at least
exists, even if the variable y cannot be written in an analytically-explicit way in
terms of x. This lays a solid groundwork for the employ of numerical methods. We
discuss below a milestone result in Mathematics, the Implicit Function Theorem,
also known as Dini’s Theorem in Italy, which yields a sufficient condition for the
function y(x) to exist; the condition is the non-vanishing of the partial derivative
of f in the variable we are solving for.

All these considerations evidently apply to equations with three or more vari-
ables, like

f(x, y, z) = 0 . (7.2)

Under special assumptions, we are allowed to define z = ϕ(x, y) as a function of x
and y. A second generalisation concerns systems of equations.

Numerous are the applications of the Implicit Function Theorem. To name a
few, many laws of Physics (think of Thermodynamics) tie two or more quantities
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through implicit relationships which, depending on the system’s specific state, can
be made explicit. In geometry the Theorem allows to describe as a regular simple
surface, if locally, the locus of points whose coordinates satisfy (7.2); it lies at the
heart of an ‘intrinsic’ viewpoint that regards a surface as a set of points defined
by algebraic and transcendental equations.

So let us begin to see the two-dimensional version. Its proof may be found in
Appendix A.1.4, p. 518.

Theorem 7.1 Let Ω be a non-empty open set in R2 and f : Ω → R a C1 map.

Assume at the point (x0, y0) ∈ Ω we have f(x0, y0) = 0. If
∂f

∂y
(x0, y0) �= 0,

there exists a neighbourhood I of x0 and a function ϕ : I → R such that:

i)
(
x,ϕ (x)

) ∈ Ω for any x ∈ I;

ii) y0 = ϕ(x0);

iii) f
(
x,ϕ (x)

)
= 0 for any x ∈ I;

iv) ϕ is a C1 map on I with derivative

ϕ′(x) = −
∂f

∂x

(
x,ϕ (x)

)
∂f

∂y

(
x,ϕ (x)

) . (7.3)

On a neighbourhood of (x0, y0) moreover, the zero set of f coincides with the
graph of ϕ.

We remark that x �→ γ(x) =
(
x,ϕ (x)

)
is a curve in the plane whose trace is

precisely the graph of ϕ.

Example 7.2

Consider the equation

x5 + 3x2y − 2y4 = 1 ,

already considered in the introduction. It is solved by (x0, y0) = (1, 0). To study
the existence of other solutions in the neighbourhood of that point we define the
function

f(x, y) = x5 + 3x2y − 2y4 − 1 .

We have fy(x, y) = 3x2 − 8y3, hence fy(1, 0) = 3 > 0. The above theorem
guarantees there is a function y = ϕ(x), differentiable on a neighbourhood I of
x0 = 1, such that ϕ(1) = 0 and

x5 + 3x2ϕ(x) − 2
(
ϕ(x)
)4

= 1 , x ∈ I .

From fx(x, y) = 5x4 + 6xy we get fx(1, 0) = 5, so ϕ′(1) = − 5
3 . The map ϕ is

decreasing at x0 = 1, where the tangent to its graph is y = − 5
3 (x− 1). �
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In case
∂f

∂x
(x0, y0) �= 0, we arrive at a similar result to Theorem 7.1 in which

x and y are swapped. To summarise (see Fig. 7.1),

Corollary 7.3 Let Ω be a non-empty open set in R2 and f : Ω → R a C1
map. The equation f(x, y) = 0 can be solved for one variable, y = ϕ(x) or
x = ψ(y), around any zero (x0, y0) of f at which ∇f(x0, y0) �= 0 (i.e., around
each regular point).

There remains to understand what is the true structure of the zero set in the
neighbourhood of a stationary point. Assuming f is C2, the previous chapter’s
study of the Hessian matrix Hf(x0, y0) provides useful information.

i) If Hf(x0, y0) is definite (positive or negative), (x0, y0) is a local strict minimum
or maximum; therefore f will be strictly positive or negative on a whole punctured
neighbourhood of (x0, y0), making (x0, y0) an isolated zero for f . An example is
the origin for the map f(x, y) = x2 + y2.

ii) If Hf(x0, y0) is indefinite, i.e., it has eigenvalues λ1 > 0 and λ2 < 0, one can
prove that the zero set of f around (x0, y0) is not the graph of a function, because it
consists of two distinct curves that meet at (x0, y0) and form an angle that depends
upon the eigenvalues’ ratio. For instance, the zeroes of f(x, y) = 4x2−25y2 belong
to the lines y = ± 2

5x, crossing at the origin (Fig. 7.2, left).

x

y

x0

y1

I

J f(x, y) = 0

(x1, y1)

(x0, y0)

x = ψ(y)

y = ϕ(x)

Figure 7.1. Some intervals where f(x, y) = 0 can be solved for x or y
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x

y

y = 2
5
x

y = − 2
5
x

x

y

y =
3
√
x4

x

y
y = 1

4
x2

y = − 1
4
x2

Figure 7.2. The zero sets of f(x, y) = 4x2 − 25y2 (left), f(x, y) = x4 − y3 (centre) and
f(x, y) = x4 − 16y2 (right)

iii) If Hf(x0, y0) has one or both eigenvalues equal zero, nothing can be said in
general. For example, assuming the origin as point (x0, y0), the zeroes of f(x, y) =

x4 − y3 coincide with the graph of y =
3
√
x4 (Fig. 7.2, centre). The map f(x, y) =

x4− 16y2, instead, vanishes along the parabolas y = ± 1
4x

2 that meet at the origin
(Fig. 7.2, right).

We state the Implicit Function Theorem for functions in three variables. Its
proof is easily obtained by adapting the one given in two dimensions.

Theorem 7.4 Let Ω be a non-empty open subset of R3 and f : Ω → R a

map of class C1 with a zero at (x0, y0, z0) ∈ Ω. If
∂f

∂z
(x0, y0, z0) �= 0, there

exist a neighbourhood A of (x0, y0) and a function ϕ : A→ R such that:

i)
(
x, y,ϕ (x, y)

) ∈ Ω for any (x, y) ∈ A;

ii) z0 = ϕ(x0, y0);

iii) f
(
x, y,ϕ (x, y)

)
= 0 for any (x, y) ∈ A;

iv) ϕ is C1 on A, with partial derivatives

∂ϕ

∂x
(x, y) = −

∂f

∂x

(
x, y,ϕ (x, y)

)
∂f

∂z

(
x, y,ϕ (x, y)

) , ∂ϕ

∂y
(x, y) = −

∂f

∂y

(
x, y,ϕ (x, y)

)
∂f

∂z

(
x, y,ϕ (x, y)

) . (7.4)

Moreover, on a neighbourhood of (x0, y0, z0) the zero set of f coincides with
the graph of ϕ.

The function (x, y) �→ σ(x, y, z) =
(
x, y,ϕ (x, y)

)
defines a regular simple surface

in space, whose properties will be examined in Sect. 7.2.
The result may be applied, as happened above, under the assumption the point

(x0, y0, z0) be regular, possibly after swapping the independent variables’ roles.

These two theorems are in fact subsumed by a general statement on vector-
valued maps.
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Let n, m be integers with n ≥ 2 and 1 ≤ m ≤ n− 1. Take an open, non-empty
set Ω in Rn and let F : Ω → Rm be a C1 map on it. Select m of the n independent
variables x1, x2, . . . , xn; without loss of generality we can take the last m variables
(always possible by permuting the variables). Then write x as two sets of coordin-
ates (ξ,μ), where ξ = (x1, . . . , xn−m) ∈ Rn−m and μ = (xn−m+1, . . . , xn) ∈ Rm.
Correspondingly, decompose the Jacobian of F at x ∈ Ω into the matrix JξF (x)
with m rows and n−m columns containing the first n−m columns of JF (x), and
the m×m matrix JμF (x) formed by the remaining m columns of JF (x).

We are ready to solve locally the implicit equation F (x) = 0, now reading
F (ξ,μ) = 0, and obtain μ = Φ(ξ).

Theorem 7.5 (Implicit Function Theorem, or Dini’s Theorem) With
the above conventions, let x0 = (ξ0,μ0) ∈ Ω be a point such that F (x0) = 0.
If the matrix JμF (x0) is non-singular there exist neighbourhoods A ⊆ Ω of
x0, and I of ξ0 in Rn−m, such that the zero set

{x ∈ A : F (x) = 0}
of F coincides with the graph

{x =
(
ξ,Φ(ξ)

)
: ξ ∈ I}

of a C1 map Φ : I → Rm satisfying Φ(ξ0) = μ0. On I, the Jacobian of Φ
(with m rows and n−m columns) is the solution of the linear system

JμF
(
ξ,Φ(ξ)

)
JΦ(ξ) = −JξF

(
ξ,Φ(ξ)

)
. (7.5)

Theorems 7.1 and 7.4 are special instances of the above, as can be seen taking
n = 2, m = 1, and n = 3, m = 1. The next example elucidates yet another case of
interest.

Example 7.6

Consider the system of two equations in three variables{
f1(x, y, z) = 0

f2(x, y, z) = 0

where fi are C1 on an open set Ω in R3, and call x0 = (x0, y0, z0) ∈ Ω a solution.
Specialising the theorem with n = 3, m = 2 and F = (f1, f2) ensures that if⎛⎜⎜⎝

∂f1
∂y

(x0)
∂f1
∂z

(x0)

∂f2
∂y

(x0)
∂f2
∂z

(x0)

⎞⎟⎟⎠
is not singular, the system admits infinitely many solutions around x0; these
are of the form

(
x,ϕ 1(x), ϕ2(x)

)
, where Φ = (ϕ1, ϕ2) : I ⊂ R → R2 is C1 on a

neighbourhood I of x0.
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The components of the first derivative Φ′ at x ∈ I solve the system⎛⎜⎜⎝
∂f1
∂y

(
x,ϕ 1(x), ϕ2(x)

) ∂f1
∂z

(
x,ϕ 1(x), ϕ2(x)

)
∂f2
∂y

(
x,ϕ 1(x), ϕ2(x)

) ∂f2
∂z

(
x,ϕ 1(x), ϕ2(x)

)
⎞⎟⎟⎠
⎛⎜⎝ϕ′

1(x)

ϕ′
2(x)

⎞⎟⎠ =

= −

⎛⎜⎝
∂f1
∂x

(
x,ϕ 1(x), ϕ2(x)

)
∂f2
∂x

(
x,ϕ 1(x), ϕ2(x)

)
⎞⎟⎠ .

The function x �→ γ(x) =
(
x,ϕ 1(x), ϕ2(x)

)
represents a (regular) curve in space.

�

7.1.1 Local invertibility of a function

One application is the following: if the Jacobian of a regular map of Rn is non-
singular, then the function is invertible around the point.

This generalises to multivariable calculus a property of functions of one real
variable, namely: if f is C1 around x0 ∈ dom f ⊆ R and if f ′(x0) �= 0, then
f ′ has constant sign around x0; as such it is strictly monotone, hence invertible;
furthermore, f−1 is differentiable and (f−1)′(y0) = 1/f ′(x0).

Proposition 7.7 Let f : domf ⊆ Rn → Rn be C1 around a point x0 ∈
domf . If Jf(x0) is non-singular, the inverse function x = f−1(y) is well
defined on a neighbourhood of y0 = f(x0), of class C1, and satisfies

J(f−1)(y0) =
(
Jf(x0)

)−1
. (7.6)

Proof. Define the auxiliary map F : domf × Rn ⊆ R2n → Rn by F (x,y) =
f(x) − y. Then F (x0,y0) = 0 and JF (x0,y0) = (Jf(x0) , I ) (an
n × 2n matrix). Since JxF (x0,y0) = Jf(x0), Theorem 7.5 guarantees
there is a neighbourhood Br(y0) and a C1 map g : Br(y0) → domf

such that F
(
g(y),y

)
= 0, i.e., f

(
g(y)
)
= y, ∀y ∈ Br(y0). Therefore

g(y) = f−1(y), so (7.6) follows from (7.5). �

The formula for the Jacobian of the inverse function was obtained in Corollary 6.16
as a consequence of the chain rule; that corollary’s assumptions are eventually
substantiated by the previous proposition.

What we have seen can be read in terms of a system of equations. Let us
interpret

f(x) = y (7.7)

as a (non-linear) system of n equations in n unknowns, where the right-hand side
y is given and x is the solution. Suppose, for a given datum y0, that we know a
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solution x0. If the Jacobian Jf(x0) is non-singular, the equation (7.7) admits one,
and only one solution x in the proximity of x0, for any y sufficiently close to y0.
In turn, the Jacobian’s invertibility at x0 is equivalent to the fact that the linear
system

f(x0) + Jf(x0)(x− x0) = y , (7.8)

obtained by linearising the left-hand side of (7.7) around x0, admits a solution
whichever y ∈ Rn is taken (it suffices to write the system as Jf(x0)x = y −
f(x0) + Jf(x0)x0 and notice the right-hand side assumes any value of Rn as y

varies in Rn).
In conclusion, the knowledge of one solution x0 of a non-linear equation for a

given datum y0, provided the linearised equation around that point can be solved,
guarantees the solvability of the non-linear equation for any value of the datum
that is sufficiently close to y0.

Example 7.8

The system of non-linear equations{
x3 + y3 − 2xy = a

3x2 + xy2 = b

admits (x0, y0) = (1, 2) as solution for (a, b) = (5, 7). Calling f(x, y) = (x3 +
y3 − 2xy, 3x2 + xy2), we have

Jf(x, y) =

(
3x2 − 2y 3y2 − 2x
6x+ y2 2xy

)
.

As

detJf(1, 2) = det

(
10 4
−1 10

)
= 104 > 0 ,

we can say the system admits a unique solution (x, y) for any choice of a, b close
enough to 5, 7 respectively. �

7.2 Level curves and level surfaces

At this juncture we can resume level sets L(f, c) of a given function f , seen
in (4.20). The differential calculus developed so far allows us to describe such
sets at least in the case of suitably regular functions. The study of level sets offers
useful informations on the function’s behaviour, as the constant c varies. At the
same time, solving an equation like

f(x, y) = 0 , or f(x, y, z) = 0 ,

is, as a matter of fact, analogous to determining the level set L(f, 0) of f . Un-
der suitable assumptions, as we know, implicit relations of this type among the
independent variables generate regular and simple curves, or surfaces, in space.

In the sequel we shall consider only two and three dimensions, beginning from
the former situation.
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7.2.1 Level curves

Let then f be a real map of two real variables; given c ∈ im f , denote by L(f, c) the
corresponding level set and let x0 ∈ L(f, c). Suppose f is C1 on a neighbourhood
of the regular point x0, so that ∇f(x0) �= 0. Corollary 7.3 applies to the map
f(x)− c to say that on a certain neighbourhood B(x0) of x0 the points of L(f, c)
lie on a regular simple curve γ : I → B(x0) (a graph in one of the variables);
moreover, the point t0 ∈ I such that γ(t0) = x0 is in the interior of I. In other
terms,

L(f, c) ∩B(x0) = {x ∈ R2 : x = γ(t), with t ∈ I} ,
whence

f
(
γ(t)
)
= c ∀t ∈ I . (7.9)

If the argument is valid for any point of L(f, c), hence if f is C1 on an open set
containing L(f, c) and all points of L(f, c) are regular, the level set is made of
traces of regular, simple curves. If so, one speaks of level curves of f . The next
property is particularly important (see Fig. 7.3).

Proposition 7.9 The gradient of a map is orthogonal to level curves at any
of their regular points.

Proof. Differentiating (7.9) at t0 ∈ I (recall (6.13)) gives

∇f(x0) · γ′(t) = 0 ,

and the result follows . �

Moving along a level curve from x0 maintains the function constant, whereas in
the perpendicular direction the function undergoes the maximum variation (by
Proposition 5.10). It can turn out useful to remark that curlf , as of (6.7), is
always orthogonal to the gradient, so it is tangent to the level curves of f .

x = γ(t)

x0

γ′(t0)

∇f(x0)

Figure 7.3. Level curves and gradient of a map
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Figure 7.4. The relationship between graph and level sets

Fig. 7.4 shows the relationship between level curves and the graph of a map.
Recall that the level curves defined by f(x, y) = c are the projections on the xy-
plane of the intersection between the graph of f and the planes z = c. In this
way, if we vary c by a fixed increment and plot the corresponding level curves, the
latter will be closer to each other where the graph is “steeper”, and sparser where
it “flattens out”.

x

y

c = 0

c = 1c = 2

c = 3

Figure 7.5. Level curves of f(x, y) =
√

9− x2 − y2



7.2 Level curves and level surfaces 271

x

y

z

x

y

x

y

z

x

y

Figure 7.6. Graph and level curves of f(x, y) = −xye−x2−y2

(top), and f(x, y) =

− x

x2 + y2 + 1
(bottom)

Examples 7.10

i) The graph of f(x, y) =
√
9− x2 − y2 was shown in Fig. 4.8. The level curves

are √
9− x2 − y2 = c i.e., x2 + y2 = 9− c2 .

This is a family of circles with centre the origin and radii
√
9− c2, see Fig. 7.5.

ii) Fig. 7.6 shows some level curves and the corresponding graph. �

Patently, a level set may contain non-regular points of f , hence stationary
points. In such a case the level set may not be representable, around the point, as
trace of a curve.
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x

y

1−1

Figure 7.7. Level set L(f, 0) for f(x, y) = x4 − x2 + y2

Example 7.11

The level set L(f, 0) of

f(x, y) = x4 − x2 + y2

is shown in Fig. 7.7. The origin is a saddle-like stationary point. On every neigh-
bourhood of the origin the level set consists of two branches that intersect or-
thogonally; as such, it cannot be the graph of a function in one of the variables.

�

Archetypal examples of how level curves might be employed are the maps used
in topography, as in Fig. 7.8. On pictures representing a piece of land level curves
join points on the Earth’s surface at the same height above sea level: such paths
do not go uphill nor downhill, and in fact they are called isoclines (lit. ‘of equal
inclination’).

Another frequent instance is the representation of the temperature of a certain
region at a given time. The level curves are called isotherms and connect points
with the same temperature. Similarly for isobars, the level curves on a map joining
points having identical atmospheric pressure.

Figure 7.8. Three-dimensional representation of a territory and the corresponding iso-
clines
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7.2.2 Level surfaces

In presence of three independent variables, level sets can be parametrised around
regular points. To be precise, if f is C1 around x0 ∈ L(f, c) and ∇f(x0) �= 0, the
3-dimensional analogue of Corollary 7.3 (that easily descends from Theorem 7.4)
guarantees the existence of a neighbourhood B(x0) of x0 and of a regular, simple
surface σ : R→ B(x0) such that

L(f, c) ∩B(x0) = {x ∈ R3 : x = σ(u, v), with (u, v) ∈ R} ,
hence

f
(
σ(u, v)

)
= c ∀(u, v) ∈ R . (7.10)

In other terms L(f, c) is locally the image of a level surface of f , and Proposition 7.9
has an analogue

Proposition 7.12 At any regular point, the gradient of a function is parallel
to the normal of the level surface.

Proof. The partial derivatives of f ◦ σ at (u0, v0) ∈ R such that σ(u0, v0) = x0

are

∇f(x0) · ∂σ
∂u

(u0, v0) = 0 , ∇f(x0) · ∂σ
∂v

(u0, v0) = 0 .

The claim follows now from (6.48) �

Examples 7.13

i) The level surfaces of f(x, y, z) = x2 + y2 + z2 form a family of concentric
spheres with radii

√
c. The normal vectors are aligned with the gradient of f ,

see Fig. 7.9.

ii) Let us explain how the Implicit Function Theorem, and its corollaries, may
be used for studying a surface defined by an algebraic equation. Let Σ ⊂ R3 be
the set of points satisfying

f(x, y, z) = 2x4 + 2y4 + 2z4 + x− y − 6 = 0 .

The gradient∇f(x, y, z) = (8x3+1, 8y3−1, 8z3) vanishes only at P0 = (− 1
2 ,

1
2 , 0),

but the latter does not satisfy the equation, i.e., P0 /∈ Σ. Therefore all points
P of Σ are regular, and Σ is a regular simple surface; around any point P the
surface can be represented as the graph of a function expressing one variable in
terms of the other two.
Notice also

lim
x→∞

f(x) = +∞ ,

so the open set

Ω = {(x, y, z) ∈ R3 : f(x, y, z) < 0} ,
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x

y

z
x2 + y2 + z2 = 1

x2 + y2 + z2 = 4

x2 + y2 + z2 = 9

Figure 7.9. Level surfaces of f(x, y, z) =
√

x2 + y2 + z2

containing the origin and of which Σ is the boundary, is bounded; consequently
Σ is a compact set. One could prove Σ has no boundary, making it a closed
surface.
Proposition 7.9 proves, for example, that the normal vector (up to sign) to Σ at
P1 = (1, 1, 1) is proportional to ∇f(1, 1, 1) = (9, 7, 8). The unit normal ν at P1,
chosen to point away from the origin (ν · x > 0), is then

ν =
1√
194

(9i+ 7j + 8k) . �

7.3 Constrained extrema

With Sect. 5.6 we have learnt how to find extremum points lying inside the do-
main of a sufficiently regular function. That does not exhaust all possible extrema
though, because there might be some lying on the domain’s boundary (without
mentioning some extrema could be non-regular points). At the same time in many
applications it is required we search for minimum and maximum points on a partic-
ular subset of the domain; for instance, if the subset is defined through equations or
inequalities of the independent variable, one speaks about constrained extrema.

The present section develops two methods to find extrema of the kind just
described, and for this we start with an example.

Suppose we want to find the minimum of the linear map f(x) = a · x, a =
(1,

√
3) ∈ R2, among the unit vectors x of the plane, hence under the constraint
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‖x‖ = 1. Geometrically, the point P = x = (x, y) can only move on the unit
circle x2 + y2 = 1. If g(x) = x2 + y2 − 1 = 0 is the equation of the circle and
G = {x ∈ R2 : g(x) = 0} the set of constrained points, we are looking for x0

satisfying

x0 ∈ G and f(x0) = min
x∈G

f(x) .

The problem can be tackled in two different ways, one privileging the analytical
point of view, the other the geometrical aspects. The first consists in reducing the
number of variables from two to one, by observing that the constraint is a simple
closed arc and as such can be written parametrically. Precisely, set γ : [0, 2π]→ R2,
γ(t) = (cos t, sin t), so that G coincides with the trace of γ. Then f restricted to
G becomes f ◦ γ, a function of the variable t; moreover,

min
x∈G

f(x) = min
t∈[0,2π]

f
(
γ(t)
)
.

Now we find the extrema of ϕ(t) = f
(
γ(t)
)
= cos t+

√
3 sin t; the map is periodic

of period 2π, so we can think of it as a map on R and ignore extrema that fall
outside [0, 2π]. The first derivative ϕ′(t) = − sin t+

√
3 cos t vanishes at t = π

3 and
4
3π. As ϕ′′(π3 ) = −2 < 0 and ϕ′′(43π) = 2 > 0, we have a maximum at t = π

3
and a minimum at t = 4

3π. Therefore there is only one solution to the original

constrained problem, namely x0 =
(
cos 4

3π, sin
4
3π
)
= −(12 , √

3
2

)
.

The same problem can be understood from a geometrical perspective relying
on Fig. 7.10. The gradient of f is ∇f(x) = a, and we recall f is increasing along

x

y

x0

x1

a

G

 

 

 

 

 

 

 

 

x

y

z

x0

x1 a

G

Figure 7.10. Level curves of f(x) = a · x (left) and restriction to the constraint G
(right)
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a (with the greatest rate, actually, see Proposition 5.10); the level curves of f are
the perpendicular lines to a. Obviously, f restricted to the unit circle will reach
its minimum and maximum at the points where the level curves touch the circle

itself. These points are, respectively, x0 = −(12 , √3
2

)
, which we already know of,

and its antipodal point x1 =
(
1
2 ,

√
3
2

)
. They may also be characterised as follows.

The gradient is orthogonal to level curves, and the circle is indeed a level curve for
g(x); to say therefore that the level curves of f and g are tangent at xi, i = 0, 1
tantamounts to requiring that the gradients are parallel; otherwise said at each
point xi there is a constant λ such that

∇f(x) = λ∇g(x) .

These, together with the constraining equation g(x) = 0, allow to find the con-
strained extrema of f . In fact, we have⎧⎨⎩

λx = 1

λy =
√
3

x2 + y2 = 1 ;

substituting the first and second in the third equation gives⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x =

1

λ

y =

√
3

λ
λ2 = 4 , so λ = ±2 ,

and the solutions are x0 and x1. Since f(x0) < f(x1), x0 will be the minimum
point and x1 the maximum point for f .

In the general case, let f : dom f ⊆ Rn → R be a map in n real variables, and
G ∈ dom f a proper subset of the domain of f , called in the sequel admissible
set. First of all we introduce the notion of constrained extremum.

Definition 7.14 A point x0 ∈ G is said a relative extremum point of f
constrained to G if x0 is a relative extremum for the restriction f|G of f
to G. In other words, there exists a neighbourhood Br(x0) such that

∀x ∈ Br(x0) ∩G f(x) ≤ f(x0)

for a constrained maximum, or

∀x ∈ Br(x0) ∩G f(x) ≥ f(x0)

in case of a constrained minimum.
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Constrained absolute maxima and minima are respectively defined by

f(x0) = max
x∈G

f(x) and f(x0) = min
x∈G

f(x) .

A constrained extremum f is not necessarily an extremum as well. The function
f(x, y) = xy, for example, has a saddle at the origin, but when we restrict to the
bisectrix of the first and third quadrant (or second and fourth), the origin becomes
a constrained absolute minimum (maximum).

A recurring situation is that in which the set G is a subset defined by equations
or inequalities, called constraints. We begin by examining one constraint and one
equation, and consider a map g : dom g ⊆ Rn → R, with G ⊂ dom g, such that

G = {x ∈ dom g : g(x) = 0} ;
in other terms G is the zero set of g, or the level set L(g, 0). We discuss both
approaches mentioned in the foreword for this admissible set.

Assume henceforth f and g are C1 on an open set containing G. The aim is to
find the constrained extrema of f by looking at the stationary points of suitable
maps.

7.3.1 The method of parameters

This method originates from the possibility of writing the admissible set G in
parametric form, i.e., as image of a map defined on a subset of Rn−1. To be
precise, suppose we know a C1 map ψ : A ⊆ Rn−1 → Rn such that

G = {x ∈ Rn : x = ψ(u) with u ∈ A} .

In dimensions 2 and 3, this forces G to be the trace of a curve ψ = γ : I → R2 or
a surface ψ = σ : R → R3. The function ψ can be typically recovered from the
equation g(x) = 0; the Implicit Function Theorem 7.5 guarantees this is possible
provided G consists of regular points for g. Studying f restricted to G is equivalent
to studying the composite f ◦ψ, so we will detect the latter’s extrema on A, which
has one dimension less than the domain of f . In particular, when n = 2 we will
consider the map t �→ f

(
γ(t)
)
of one variable, when n = 3 we will have the

two-variable map (u, v) �→ f
(
σ(u, v)

)
.

Let us then examine the interior points of A first, because if one such, say u0,
is an extremum for f ◦ψ, then it is stationary; putting x0 = ψ(u0), we necessarily
have

∇u(f ◦ψ)(u0) = ∇f
(
ψ(u0)

)
Jψ(u0) = 0 .

Stationary points solving the above equation have to be examined carefully to tell
whether they are extrema or not. After that, we inspect the boundary ∂A to find
other possible extrema.
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x
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CG
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Figure 7.11. The level curves and the admissible set of Example 7.15

Example 7.15

Consider f(x, y) = x2 + y − 1 and let G be the perimeter of the triangle with
vertices O = (0, 0), A = (1, 0), B = (0, 1), see Fig. 7.11. We want to find the
minima and maxima of f on G, which exist by compactness. Parametrise the
three sides OA, OB, AB by γ1(t) = (t, 0), γ2(t) = (0, t), γ3(t) = (t, 1 − t),
where 0 ≤ t ≤ 1 for all three. The map f|OA(t) = t2 − 1 has minimum at O
and maximum at A; f|OB(t) = t − 1 has minimum at O and maximum at B,

and f|AB(t) = t2 − t has minimum at C =
(
1
2 ,

1
2

)
and maximum at A and B.

Since f(O) = −1, f(A) = f(B) = 0 and f(C) = − 1
4 , the function reaches its

minimum value at O and its maximum at A and B. �

7.3.2 Lagrange multipliers

The idea behind Lagrange multipliers is a particular feature of any regular con-
strained extremum point, shown in Fig. 7.12.

Proposition 7.16 Let x0 ∈ G be a regular point for g. If x0 is an extremum
for f constrained to G, there exists a unique constant λ0 ∈ R, called Lag-
range multiplier, such that

∇f(x0) = λ0∇g(x0) . (7.11)

Proof. For simplicity we assume n = 2 or 3. In the former case what we have seen
in Sect. 7.2.1 applies to g, since x0 ∈ G = L(g, 0). Thus a regular simple
curve γ : I → R2 exists, with x0 = γ(t0) for some t0 interior to I, such
that g(x) = g

(
γ(t)
)
= 0 on a neighbourhood of x0; additionally,

∇g(x0) · γ′(t0) = 0 .
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x0

∇g

∇f

G

Figure 7.12. At a constrained extremum the gradients of f and g are parallel

But by assumption t �→ f
(
γ(t)
)
has an extremum at t0, which is stationary

by Fermat’s Theorem. Consequently

d

dt
f
(
γ(t)
)
|t=t0

= ∇f(x0) · γ′(t0) = 0 .

As ∇f(x0) and ∇g(x0) are both orthogonal to the same vector γ
′(t0) �= 0

(γ being regular), they are parallel, i.e., (7.11) holds. The uniqueness of
λ0 follows from ∇g(x0) �= 0.
The proof in three dimensions is completely similar, because on the one
hand g

(
σ(u, v)

)
= 0 around x0 for a suitable regular and simple surface

σ : A → R3 (Sect. 7.2.2); on the other the map f
(
σ(u, v)

)
has a relative

extremum at (u0, v0), interior to A and such that σ(u0, v0) = x0. At the
same time then

∇g(x0)Jσ(u0, v0) = 0 , and ∇f(x0)Jσ(u0, v0) = 0 .

As σ is regular, the column vectors of Jσ(u0, v0) are linearly independent
and span the tangent plane to σ at x0. The vectors ∇f(x0) and ∇g(x0)
are both perpendicular to the plane, and so parallel. �

This is the right place to stress that (7.11) can be fulfilled, with g(x) = 0,
also by a point x0 which is not a constrained extremum. That is because the
two conditions are necessary yet not sufficient for the existence of a constrained
extremum. For example, f(x, y) = x− y5 and g(x, y) = x− y3 satisfy g(0, 0) = 0,
∇f(0, 0) = ∇g(0, 0) = (1, 0); nevertheless, f restricted to G = {(x, y) ∈ R2 :
x = y3} has neither a minimum nor a maximum at the origin, for it is given by
y �→ f(y3, y) = y3 − y5 (y0 = 0 is a horizontal inflection point).

There is an equivalent formulation for the previous proposition, that associates
to x0 an unconstrained stationary point relative to a new function depending on
f and g.
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Definition 7.17 Set Ω = dom f ∩dom g ⊆ Rn. The function L : Ω×R→ R

defined by
L(x, λ) = f(x)− λg(x)

is said Lagrangian (function) of f constrained to g.

The gradient of L looks as follows

∇(x,λ)L(x, λ) =
(
∇xL(x, λ), ∂L

∂λ
(x, λ)

)
=
(∇f(x)− λ∇g(x), g(x)

)
.

Hence the condition ∇(x,λ)L(x0, λ0) = 0, expressing that (x0, λ0) is stationary for
L, is equivalent to the system

{∇f(x0) = λ0∇g(x0) ,

g(x0) = 0 .

Proposition 7.16 ensures that each regular extremum point of f constrained by g
determines a unique stationary point for the Lagrangian L.

Under this new light, the procedure breaks into the following steps.

i) Write the system of n + 1 equations in n + 1 unknowns x = (x1, . . . , xn)
and λ {∇f(x) = λ∇g(x)

g(x) = 0
(7.12)

and solve it; as the system is not, in general, linear, there may be a number
of distinct solutions.

ii) For each solution (x0, λ0) found, decide whether x0 is a constrained ex-
tremum for f , often with ad hoc arguments.
In general, after (7.12) has been solved, the multiplier λ0 stops being useful.
If G is compact for instance, Weierstrass’ Theorem 5.24 guarantees the
existence of an absolute minimum and maximum of f|G (distinct if f is not
constant on G); therefore, assuming G only consists of regular points for
g, these two must be among the ones found previously; comparing values
will permit us to pin down minima and maxima.

iii) In presence of non-regular points (stationary) for g in G (or points where
f and/or g are not differentiable) we are forced to proceed case by case,
lacking a general procedure.
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Figure 7.13. The graph of the admissible set G (first octant only) and the stationary
points of f on G (Example 7.18)

Example 7.18

Let us find the points of R3 lying on the manifold defined by x4 + y4 + z4 = 1
with smallest and largest distance from the origin (see Fig. 7.13).
The problem consists in extremising the function f(x, y, z) = ‖x‖2 = x2+y2+z2

on the set G defined by g(x, y, z) = x4+ y4+ z4− 1 = 0. We consider the square

distance, rather than the distance ‖x‖ =
√

x2 + y2 + z2, because the two have
the same extrema, but the former has the advantage of simplifying computations.
We use Lagrange multipliers, and consider the system (7.12):⎧⎪⎪⎪⎨⎪⎪⎪⎩

2x = λ4x3

2y = λ4y3

2z = λ4z3

x4 + y4 + z4 − 1 = 0 .

As f is invariant under sign change in its arguments, f(±x,±y,±z) = f(x, y, z),
and similarly for g, we can just look for solutions belonging in the first octant
(x ≥ 0, y ≥ 0, z ≥ 0). The first three equations are solved by

x = 0 or x =
1√
2λ

, y = 0 or y =
1√
2λ

, z = 0 or z =
1√
2λ

,

combined in all possible ways. The point (x, y, z) = (0, 0, 0) is to be excluded
because it fails to satisfy the last equation. The choices

(
1√
2λ
, 0, 0
)
,
(
0, 1√

2λ
, 0
)

or
(
0, 0, 1√

2λ

)
force 1

4λ2 = 1, hence λ = 1
2 (since λ > 0). Similarly, (x, y, z) =(

1√
2λ
, 1√

2λ
, 0
)
,
(

1√
2λ
, 0, 1√

2λ

)
or
(
0, 1√

2λ
, 1√

2λ

)
satisfy the fourth equation if λ =

√
2
2 , while

(
1√
2λ
, 1√

2λ
, 1√

2λ

)
fulfills it if λ =

√
3
2 . The solutions then are:

x1 = (1, 0, 0) , f(x1) = 1 ; x4 =
(

1
4√2

, 1
4√2

, 0
)
, f(x4) =

√
2 ;

x2 = (0, 1, 0) , f(x2) = 1 ; x5 =
(

1
4
√
2
, 0, 1

4
√
2

)
, f(x5) =

√
2 ;
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x3 = (0, 0, 1) , f(x3) = 1 ; x6 =
(
0, 1

4√2
, 1

4√2

)
, f(x6) =

√
2 ;

x7 =
(

1
4√3

, 1
4√3

, 1
4√3

)
, f(x7) =

√
3 .

In conclusion, the first octant contains 3 points ofG, x1, x2, x3, with the shortest
distance to the origin, and 1 farthest point x7. The distance function on G has
stationary points x4, x5, x6, but no minimum nor maximum. �

Now we pass to briefly consider the case of an admissible set G defined by
m < n equalities, of the type gi(x) = 0, 1 ≤ i ≤ m. If x0 ∈ G is a constrained
extremum for f on G and regular for each gi, the analogue to Proposition 7.16
tells us there exist m constants λ0i, 1 ≤ i ≤ m (the Lagrange multipliers), such
that

∇f(x0) =

m∑
i=1

λ0i∇gi(x0) .

Equivalently, set λ = (λi)i=1,...,m) ∈ Rm and g(x) =
(
g1(x)

)
i=1,...,m

: then the

Lagrangian

L(x,λ) = f(x)− λ · g(x) (7.13)

admits a stationary point (x0,λ0). To find such points we have to write the system
of n+m equations in the n+m unknowns given by the components of x and λ,

⎧⎪⎨⎪⎩∇f(x) =
m∑
i=1

λi∇gi(x) ,

gi(x) = 0 , 1 ≤ i ≤ m ,

which generalises (7.12).

Example 7.19

We want to find the extrema of f(x, y, z) = 3x + 3y + 8z constrained to the
intersection of two cylinders, x2 + z2 = 1 and y2 + z2 = 1. Define

g1(x, y, z) = x2 + z2 − 1 and g2(x, y, z) = y2 + z2 − 1

so that the admissible set is G = G1 ∩ G2, Gi = L(gi, 0). Each point of Gi is
regular for gi, so the same is true for G. Moreover G is compact, so f certainly
has minimum and maximum on it.
As ∇f = (3, 3, 8), ∇g1 = (2x, 0, 2z), ∇g2 = (0, 2y, 2z), system (7.13) reads⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3 = λ12x

3 = λ22y

8 = (λ1 + λ2)2z

x2 + z2 − 1 = 0

y2 + z2 − 1 = 0 ;
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the first three equations tell x = 3
2λ1

, y = 3
2λ2

, z = 4
λ1+λ2

, (with λ1 �= 0, λ2 �= 0,

λ1 + λ2 �= 0), so that the remaining two give

λ1 = λ2 = ±5

2
.

Then, setting x0 =
(
3
5 ,

3
5 ,

4
5

)
and x1 = −x0, we have f(x0) > 0 and f(x1) < 0.

We conclude that x0 is an absolute constrained maximum point, while x1 is an
absolute constrained minimum. �

Finally, let us assess the case in which the set G is defined by m inequalities;
without loss of generality we may assume the constraints are of type gi(x) ≥ 0,
i = 1, . . . ,m. So first we examine interior points of G, with the techniques of
Sect. 5.6. Secondly, we look at the boundary ∂G of G, indeed at points where at
least one inequality is actually an equality. This generates a constrained extremum
problem on ∂G, which we know how to handle.

Due to the profusion of situations, we just describe a few possibilities using
examples.

Examples 7.20

i) Let us return to Example 7.15, and suppose we want to find the extrema of f
on the whole triangle G of vertices O, A, B.
Set g1(x, y) = x, g2(x, y) = y, g3(x, y) = 1 − x − y, so that G = {(x, y) ∈
R2 : gi(x, y) ≥ 0, i = 1, 2, 3}. There are no extrema on the interior of G, since
∇f(x) = (2x, 1) �= 0 precludes the existence of stationary points. The extrema
of f on G, which have to be present by the compactness of G, must then belong
to the boundary, and are those we already know of from Example 7.15.

ii) We look for the extrema of f of Example 7.18 that belong to G defined by
x4+ y4+ z4 ≤ 1. As ∇f(x) = 2x, the only extremum interior to G is the origin,
where f reaches the absolute minimum. But G is compact, so there must also be
an absolute maximum somewhere on the boundary ∂G. The extrema constrained
to the latter are exactly those of the example, so we conclude that f is maximised
on G by x7 =

(
1
4√3

, 1
4√3

, 1
4√3

)
, and at the other seven points obtained from this

by flipping any sign.

iii) We determine the extrema of f(x, y) = (x+ y)e−(x2+y2) subject to g(x, y) =
2x + y ≥ 0. Note immediately that f(x, y) → 0 as ‖x‖ → ∞, so f must admit
absolute maximum and minimum on G. The interior points where the constraint
holds form the (open) half-space y > −2x. Since

∇f(x) = e−(x2+y2)
(
1− 2x(x+ y), 1− 2y(x+ y)

)
,

f has stationary points x = ±(12 , 1
2

)
; the only one of these inside G is x0 =(

1
2 ,

1
2

)
, for which Hf(x0) = −e−1/2

(
3 1
1 3

)
. The Hessian matrix tells us that

x0 is a relative maximum for f . On the boundary ∂G, where y = −2x, the
composite map

ϕ(x) = f(x,−2x) = −xe−5x2
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x

y

x0

x1

x2

Figure 7.14. The level curves of f and the admissible set G of Example 7.20 iii)

admits absolute maximum at x = − 1√
10

and minimum at x = 1√
10
. Setting

x1 =
(

1√
10
,− 2√

10

)
and x2 =

(− 1√
10
, 2√

10

)
, we can without doubt say x1 is the

unique absolute minimum on G. For the absolute maxima, we need to compare
the values attained at x0 and x2. But since f(x0) = e−1/2 and f(x2) =

1√
10
e−1/2,

x0 is the only absolute maximum point on G (Fig. 7.14).

iv) Consider f(x, y) = x+ 2y on the set G defined by

x+ 2y + 8 ≥ 0 , 5x+ y + 13 ≥ 0 , x− 4y + 11 ≥ 0 ,

2x+ y − 5 ≤ 0 , 5x− 2y − 8 ≤ 0 .

x

y

A

B

C

D

E

Figure 7.15. Level curves of f and admissible set G of Example 7.20 iv)
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The set G is the (irregular) pentagon of Fig. 7.15, having vertices A = (0,−4),
B = (−2,−3), C = (−3, 2), D = (1, 3), E = (2, 1) and obtained as intersection
of the five half-planes defined by the above inequalities. As ∇f(x) = (1, 2) �= 0,
the function f attains minimum and maximum on the boundary of G; and since
f is linear on the perimeter, any extremum point must be a vertex. Thus it is
enough to compare the values at the corners

f(A) = f(B) = −8 , f(C) = 1 , f(D) = 7 , f(E) = 4 ;

f restricted to G is smallest at each point of AB and largest at D. This simple
example is the typical problem dealt with by Linear Programming, a series of
methods to find extrema of linear maps subject to constraints given by linear
inequalities. Linear Programming is relevant in many branches of Mathemat-
ics, like Optimization and Operations Research. The reader should refer to the
specific literature for further information on the matter. �

7.4 Exercises

1. Supposing you are able to write x3y+ xy4 = 2 in the form y = ϕ(x), compute
ϕ′(x). Determine a point x0 around which this is feasible.

2. The equation x2 + y3z = xz
y admits the solution (2, 1, 4). Verify it can be

written as y = ϕ(x, z), with ϕ defined on a neighbourhood of (2, 4). Compute
the partial derivatives of ϕ at (2, 4).

3. Check that

ex−y + x2 − y2 − e(x+ 1) + 1 = 0

defines a function y = ϕ(x) on a neighbourhood of x0 = 0. What is the nature
of the point x0 for ϕ?

4. Verify that the equation

x2 + 2x+ ey + y − 2z3 = 0

gives a map y = ϕ(x, z) defined around P = (x0, z0) = (−1, 0). Such map
defines a surface, of which the tangent plane at the point P should be determ-
ined.

5. a) Verify that around P0 = (0, 2,−1) the equation

x log(y + z) + 3(y − 2)z + sinx = 0

defines a regular simple surface Σ.
b) Determine the tangent plane to Σ at P0, and the unit normal forming with
v = 4i+ 2j − 5k an acute angle.
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6. Check that the system {
3x− cos y + y + ez = 0

x− ex − y + z + 1 = 0

yields, around the origin, a curve in space of equations

γ(t) =
(
t,ϕ 1(t), ϕ2(t)

)
, t ∈ I(0) .

Write the equation of the tangent to the curve at the origin.

7. Verify that

y7 + 3y − 2xe3x = 0

defines a function y = ϕ(x) for any x ∈ R. Study ϕ and sketch its graph.

8. Represent the following maps’ level curves:

a) f(x, y) = 6− 3x− 2y b) f(x, y) = 4x2 + y2

c) f(x, y) = 2xy d) f(x, y) = 2y − 3 log x

e) f(x, y) =
√
4x+ 3y f) f(x, y) = 4x− 2y2

9. Match the functions below to the graphs A–F of Fig. 7.16 and to the level
curves I–VI of Fig. 7.17:

a) z = cos
√
x2 + 2y2 b) z = (x2 − y2)e−x2−y2

c) z =
15

9x2 + y2 + 1
d) z = x3 − 3xy2

e) z = cosx sin 2y f) z = 6 cos2 x− 1

10
x2

10. Describe the level surfaces of the following maps:

a) f(x, y, z) = x+ 3y + 5z b) f(x, y, z) = x2 − y2 + z2

11. Determine the maximum and minimum points of

f(x, y) = x2 + y2 +
3

2
x+ 1

on the set G = {(x, y) ∈ R2 : 4x2 + y2 − 1 = 0}.

12. Find maximum and minimum points for f(x, y) = x+ 3y + 2 on the compact
set G = {(x, y) ∈ R2 : x, y ≥ 0, x2 + y2 ≤ 1}.
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A

 

B

 

C

 

D

 

E

 

F

Figure 7.16. The graphs of Exercise 9

I II III

IV V V I

Figure 7.17. The level curves of Exercise 9
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13. Consider the function

f(x, y) = x2(y + 1)− 2y .

a) Find its stationary points and describe their type.
b) Compute the map’s absolute minimum and maximum on the set

G = {(x, y) ∈ R2 :
√
1 + x2 ≤ y ≤ 2} .

14. Determine the extrema of f(x, y) = 2x2 + y2 constrained to

G = {(x, y) ∈ R2 : x4 − x2 + y2 − 5 = 0} .

15. What are the absolute minimum and maximum of f(x, y) = 4x2 + y2 − 2x−
4y + 1 on

G = {(x, y) ∈ R2 : 4x2 + y2 − 1 = 0} ?

7.4.1 Solutions

1. Set f(x, y) = x3y + xy4 − 2; then

fx(x, y) = 3x2y + y4 and fy(x, y) = x3 + 4xy3 ,

so

ϕ′(x) = −3x2ϕ(x) +
(
ϕ(x)
)4

x3 + 4x
(
ϕ(x)
)3

for any x �= 0 with x2 �= −4y3.
For instance, the point (x0, y0) = (1, 1) solves the equation, thus there is a map

y = ϕ(x) defined around x0 = 1 because fy(1, 1) = 5 �= 0. Moreover, ϕ′(1) = −4/5.
2. Setting f(x, y, z) = x2 + y3z − xz

y , we have

fx(x, y, z) = 2x− z

y
with fx(2, 1, 4) = 0 ,

fy(x, y, z) = 3y2z +
xz

y2
with fy(2, 1, 4) = 20 �= 0 ,

fz(x, y, z) = y3 − x

y
with fz(2, 1, 4) = −1 �= 0 .

Due to Theorem 7.4 we can solve for y, hence express y as a function of x and z,
around (2, 4); otherwise said, there exists y = ϕ(x, z) such that

∂ϕ

∂x
(2, 4) = 0 ,

∂ϕ

∂z
(2, 4) =

1

20
.



7.4 Exercises 289

3. Call f(x, y) = ex−y + x2 − y2 − e(x + 1) + 1 and notice (0,−1) is a solution.
Then

fx(x, y) = ex−y + 2x− e , fy(x, y) = −ex−y − 2y

with fx(0,−1) = 0, fy(0,−1) = 2 − e �= 0. Theorem 7.1 guarantees the existence
of a map y = ϕ(x), defined around the origin, such that

ϕ′(0) = −fx(0,−1)
fy(0,−1) = 0 .

Hence x0 = 0 is a critical point of ϕ.

4. If we set
f(x, y, z) = x2 + 2x+ ey + y − 2z3

then f(−1, 0, 0) = 0. We have

fx(x, y, z) = 2x+ 2 with fx(−1, 0, 0) = 0 ,

fy(x, y, z) = ey + 1 with fy(−1, 0, 0) = 2 �= 0 ,

fz(x, y, z) = −6z2 with fz(−1, 0, 0) = 0 .

By Theorem 7.4 there is a map y = ϕ(x, z) around (−1, 0) satisfying
∂ϕ

∂x
(−1, 0) = ∂ϕ

∂z
(−1, 0) = 0 .

The tangent plane is therefore

y = ϕ(−1, 0) + ϕx(−1, 0)(x+ 1) + ϕz(−1, 0)(z − 0) = 0 .

5. a) The gradient of f(x, y, z) = x log(y + z) + 3(y − 2)z + sinx is

∇f(x, y, z) =
(
log(y + z) + cosx,

x

y + z
+ 3z,

x

y + z
+ 3(y − 2)

)
,

so ∇f(P0) = (1,−3, 0) �= 0. By Theorem 7.4 then, we can express x via y and
z, or y in terms of x, z. Therefore, around P0 the surface Σ is locally a regular
simple graph.

b) The tangent plane at P0 = x0 is, recalling Proposition 7.9,

∇f(x0) · (x− x0) = x− 3(y − 2) = 0 ,

so x − 3y = −6. The unit normal at P0 will be ν = σ√
10
(i − 3j), with σ ∈ {±1}

defined by ν · v = − 2σ√
10

> 0, whence σ = −1.
6. Referring to Theorem 7.5 and Example 7.6, let us set{

f1(x, y, z) = 3x− cos y + y + ez

f2(x, y, z) = x− ex − y + z + 1 .
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Then
∂f1
∂y

(x, y, z) = sin y + 1 ,
∂f1
∂z

(x, y, z) = ez ,

∂f2
∂y

(x, y, z) = −1 , ∂f2
∂z

(x, y, z) = 1 .

Now consider the matrix⎛⎜⎜⎝
∂f1
∂y

(0)
∂f1
∂z

(0)

∂f2
∂y

(0)
∂f2
∂z

(0)

⎞⎟⎟⎠ =

⎛⎝ 1 1

−1 1

⎞⎠ ;

this being non-singular, it defines around t = 0 a curve γ(t) =
(
t,ϕ 1(t), ϕ2(t)

)
.

For the tangent line we need to compute γ′(t) =
(
1, ϕ′

1(t), ϕ
′
2(t)
)
, and in par-

ticular γ′(0) =
(
1, ϕ′

1(0), ϕ
′
2(0)
)
. But⎛⎜⎜⎝

∂f1
∂y

(0)
∂f1
∂z

(0)

∂f2
∂y

(0)
∂f2
∂z

(0)

⎞⎟⎟⎠
⎛⎝ϕ′

1(0)

ϕ′
2(0)

⎞⎠ = −

⎛⎜⎜⎝
∂f1
∂x

(0)

∂f2
∂x

(0)

⎞⎟⎟⎠
is (

1 1

−1 1

)(
ϕ′
1(0)

ϕ′
2(0)

)
= −

(
3

0

)
,

so {
ϕ′
1(0) + ϕ′

2(0) = −3
ϕ′
1(0)− ϕ′

2(0) = 0
,

solved by ϕ′
1(0) = ϕ′

2(0) = −3/2. In conclusion, the tangent line is

T (t) = γ(0) + γ′(0)t =
(
1,−3

2
,−3

2

)
t =
(
t,−3

2
t,−3

2
t
)
.

7. The map f(x, y) = y7 + 3y − 2xe3x has derivatives

fx(x, y) = −2e3x(1 + 3x) , fy(x, y) = 7y6 + 3 > 0 .

Theorem 7.1 says we can have y as a function of x around every point of R2, so
let y = ϕ(x) be such a map. Then

ϕ′(x) = −fx(x, y)

fy(x, y)
=

2e3x(1 + 3x)

7y6 + 3
,

and ϕ′(x) = 0 for x = −1/3, ϕ′(x) > 0 for x > −1/3. Observe that f(0, 0) = 0, so
ϕ(0) = 0. The function passes through the origin, is increasing when x > −1/3,
decreasing when x < −1/3. The point x = −1/3 is an (absolute) minimum for ϕ,
with ϕ(−1/3) < 0.
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x

y

− 1
3

Figure 7.18. The graph of the implicit function of Exercise 7

To compute the limits as x→ ± ∞, note(
ϕ(x)
)7
+ 3
(
ϕ(x)
)
= 2xe3x

and
lim

x→−∞
2xe3x = 0 , lim

x→+∞
2xe3x = +∞ .

Let � = lim
x→−∞

ϕ(x), so that

�7 + 3� = �(�6 + 3) = 0 and hence � = 0 .

Then call m = lim
x→+∞

ϕ(x); necessarily m = +∞, for otherwise we would have

m7 + 3m = +∞, a contradiction.
In summary,

lim
x→−∞

ϕ(x) = 0 , lim
x→+∞

ϕ(x) = +∞ ;

the point x = −1/3 is an absolute minimum and the graph of f can be seen in
Fig. 7.18.

8. Level curves:

a) These are the level curves:

6− 3x− 2y = k i.e., 3x+ 2y + k − 6 = 0 .

They form a family of parallel lines with slope −3/2, see Fig. 7.19, left.
b) The level curves

4x2 + y2 = k i.e.,
x2

k/4
+

y2

k
= 1 ,

are, for k > 0, a family of ellipses centred at the origin and semi-axes
√
k/2,√

k. See Fig. 7.19, right.
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x

y

x

y

Figure 7.19. Level curves of f(x, y) = 6 − 3x − 2y (left), and of f(x, y) = 4x2 + y2

(right)

c) See Fig. 7.20, left.

d) See Fig. 7.20, right.

e) See Fig. 7.21, left.

f) See Fig. 7.21, right.

9. The correct matches are : a-D-IV; b-E-III; c-A-V; d-B-I; e-C-VI; f-F-II.

10. Level surfaces:

a) We are considering a family of parallel planes of equation

x+ 3y + 5z − k = 0 .

b) These are hyperboloids (with one or two sheets) with axis on the y-axis.

x

y

k > 0

k = 0

k < 0k > 0

k < 0

x

y

Figure 7.20. Level curves of f(x, y) = 2xy (left), and of f(x, y) = 2y − 3 log x (right)
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x

y

x

y

Figure 7.21. Level curves of f(x, y) =
√
4x+ 3y (left), and of f(x, y) = 4x−2y2 (right)

11. The set G is an ellipse that we can parametrise as γ(t) =
(
1
2 cos t, sin t

)
,

t ∈ [0, 2π). Thus

ϕ(t) = f ◦ γ(t) = 1

4
cos2 t+ sin2 t+

3

4
cos t+ 1 = −3

4
cos2 t+

3

4
cos t+ 2 ,

with

ϕ′(t) =
3

2
sin t cos t− 3

4
sin t =

3

2
sin t
(
cos t− 1

2

)
.

Note ϕ′(t) = 0 for sin t = 0 or cos t = 1
2 , so for t1 = 0, t2 = π, t3 =

π
3 , t4 =

5
3π.

Moreover, ϕ′(t) > 0 for t ∈ (0, π3 ) ∪ (π, 5
3π
)
, hence ϕ increases on

(
0, π3
)
and(

π, 5
3π
)
, while it decreases on

(
π
3 , π
)
and
(
5
3π, 2π

)
. Therefore P1 = γ(t1) = (12 , 0)

and P2 = γ(t2) = (− 1
2 , 0) are local minima with values f(P1) = 2, f(P2) =

1
2 ;

the points P3 = γ(t3) = (14 ,
√
3
2 ), P4 = γ(t4) = (14 ,−

√
3
2 ) are local maxima with

f(P3) = f(P4) =
35
16 . In particular, the maximum value of f on G is 35

16 , reached
at both P3 and P4, while the minimum value 1/2 is attained at P2.

An alternative way to solve the exercise is to use Lagrange multipliers. If we
set g(x, y) = 4x2 + y2 − 1, the Lagrangian is

L(x, y,λ ) = f(x, y)− λg(x, y) .

Since ∇f(x, y) = (2x+ 3
2 , 2y), ∇g(x, y) = (8x, 2y), we have to solve the system⎧⎪⎨⎪⎩

2x+ 3
2 = 8λx

2y = 2λy

4x2 + y2 = 1 .

From the second equation we get λ = 1 or y = 0. With λ = 1 we find x = 1
4 ,

y = ±
√
3
2 (the points P3, P4); taking y = 0 gives x = ± 1

2 (and we obtain P1 and
P2). Computing f at these points clearly gives the same result of the parameters’
method.
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12. Since ∇f(x, y) = (1, 3) �= (0, 0) for all (x, y), there are no critical points on
the interior of G. We look for extrema on the boundary, which must exist by
Weierstrass’ Theorem. Now, ∂G decomposes in three pieces: two segments, on the
x- and the y-axis, that join the origin to the points A = (1, 0) and B = (0, 1),
and the arc of unit circle connecting A to B. Restricted to the segment OA,
the function is f(x, 0) = x + 2, x ∈ [0, 1], so x = 0 is a (local) minimum with
f(0, 0) = 2, and x = 1 is a (local) maximum with f(1, 0) = 3. Similarly, on OB
the map is f(0, y) = 3y + 2, y ∈ [0, 1], so y = 0 is a (local) minimum, f(0, 0) = 2,
and y = 1 a (local) maximum with f(0, 1) = 5. At last, parametrising the arc by
γ(t) = (cos t, sin t), t ∈ [0, π /2] gives

ϕ(t) = f ◦ γ(t) = cos t+ 3 sin t+ 2 .

Since ϕ′(t) = − sin t+ 3 cos t is zero at t0 = arctan3, and ϕ′(t) > 0 for t ∈ [0, t0],
the function f has a (local) maximum at γ(t0) = (x0, y0). To compute x0, y0
explicitly, observe that {

sin t0 = 3 cos t0

sin2 t0 + cos2 t0 = 1 ,

whence 9 cos2 t0+cos2 t0 = 9x2
0+ x2

0 = 10x2
0 = 1, x0 = 1/

√
10, and so y0 = 3/

√
10

(remember x, y ≥ 0 on G). Furthermore, f(x0, y0) = 2 +
√
10. Overall, the origin

is the absolute minimum and (x0, y0) the absolute maximum for f .

13. a) Given that ∇f(x, y) =
(
2x(y + 1), x2 − 2

)
, the stationary points are P1 =

(
√
2,−1) and P2 = (−√2,−1). The Hessian

Hf(x, y) =

(
2(y + 1) 2x

2x 0

)
at those points reads

Hf(P1) =

(
0 2

√
2

2
√
2 0

)
, Hf(P2) =

(
0 −2√2

−2√2 0

)
,

so P1, P2 are both saddle points.

b) By part a), there are no extrema on the interior of G. But since G is compact,
Weierstrass’ Theorem ensures there are extremum points, and they belong to ∂G.
The boundary of G is the union of the horizontal segment between A = (−√3, 2)
and B = (

√
3, 2) and of the arc joining A to B with equation y =

√
1 + x2

(Fig. 7.22).
On AB we have

f(x, 2) = 3x2 − 4 , x ∈ [−
√
3,
√
3]

whence f has local minimum at x = 0 and local maximum at x = ±√3, with
f(0, 2) = −4 and f(±√3, 2) = 5 respectively.
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x

y

(−√3, 2) (
√
3, 2)

1

2

√
1 + x2

G

Figure 7.22. The admissible set G of Exercise 13

On the arc connecting A and B along y =
√
1 + x2, we have

ϕ(x) = f(x,
√
1 + x2) = x2(

√
1 + x2 + 1)− 2

√
1 + x2 , x ∈ [−

√
3,
√
3] .

As

ϕ′(x) = x
3x2 + 2

√
1 + x2

√
1 + x2

vanishes at x = 0 only, and is positive for x > 0, the point x = 0 is a local minimum
with f(0, 1) = −2, while x = ±√3 are local maxima.

Therefore, P1 = (0, 2) is the absolute minimum, P2 = (
√
3, 0) and P3 =

(−√3, 0) are absolute maxima on G.

14. Define g(x, y) = x4 − x2 + y2 − 5 and use Lagrange multipliers. As

∇f(x, y) = (4x, 2y) , ∇g(x, y) = (4x3 − 2x, 2y) ,

we consider the system ⎧⎨⎩ 4x = λ2x(2x2 − 1)
2y = λ2y
x4 − x2 + y2 − 5 = 0 .

The second equation gives λ = 1 or y = 0. In the former case we have x = 0 or
x = ±√3/2, and correspondingly y = ±√5 or y = ±√17/2; in the latter case

x2 = 1±√
21

2 , so x = ±
√

1+
√
21

2 (note 1−√21 < 0 gives a non-valid x2). Therefore,

P1,2 = (0,±
√
5) , P3,4,5,6 =

(
±
√
3

2
,±

√
17

2

)
, P7,8 =

(
±
√
1 +

√
21

2
, 0
)

are extrema, constrained to G. From

f(P1,2) = 5 , f(P3,4,5,6) =
29

4
, f(P7,8) = 1 +

√
21

the maximum value of f is 29/4, the minimum 5.



296 7 Applying differential calculus

15. Let us use Lagrange’s multipliers putting g(x, y) = 4x2+ y2− 1 and observing

∇f(x, y) = (4x+ 2, 2y − 4) , ∇g(x, y) = (8x, 2y) .

We have to solve

⎧⎨⎩
8x+ 2 = 8λx

2y − 4 = 2λy

4x2 + y2 − 1 = 0

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x =
1

4(λ− 1)

y = − 2

λ− 1
1

4

1

(λ − 1)2
+

4

(λ− 1)2
= 1 .

Note λ �= 1, for otherwise the first two equations would be inconsistent. The third

equation on the right gives λ − 1 = ±
√
17
2 , hence x = ± 1

2
√
17

and y = ∓ 4√
17
. The

extrema are therefore

P1 =
( 1

2
√
17

,− 4√
17

)
and P2 =

(− 1

2
√
17

,
4√
17

)
.

From f(P1) = 2 +
√
17, f(P2) = 2 − √

17, we see the maximum is 2 +
√
17, the

minimum 2−√
17.
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Integral calculus in several variables

The definite integral of a function of one real variable allowed us, in Vol. I, to
define and calculate the area of a sufficiently regular region in the plane. The
present chapter extends this notion to multivariable maps by discussing multiple
integrals; in particular, we introduce double integrals for dimension 2 and triple
integrals for dimension 3. These new tools rely on the notions of a measurable
subset of Rn and the corresponding n-dimensional measure; the latter extends the
idea of the area of a plane region (n = 2), and the volume of a solid (n = 3) to
more general situations.

We continue by introducing methods for computing multiple integrals. Among
them, dimensional-reduction techniques transform multiple integrals into one-
dimensional integrals, which can be tackled using the rules the reader is already
familiar with. On the other hand a variable change in the integration domain can
produce an expression, as for integrals by substitution, that is computable with
more ease than the multiple integral.

In the sequel we shall explain the part played by multiple integrals in the correct
formulation of physical quantities, like mass, centre of gravity, and moments of
inertia of a body with given density.

The material cannot hope to exhaust multivariable integral calculus. Integrat-
ing a map that depends on n variables over a lower-dimensional manifold gives rise
to other kinds of integrals, with great applicative importance, such as curvilinear
integrals, or flux integrals through a surface. These in particular will be carefully
dealt with in the subsequent chapter, where we will also show how to recover a
map from its gradient, i.e., find a primitive of sorts, essentially.

The technical nature of many proofs, that are often adaptations of one-
dimensional arguments, has induced us to skip them1. The wealth of examples
we present will in any case illustrate the statements thoroughly.

1 The interested reader may find the proofs in, e.g., the classical textbook by R. Courant
and F. John, Introduction to Calculus and Analysis, Vol. II, Springer, 1999.

C. Canuto, A. Tabacco:Mathematical Analysis II, 2nd Ed.,
UNITEXT – La Matematica per il 3+2 85, DOI 10.1007/978-3-319-12757-6_7,
© Springer International Publishing Switzerland 2015
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Figure 8.1. The cylindroid of a map

8.1 Double integral over rectangles

Consider a real function f : B → R, defined on a closed rectangle B = [a, b] ×
[c, d] ⊂ R2 and bounded over it. We call cylindroid of f the three-dimensional
region C(f ;B) between B and the graph of f

C(f ;B) = {(x, y, z) ∈ R3 : (x, y) ∈ B, 0 ≤ z ≤ f(x, y) or f(x, y) ≤ z ≤ 0} ,

see Fig. 8.1. (The choice of bounds for z depends on the sign of f(x, y).) If f
satisfies certain requirements, we may associate to the cylindroid of f a number
called the double integral of f over B. In case f is positive, this number represents
the region’s volume. In particular, when the cylindroid is a simple solid (e.g., a
parallelepiped, a prism, and so on) it gives the usual expression for the volume.

Many are the ways to construct the double integral of a function; we will explain
the method due to Riemann, which generalises what we saw in Vol. I, Sects. 9.4
and 9.5, for dimension 1.

Let us thus consider arbitrary partitions of [a, b] and [c, d] associated to the
ordered points {x0, x1, . . . , xp} and {y0, y1, . . . , yq}

a = x0 < x1 < · · · < xp−1 < xp = b , c = y0 < y1 < · · · < yq−1 < yq = d ,

with

I = [a, b] =

p⋃
h=1

Ih =

p⋃
h=1

[xh−1, xh] , J = [c, d] =

q⋃
k=1

Jk =

q⋃
k=1

[yk−1, yk] .
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x

y

a = x0 x1 x2 x3 b = x4

c = y0

y1

y2

d = y3

B32=I3×J2

Figure 8.2. Subdivision of the rectangle B

The rectangle B is made of p · q products Bhk = Ih × Jk; we have thus built a
partition or subdivision of B, say D = {Bhk : h = 1, . . . p, k = 1, . . . , q}, which is
the product of the partitions of [a, b] and [c, d] (Fig. 8.2). Set

mhk = inf
(x,y)∈Bhk

f(x, y) and Mhk = sup
(x,y)∈Bhk

f(x, y)

and define the lower and upper sum of f on B relative to the subdivision D by

s = s(D, f) =

q∑
k=1

p∑
h=1

mhk(xh − xh−1)(yk − yk−1) ,

S = S(D, f) =

q∑
k=1

p∑
h=1

Mhk(xh − xh−1)(yk − yk−1) .

(8.1)

Since f is bounded on B, there exist constants m and M such that, for each
subdivision D,

m(b− a)(d− c) ≤ s(D, f) ≤ S(D, f) ≤M(b− a)(d− c) .

The following quantities are thus well defined

∫
B

f = inf
D

S(D, f) and

∫
B

f = sup
D

s(D, f) , (8.2)
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z

Figure 8.3. Lower (left) and upper sum (right)

respectively called upper integral and lower integral of f over B. As in the
one-dimensional case, it is not hard to check that∫

B

f ≤
∫
B

f .

Definition 8.1 A map f bounded on B = [a, b]× [c, d] = I × J is Riemann
integrable on B if ∫

B

f =

∫
B

f .

This value is called the double integral of f over B, and denoted by one
of the symbols∫

B

f ,

∫∫
B

f ,

∫
B

f(x, y) dxdy ,

∫
J

∫
I

f(x, y) dxdy ,

∫ d

c

∫ b

a

f(x, y) dxdy .

The geometrical meaning is clear when f is positive on B. Given a partition D
of B, the cylindroid of f is contained inside the solid formed by the union of the
parallelepipeds with base Bhk and height Mhk, and it contains the solid made by
the parallelepipeds with the same base and mhk as height (see Fig. 8.3).

The upper integral is an over-estimate of the region, while the lower integral an
under-estimate. Thus f is integrable when these two concide, i.e., when the region
defines a number representing its volume.
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Examples 8.2

i) Suppose f is constant on B, say equal K. Then for any partition D, we have
mhk = Mhk = K, so

s(D, f) = S(D, f) =

q∑
k=1

p∑
h=1

K (xh − xh−1)(yk − yk−1) = K (b− a)(d− c) .

Therefore ∫
B

f = K (b− a)(d− c) = K · area(B) .

ii) Let f be the two-dimensional Dirichlet function on B = [0, 1]× [0, 1]

f(x, y) =

{
1 if x, y ∈ Q, 0 ≤ x, y ≤ 1,

0 otherwise .

For any given partiton D then,

s(D, f) =

q∑
k=1

p∑
h=1

0 · (xh − xh−1)(yk − yk−1) = 0 ,

S(D, f) =

q∑
k=1

p∑
h=1

1 · (xh − xh−1)(yk − yk−1) = 1 .

This shows f is not integrable on B. �

Remark 8.3 Let us examine, in detail, similarities and differences with the defin-
ition, as of Vol. I, of a Riemann integrable map on an interval [a, b]. We may sub-
divide the rectangle B = [a, b] × [c, d] without having to use Cartesian products
of partitions of [a, b] and [c, d]. For instance, we could subdivide B = ∪N

i=1Bi by
taking coordinate rectangles Bi as in Fig. 8.4. Clearly, the kind of partitions we
consider are a special case of these.

Furthermore, if we are given a generic two-dimensional step function ϕ associ-
ated to such a rectangular partition, it is possible to define its double integral in
an elementary way, namely: let

ϕ(x, y) = ci , ∀(x, y) ∈ Bi , i = 1, . . . , N ;

then ∫
B

ϕ =

N∑
i=1

ciarea(Bi) .

Notice the lower and upper sums of a bounded map f : B → R, defined in (8.1),
are precisely the integrals of two step functions, one smaller and one larger than f .
Their constant values on each sub-rectangle coincide respectively with the greatest
lower bound and least upper bound of f on the sub-rectangle. We could have
considered the set S−

f (resp. S+
f ) of step functions that are smaller (larger) than

f . The lower and upper integrals thus obtained,∫
B

f = sup{
∫
B

g : g ∈ S−
f } and

∫
B

f = inf{
∫
B

g : g ∈ S+
f },
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Figure 8.4. Generic partition of the rectangle B

coincide with those introduced in (8.2). In other terms, the two recipes for the
definite integral give the same result. �

As for one-variable maps, it is imperative to find classes of integrable functions
and be able to compute their integrals directly, without turning to the definition.
A partial answer to the first problem is provided by the following theorem. Further
classes of integrable functions will be considered in subsequent sections.

Theorem 8.4 If f is continuous on the rectangle B, then it is integrable
on B.

Our next result allows us to reduce a double integral, under suitable assump-
tions, to the computation of two integrals over real intervals.

Theorem 8.5 Let f be integrable over B = [a, b]× [c, d].

a) If, for any y ∈ [c, d], the integral g(y) =
∫ b
a
f(x, y) dx exists, the map

g : [c, d]→ R is integrable on [c, d] and∫
B

f =

∫ d

c

g(y) dy =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy . (8.3)
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b) If, for any x ∈ [a, b], the integral h(x) =
∫ d
c
f(x, y) dy exists, the map

h : [a, b]→ R is integrable on [a, b] and∫
B

f =

∫ b

a

h(x) dx =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx . (8.4)

In particular, if f is continuous on B,∫
B

f =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy . (8.5)

Formulas (8.3) and (8.4) are said, generically, reduction formulas for iterated in-
tegrals. When they hold simultaneously, as happens for continuous maps, we say
that the order of integration can be swapped in the double integral.

Examples 8.6

i) A special case occurs when f has the form f(x, y) = h(x)g(y), with h integrable
on [a, b] and g integrable on [c, d]. Then it can be proved that f is integrable on
B = [a, b]× [c, d], and formulas (8.3), (8.4) read∫

B

f =

(∫ b

a

h(x) dx

)
·
(∫ d

c

g(y) dy

)
.

This means the double integral coincides with the product of the two one-
dimensional integrals of h and g.

ii) Let us determine the double integral of f(x, y) = cos(x+ y) over B = [0, π
4 ]×

[0, π
2 ]. The map is continuous, so we may indifferently use (8.3) or (8.4). For

example,∫
B

f =

∫ π/4

0

(∫ π/2

0

cos(x+ y) dy

)
dx =

∫ π/4

0

[
sin(x+ y)

]y=π/2

y=0
dx

=

∫ π/4

0

(
sin(x +

π

2
)− sinx

)
dx =

√
2− 1 .

iii) Let us compute the double integral of f(x, y) = x cos xy overB = [1, 2]×[0, π].
Although (8.3) and (8.4) are both valid, the latter is more convenient here. In
fact, ∫

B

x cosxy dxdy =

∫ 2

1

(∫ π

0

x cos xy dy

)
dx

=

∫ 2

1

[
sinxy

]y=π

y=0
dx =

∫ 2

1

sinπxdx = − 2

π
.

Formula (8.3) involves more elaborate computations which the reader might want
to perform. �
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Figure 8.5. The geometrical meaning of integrating on cross-sections

Remark 8.7 To interpret an iterated integral geometrically, let us assume for sim-
plicity f is positive and continuous on B, and consider (8.4). Given an x0 ∈ [a, b],

h(x0) =
∫ d
c
f(x0, y) dy represents the area of the region obtained as intersection

between the cylindroid of f and the plane x = x0. The region’s volume is the
integral from a to b of such area (Fig. 8.5). �

8.2 Double integrals over measurable sets

For one-dimensional integrals the region over which to integrate is always an in-
terval, or a finite union of intervals. Since double-integrating only over rectangles
(or finite unions thereof) is too restrictive, we need to introduce the kind of sets
over which we will discuss integrability. To this end, let Ω be an arbitrary bounded
subset of R2, and denote by χΩ : R2 → R its characteristic function

χΩ(x) =

{
1 if x ∈ Ω ,

0 if x /∈ Ω

(see Fig. 8.6).
We fix an arbitrary rectangle B containing Ω, and ask ourselves whether χΩ

is integrable on B. It is easy to check that if yes, and if B′ is any other rectangle
containing Ω, the function χΩ is still integrable on B′. Moreover the two integrals∫
B
χΩ and

∫
B′ χΩ coincide, so the common value can be denoted by

∫
Ω
χΩ. That

said, let us introduce the notion of a measurable set à la Peano-Jordan.

Definition 8.8 A bounded subset Ω ⊂ R2 is measurable if, for an arbitrary
rectangle B containing Ω, the function χΩ is integrable on B. If so, the non-
negative number

|Ω| =
∫
Ω

χΩ

is the measure (or area) of Ω.
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Figure 8.6. The characteristic function of a set Ω

Examples of measurable sets include polygons and discs, and the above notion
is precisely what we already know as their surface area. At times we shall write
area(Ω) instead of |Ω|. In particular, for any rectangle B = [a, b] × [c, d] we see
immediately that

|B| = area(B) =

∫
B

dxdy =

∫ d

c

∫ b

a

dxdy = (b− a)(d− c).

Not all bounded sets in the plane are measurable. Think of the points in the square
[0, 1]× [0, 1] with rational coordinates. The characteristic function of this set is the
Dirichlet function relative to Example 8.2 ii), which is not integrable. Therefore
the set is not measurable.

Another definition will turn out useful in the sequel.

Definition 8.9 A set Ω has zero measure if it is measurable and |Ω| = 0.

With this we can characterise measurable sets in the plane. In fact, the next
result is often used the tell whether a given set is measurable or not.

Theorem 8.10 A bounded set Ω ⊂ R2 is measurable if and only if its bound-
ary ∂Ω has measure zero.

Among zero-measure sets are:

i) subsets of sets with zero measure;

ii) finite unions of sets with zero measure;

iii) sets consisting of finitely many points;
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iv) segments;

v) graphs Γ = {(x, f(x))} or Γ = {(f(y), y)} of integrable maps f : [a, b]→ R;

vi) traces of (piecewise-)regular plane curves.

As for the last, we should not confuse the measure of the trace of a plane curve
with its length, which is in essence a one-dimensional measure for sets that are
not contained in a line.

A case of zero-measure set of particular relevance is the graph of a continuous
map defined on a closed and bounded interval. Therefore, measurable sets include
bounded sets whose boundary is a finite union of such graphs, or more gener-
ally, a finite union of regular Jordan arcs. At last, bounded and convex sets are
measurable.

Measurable sets and their measures enjoy some properties.

Property 8.11 If Ω1 and Ω2 are measurable,

i) Ω1 ⊆ Ω2 implies |Ω1| ≤ |Ω2|;
ii) Ω1 ∪Ω2 and Ω1 ∩Ω2 are measurable with

|Ω1 ∪Ω2| = |Ω1|+ |Ω2| − |Ω1 ∩Ω2| , hence |Ω1 ∪Ω2| ≤ |Ω1|+ |Ω2| .

Here is a simple, yet useful result for the sequel.

Property 8.12 If Ω is a measurable set, so are the interior
◦
Ω, the closure Ω,

and in general all sets Ω̃ such that
◦
Ω ⊆ Ω̃ ⊆ Ω. Any of these has measure |Ω|.

Proof. All sets Ω̃ have the same boundary ∂Ω̃ = ∂Ω. Therefore Theorem 8.10
tells they are measurable. But they differ from one another by subsets of
∂Ω, whose measure is zero. �

Now we introduce the notion of integrability for bounded maps on a given
measurable set Ω. The method is completely similar to the way we selected meas-
urable sets. Let f : Ω → R be a bounded map, and consider f̃ : R2 → R (called
the trivial extension of f to R2), defined by

f̃(x) =

{
f(x) if x ∈ Ω,

0 if x /∈ Ω
(8.6)

(see Fig. 8.7).
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Figure 8.7. Trivial extension of a map to a rectangle B

Definition 8.13 The map f is (Riemann) integrable on Ω if f̃ is integrable

on any rectangle B containing Ω. In that case, the integral

∫
B

f̃ is independent

of the choice of B, and we set ∫
Ω

f =

∫
B

f̃ .

This value is called the double integral of f over Ω. Other symbols to
denote it are ∫∫

Ω

f ,

∫
Ω

f(x, y) dxdy ,

∫
Ω

f dΩ .

Observe that if f coincides with the characteristic function of Ω, what we have
just defined is exactly the measure of Ω.

The first large class of integrable maps we wish to describe is a sort of gener-
alisation of piecewise-continuous functions in one variable.

Definition 8.14 A map f : Ω → R, bounded on a measurable set Ω, is said
generically continuous on Ω if the discontinuity set has zero measure.

A bounded, continuous map on Ω is clearly generically continuous, as no dis-
continuity points are present. An example of a generically continuous, but not
continuous, function is given by the map f(x, y) = sign(x − y) on the square
Ω = (0, 1)2.

Then we have the following result.
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Theorem 8.15 Let f be generically continuous on a measurable set Ω. Then
f is integrable on Ω.

There is a way to compute the double integral on special regions in the plane,
which requires a definition.

Definition 8.16 A set Ω ⊂ R2 is normal with respect to the y-axis if
it is of the form

Ω = {(x, y) ∈ R2 : a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}

with g1, g2 : [a, b]→ R continuous.
Analogously, Ω is normal with respect to the x-axis if

Ω = {(x, y) ∈ R2 : c ≤ y ≤ d, h1(y) ≤ y ≤ h2(y)}

with h1, h2 : [c, d]→ R continuous. We will shorten this by the terms normal
for y and normal for x respectively.

This notion can be understood geometrically. The set Ω is normal with respect to
the y-axis if any vertical line x = x0 either does not meet Ω, or it intersects it in the
segment (possibly reduced to a point) with end points

(
x0, g1(x0)

)
,
(
x0, g2(x0)

)
.

Similarly, Ω is normal for x if a horizontal line y = y0 has intersection either empty
or the segment between

(
h1(y0), y0

)
,
(
h2(y0), y0

)
with Ω. Examples are shown in

Fig. 8.8 and Fig. 8.9.
Normal sets for either variable are clearly measurable, because their boundary

is a finite union of zero-measure sets (graphs of continuous maps and segments).
The next proposition allows us to compute a double integral by iteration, thus
generalising Theorem 8.5 for rectangles.

x

y

a bx0 x

y

a bx0 x

y

a bx0

Figure 8.8. Normal sets for y
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Figure 8.9. Normal sets for x

Theorem 8.17 Let f : Ω → R be continuous on Ω. If Ω is normal for y,
then ∫

Ω

f =

∫ b

a

(∫ g2(x)

g1(x)

f(x, y) dy

)
dx . (8.7)

If Ω is normal for x,∫
Ω

f =

∫ d

c

(∫ h2(y)

h1(y)

f(x, y) dx

)
dy . (8.8)

Proof. Suppose Ω is normal for x. From the definition, Ω is a closed and bounded,
hence compact, subset of R2. By Weierstrass’ Theorem 5.24, f is bounded
onΩ. Then Theorem 8.15 implies f is integrable onΩ. As for formula (8.8),
let B = [a, b]× [c, d] be a rectangle containing Ω, and consider the trivial
extension f̃ of f to B. The idea is to use Theorem 8.5 a); for this, we
observe that for any y ∈ [c, d], the integral

g(y) =

∫ b

a

f̃(x, y) dx

exists because x �→ f̃(x, y) has not more than two discontinuity points
(see Fig. 8.10). Moreover∫ b

a

f̃(x, y) dx =

∫ h2(y)

h1(y)

f(x, y) dx ,

so∫
Ω

f =

∫
B

f̃ =

∫ d

c

(∫ b

a

f̃(x, y) dx

)
dy =

∫ d

c

(∫ h2(y)

h1(y)

f(x, y) dx

)
dy ,

proving (8.8). Formula (8.7) is similar. �
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Figure 8.10. Reduction formula for an iterated integral

Also (8.7) and (8.8) are iterated integrals, respectively referred to as formula of
vertical and of horizontal integration.

Examples 8.18

i) Compute ∫
Ω

(x+ 2y) dxdy ,

where Ω is the region in the first quadrant bounded by the curves y = 2x,
y = 3− x2, x = 0 (as in Fig. 8.11, left). The first line and the parabola meet at
two points with x = −3 and x = 1, the latter of which delimits Ω on the right.
The set Ω is normal for both x and y, but given its shape we prefer to integrate
in y first. In fact,

Ω =
{
(x, y) ∈ R2 : 0 ≤ x ≤ 1, 2x ≤ y ≤ 3− x2

}
.

Hence,∫
Ω

(x+ 2y) dxdy =

∫ 1

0

(∫ 3−x2

2x

(x+ 2y) dy

)
dx =

∫ 1

0

[
xy + y2

]y=3−x2

y=2x
dx

=

∫ 1

0

(
x4 − x3 − 12x2 + 3x+ 9

)
dx

=

[
1

5
x5 − 1

4
x4 − 4x3 +

3

2
x2 + 9x

]x=1

x=0

=
129

20
.

Had we chosen to integrate in x first, we would have had to write the domain as

Ω =
{
(x, y) ∈ R2 : 0 ≤ y ≤ 3, 0 ≤ x ≤ h2(y)

}
,

where h2(y) is

h2(y) =

⎧⎨⎩
1

2
y if 0 ≤ y ≤ 2 ,

√
3− y if 2 < y ≤ 3 .

The form of h2(y) clearly suggests why the former technique is to be preferred.
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1 x

3

2

y = 2x

y = 3− x2

x

y

x

y

2

4

4

x =
√
y

Figure 8.11. The set Ω = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 2x ≤ y ≤ 3 − x2} (left) and
Ω = {(x, y) ∈ R2 : 0 ≤ y ≤ 4,

√
y ≤ x ≤ 4} (right)

ii) Consider ∫
Ω

(5y + 2x) dxdy

where Ω is the plane region bounded by y = 0, y = 4, x = 4 and by the graph of
x =

√
y (see Fig. 8.11, right). Again, Ω is normal for both x and y, but horizontal

integration will turn out to be better. In fact, we write

Ω =
{
(x, y) ∈ R2 : 0 ≤ y ≤ 4,

√
y ≤ x ≤ 4

}
;

therefore∫
Ω

(5y + 2x) dxdy =

∫ 4

0

(∫ 4

√
y

(5y + 2x) dx

)
dy =

∫ 4

0

[
5xy + x2

]x=4

x=
√
y
dy

=

∫ 4

0

(
19y + 16− 5y3/2

)
dy

=

[
19

2
y2 + 16y − 2y5/2

]y=4

y=0

= 152. �

For positive functions that are integrable on generic measurable sets Ω, e.g.,
rectangles, the double integral makes geometrical sense, namely it represents the
volume vol(C) of the cylindroid of f

C = C(f ;Ω) = {(x, y, z) ∈ R3 : (x, y) ∈ Ω, 0 ≤ z ≤ f(x, y)} .

See Fig. 8.12.



312 8 Integral calculus in several variables

x
y

z

Ω

Figure 8.12. The cylindroid of a positive map

Example 8.19

Compute the volume of

C =
{
(x, y, z) ∈ R3 : 0 ≤ y ≤ 3

4
x, x2 + y2 ≤ 25, z ≤ xy

}
.

The solid is the cylindroid of f(x, y) = xy with base

Ω =
{
(x, y) ∈ R2 : 0 ≤ y ≤ 3

4
x, x2 + y2 ≤ 25

}
.

The map is integrable (as continuous) on Ω, which is normal for both x and y
(Fig. 8.13). Therefore vol(C) = ∫

Ω
xy dxdy.

x

y

x =
√

25− y2

5

x = 4
3
y

3

Figure 8.13. The set Ω =
{
(x, y) ∈ R2 : 0 ≤ y ≤ 3, 4

3
y ≤ x ≤

√
25− y2

}
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The region Ω lies in the first quadrant, is bounded by the line y = 3
4x and the

circle x2 + y2 = 25 centred at the origin with radius 5. For simplicity let us
integrate horizontally, since

Ω =
{
(x, y) ∈ R2 : 0 ≤ y ≤ 3,

4

3
y ≤ x ≤

√
25− y2

}
.

Thus ∫
Ω

xy dxdy =

∫ 3

0

(∫ √25−y2

4
3y

xy dx

)
dy

=

∫ 3

0

[
1

2
yx2

]x=√25−y2

x= 4
3y

dy

=
1

2

∫ 3

0

(
y(25− y2)− 16

9
y3
)
dy =

225

8
. �

8.2.1 Properties of double integrals

In this section we state a bunch of useful properties of double integrals.

Theorem 8.20 Let f , g be integrable maps on a measurable set Ω ⊂ R2.

i) (Linearity) For any α,β ∈ R, the map αf + βg is integrable on Ω and∫
Ω

αf + βg = α

∫
Ω

f + β

∫
Ω

g .

ii) (Positivity) If f ≥ 0 on Ω, then∫
Ω

f ≥ 0 .

In addition, if f is continuous and Ω measurable with |Ω| > 0, we have
equality above if and only if f is identically zero.

iii) (Comparison/Monotonicity) If f ≤ g on Ω, then∫
Ω

f ≤
∫
Ω

g .

iv) (Boundedness) The map |f | is integrable on Ω and∣∣∣∣∫
Ω

f

∣∣∣∣ ≤ ∫
Ω

|f | .
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v) (Mean Value Theorem) If Ω is measurable and

m = inf
(x,y)∈Ω

f(x, y) , M = sup
(x,y)∈Ω

f(x, y) ,

then

m ≤ 1

|Ω|
∫
Ω

f ≤M .

The number
1

|Ω|
∫
Ω

f (8.9)

is called (integral) mean value of f on Ω.

vi) (Additivity of domains) Let Ω = Ω1∪Ω2, with Ω1∩Ω2 of zero measure.
If f is integrable on Ω1 and on Ω2, then f is integrable on Ω, and∫

Ω

f =

∫
Ω1

f +

∫
Ω2

f .

vii) If f = g except that on a zero-measure subset of Ω, then∫
Ω

f =

∫
Ω

g .

Property vi) is extremely useful when integrals are defined over unions of finitely
many normal sets for one variable.

There is a counterpart to Property 8.12 for integrable functions.

Property 8.21 Let f be integrable on a measurable set Ω, and suppose it is
defined on the closure Ω of Ω. Then f is integrable over any subset Ω̃ such

that
◦
Ω ⊆ Ω̃ ⊆ Ω, and ∫

Ω̃

f =

∫
Ω

f .

Otherwise said, the double integral of an integrable map does not depend on
whether bits of the boundary belong to the integration domain.

Examples 8.22

i) Consider ∫
Ω

(1 + x) dxdy ,

where Ω = {(x, y) ∈ R2 : y > |x|, y < 1
2x+ 2}.
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− 4
3

4

Ω2 Ω1

y = 1
2
x+ 2

y = |x|

x

y

Figure 8.14. The set Ω relative to Example 8.22 i)

The domain Ω, depicted in Fig. 8.14, is made of the points lying between the
graphs of y = |x| and y = 1

2x+2. The set Ω is normal for both x and y; it is more
convenient to start integrating in y. Due to the presence of y = |x|, moreover, it
is better to compute the integral on Ω as sum of integrals over the subsets Ω1

and Ω2 of the picture. The graphs of y = |x| and y = 1
2x+2 meet for x = 4 and

x = − 4
3 . Then Ω1 and Ω2 are, respectively,

Ω1 = {(x, y) ∈ R2 : 0 ≤ x < 4, x < y <
1

2
x+ 2}

and

Ω2 = {(x, y) ∈ R2 : −4

3
< x < 0, −x < y <

1

2
x+ 2}.

Therefore∫
Ω1

(1 + x) dxdy =

∫ 4

0

(∫ 1
2x+2

x

(1 + x) dy

)
dx =

∫ 4

0

[y + xy]
1
2x+2
x dx

=

∫ 4

0

(
−1

2
x2 +

3

2
x+ 2

)
dx =

[
−1

6
x3 +

3

4
x2 + 2x

]4
0

=
28

3
and∫

Ω2

(1 + x) dxdy =

∫ 0

− 4
3

(∫ 1
2x+2

−x

(1 + x) dy

)
dx =

∫ 0

− 4
3

[y + xy]
1
2x+2
−x dx

=

∫ 0

− 4
3

(
3

2
x2 +

7

2
x+ 2

)
dx =

[
1

2
x3 +

7

4
x2 + 2x

]0
− 4

3

=
20

27
.

In conclusion,∫
Ω

(1 + x) dxdy =

∫
Ω1

(1 + x) dxdy +

∫
Ω2

(1 + x) dxdy =
28

3
+
20

27
=

272

27
.
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5

x2 + y2 = 25

Ω2

P

x2 + y2 − 25
4
x = 0

3

2
√
5

y = 1
2
x

Ω1
Q

4

x

y

Figure 8.15. The set Ω relative to Example 8.22 ii)

ii) Consider ∫
Ω

y

x+ 1
dxdy ,

with Ω bounded by the circles x2 + y2 = 25, x2 + y2 − 25
4 x = 0 and the line

y = 1
2x (Fig. 8.15). The first curve has centre in the origin and radius 5, the

second in ( 258 , 0) and radius 25
8 . They meet at P = (4, 3) in the first quadrant;

moreover, the line y = 1
2x intersects x2 + y2 = 25 in Q = (2

√
5,
√
5). The region

is normal with respect to both axes; we therefore integrate by dividing Ω in two
parts Ω1, Ω2, whose horizontal projections on the x-axis are [0, 4] and [4, 2

√
5]:∫

Ω

y

x+ 1
dxdy =

∫
Ω1

y

x+ 1
dxdy +

∫
Ω2

y

x+ 1
dxdy

=

∫ 4

0

(∫ √ 25
4 x−x2

x/2

y

x+ 1
dy

)
dx+

∫ 2
√
5

4

(∫ √
25−x2

x/2

y

x+ 1
dy

)
dx

=
1

2

∫ 4

0

25x− 5x2

x+ 1
dx+

1

8

∫ 2
√
5

4

100− 5x2

x+ 1
dx

=
1

8

∫ 4

0

(
− 5x+ 30− 30

x+ 1

)
dx+

1

8

∫ 2
√
5

4

(
− 5x+ 5 +

95

x+ 1

)
dx

=
5

8

(
10 + 2

√
5− 25 log 5 + 19 log(1 + 2

√
5)
)
. �
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8.3 Changing variables in double integrals

This section deals with the analogue of the substitution method for one-dimensional
integrals. This generalisation represents an important computational tool, besides
furnishing an alternative way to understand the Jacobian determinant of plane
transformations.

Consider a measurable region Ω ⊂ R2 and a continuous map f that is bounded
on it. As f is integrable on Ω, we may ask how

∫
Ω f varies if we change variables

in the plane.
Precisely, retaining the notation of Sect. 6.6, let Ω′ be a measurable region

and Φ : Ω′ → Ω, (x, y) = Φ(u, v) a variable change, like in Definition 6.30. We
want to write the integral of f(x, y) over Ω as integral over Ω′ by means of the
composite map f̃ = f ◦ Φ, i.e., f̃(u, v) = f

(
Φ(u, v)

)
, defined on Ω′. To do that

though, we ought to recall the integral is defined using the areas of elementary sets,
such as rectangles, into which the domain is divided. It becomes thus relevant to
understand how areas change when passing from Ω′ to Ω via Φ.

So let us start with a rectangle B′ in Ω′, whose sides are parallel to the axes
u and v and whose vertices are u0, u1 = u0 + Δu e1, u2 = u0 + Δv e2 and
u3 = u0+Δu e1+Δv e2 (Fig. 8.16, left); here Δu,Δv denote positive, and small,
increments. The area of B′ is |B′| = ΔuΔv, clearly.

Denote by B the image of B′ under Φ (Fig. 8.16, right); it has sides along the
coordinate lines of Φ and vertices given by xi = Φ(ui), i = 0, . . . , 3. In order to
express the area ofB in terms ofB′ we need to make some approximations, justified
by the choice of sufficiently small Δu and Δv. First of all, let us approximate B
with the parallelogram Bp with three vertices at x0, x1, x2. It is known that its
area is the absolute value of the cross product of any two adjacent sides:

|B| ∼ |Bp| = ‖(x1 − x0) ∧ (x2 − x0)‖ .
On the other hand, the Taylor expansion of first order at u0 gives, also using (6.25),

 

 

 

 

u

v

u0 u1

u2 u3

B′

Δu

Δv

 

 

 

 

x

y

x0

x1

x2

x3

BBp

∼ τ1Δu

∼ τ2Δv

Figure 8.16. How a variable change transforms a rectangle
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x1 − x0 = Φ(u1)−Φ(u0) ∼ ∂Φ

∂u
(u0)Δu = τ1Δu ,

and similarly

x2 − x0 ∼ τ2Δv , with τ2 =
∂Φ

∂v
(u0) .

Therefore
|B| ∼ ‖τ1 ∧ τ2‖ΔuΔv = ‖τ1 ∧ τ2‖ |B′| .

Now (6.27) yields
‖τ1 ∧ τ2‖ = | detJΦ(u0)| ,

so that
|B| ∼ |detJΦ(u0)| |B′| . (8.10)

Up to infinitesimals of order greater than Δu and Δv then, the quantity | detJΦ|
represents the ratio between the areas of two (small) surface elementsB′ ⊂ Ω′, B ⊂
Ω, which correspond under Φ. This relationship is usually written symbolically as

dxdy = | detJΦ(u, v)| du dv , (8.11)

where du dv is the area of the ‘infinitesimal’ surface element in Ω′ and dxdy the
area of the image in Ω.

Examples 8.23

i) Call Φ the affine transformation Φ(u) = Au + b, where A is a non-singular
matrix. Then B is a parallelogram of vertices x0, x1, x2, x3, and concides with
Bp, so all approximations are actually exact. In particular, the position vectors
along the sides at x0 read

x1 − x0 = a1Δu , x2 − x0 = a2Δv ,

where a1 and a2 are the column vectors of A. Hence

|B| = ‖a1 ∧ a2‖ΔuΔv = | detA|ΔuΔv = | detJΦ| |B′| ,
and (8.10) is an equality.

ii) Consider the transformation Φ : (r,θ ) �→ (r cos θ, r sin θ) relative to polar
coordinates in the plane. The image under Φ of a rectangle B′ = [r0, r0 +Δr]×
[θ0, θ0+Δθ] in the rθ-plane is the region of Fig. 8.17. It has heightΔr in the radial
direction and base ∼ rΔθ along the angle direction; but since polar coordinates
are orthogonal,

|B| ∼ rΔrΔθ = r|B′| .
This is the form that (8.10) takes in the case at hand, because indeed r =
detJΦ(r,θ ) > 0 (recall (6.29)). �

After this detour we are ready to integrate. If D′ = {B′
i}i∈I is a partition of

Ω′ into rectangular elements, D = {Bi = Φ(B′
i)}i∈I will be a partition of Ω in

rectangular-like regions; denote by | detJΦi| the value appearing in (8.10) for the
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r

θ

r0 r0 +Δr

θ0 +Δθ

θ0
B′

x

y

Δr

Δθ

∼ rΔθ

B

Figure 8.17. Area element in polar coordinates

element Bi. If fi is an approximation of f on Bi (consequently, an approximation
of the transform f̃ = f ◦Φ on B′

i as well), then by using (8.10) on each element
we obtain ∑

i∈I

fi|Bi| ∼
∑
i∈I

fi| detJΦi| |B′
i| .

Now refining the partition of Ω′ further and further, by taking rectangles of
sides Δu, Δv going to 0, one can prove that the sums on the right converge
to
∫
Ω′ f
(
Φ(u, v)

)| detJΦ(u, v)| du dv, while those on the left to
∫
Ω
f(x, y) dxdy,

provided f is continuous and bounded on Ω.
All the above discussion should justify, though heuristically, the following key

result (clearly, everything can be made rigorous).

Theorem 8.24 Let Φ : Ω′ → Ω be a change of variables between measurable
regions Ω′, Ω in R2, as in Definition 6.30, with components

x = ϕ(u, v) and y = ψ(u, v).

If f is a continuous and bounded map on Ω,∫
Ω

f(x, y) dxdy =

∫
Ω′

f
(
ϕ(u, v), ψ(u, v)

)| detJΦ(u, v)| du dv . (8.12)

In the applications, it may be more convenient to use the inverse transformation

(u, v) = Ψ(x, y), such that Ω′ = Ψ(Ω) and detJΦ(u, v) =
(
detJΨ(x, y)

)−1
.

Let us make this formula explicit by considering two special changes of vari-
ables, namely an affine map and the passage to polar coordinates.

For affine transformations, set x = Φ(u) = Au + b where A =

(
a11 a12

a21 a22

)
and b =

(
b1

b2

)
; hence x = ϕ(u, v) = a11u + a12v + b1 and y = ψ(u, v) = a21u +
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a22v + b2. If Ω is measurable and Ω′ = Φ−1(Ω), we have∫
Ω

f(x, y) dxdy = | detA|
∫
Ω′

f(a11u+ a12v + b1, a21u+ a22v + b2) du dv .

As for polar coordinates, x = ϕ(r,θ ) = r cos θ, y = ψ(r,θ ) = r sin θ, and
detJΦ(r,θ ) = r. Therefore, setting again Ω′ = Φ−1(Ω), we obtain∫

Ω

f(x, y) dxdy =

∫
Ω′

f(r cos θ, r sin θ) r dr dθ .

Examples 8.25

i) The map

f(x, y) = (x2 − y2) log
(
1 + (x + y)4

)
is defined on Ω = {(x, y) ∈ R2 : x > 0, 0 < y < 2− x}, see Fig. 8.18, right. The
map is continuous and bounded on Ω, so

∫
Ω f(x, y) dxdy exists. The expression

of f suggests defining

u = x+ y and v = x− y ,

which entails we are considering the linear map

x = ϕ(u, v) =
u+ v

2
, y = ψ(u, v) =

u− v

2

defined by A =

(
1/2 1/2

1/2 −1/2
)
with | detA| = 1/2. The pre-image of Ω under Φ

is the set

Ω′ = {(u, v) ∈ R2 : 0 < u < 2, −u < v < u}
of Fig. 8.18, left.

v

u

2

2

−2

v = −u

Ω′

v = u

x

y

2

2
Ω

y = 2− x

Figure 8.18. The sets Ω = {(x, y) ∈ R2 : x > 0, 0 < y < 2 − x} (right) and Ω′ =
{(u, v) ∈ R2 : 0 < u < 2, −u < v < u} (left)
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Then ∫
Ω

(x2 − y2) log
(
1 + (x+ y)4

)
dxdy =

1

2

∫
Ω′

uv log(1 + u4) du dv

=
1

2

∫ 2

0

(∫ u

−u

v dv

)
u log(1 + u4) du

=
1

4

∫ 2

0

[
v2
]v=u

v=−u
u log(1 + u4) du = 0 .

ii) Consider

f(x, y) =
1

1 + x2 + y2
over

Ω = {(x, y) ∈ R2 : 0 < y <
√
3x, 1 < x2 + y2 < 4}.

Passing to polar coordinates gives

Ω′ = {(r,θ ) : 1 < r < 2, 0 < θ <
π

3
}

(Fig. 8.19), so∫
Ω

f(x, y) dxdy =

∫
Ω′

1

1 + r2
r dr dθ =

∫ π/3

0

(∫ 2

1

r

1 + r2
dr

)
dθ

=

(∫ π/3

0

dθ

)(∫ 2

1

r

1 + r2
dr

)
=

π

6
log

5

2
.

�

r

θ

1 2

π
3

Ω′

x

y

1
2

1 2

y =
√
3x

Ω

Figure 8.19. The sets Ω = {(x, y) ∈ R2 : 0 < y <
√
3x, 1 < x2 + y2 < 4} (right) and

Ω′ = {(r,θ ) : 1 < r < 2, 0 < θ < π
3
} (left)
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8.4 Multiple integrals

Since the definition of multiple integral – or n-dimensional integral – for a map
of n ≥ 3 real variables closely resembles the one just seen for 2 variables, we
merely point out the differences with the previous situations due to the increased
dimension in the case n = 3.

The role of plane rectangles is now taken by parallelepipeds in space. The
generic set B = [a1, b1] × [a2, b2] × [a3, b3] can be broken up into the product of
partitions of the intervals [a1, b1], [a2, b2], [a3, b3], using the points {x0, x1, . . . , xp},
{y0, y1, . . . , yq} and {z0, z1, . . . , zr} respectively. The solid B is thus the union of
parallelepipeds

Bhk� = [xh−1, xh]× [yk−1, yk]× [z�−1, z�].

Take f : B → R bounded; the lower and upper sums of f over B relative to the
above partition D are, by definition,

s = s(D, f) =

r∑
�=1

q∑
k=1

p∑
h=1

mhk�(xh − xh−1)(yk − yk−1)(z� − z�−1) ,

S = S(D, f) =

r∑
�=1

q∑
k=1

p∑
h=1

Mhk�(xh − xh−1)(yk − yk−1)(z� − z�−1) ,

where

mhk� = inf
(x,y,z)∈Bhk�

f(x, y, z) , Mhk� = sup
(x,y,z)∈Bhk�

f(x, y, z) .

A map f is said integrable on B if

inf
D

S(D, f) = sup
D

s(D, f);

such value, called the (triple) integral of f on B, is denoted by one of the
symbols ∫

B

f ,

∫∫∫
B

f ,

∫
B

f(x, y, z) dxdy dz .

Here, as well, continuity guarantees integrability. One also has the analogue of
Theorem 8.5.

Example 8.26

Compute
∫
B
xyz dxdy dz over B = [0, 1]× [−1, 2]× [0, 2]. We have∫

B

xyz dxdy dz =

∫ 2

0

(∫ 2

−1

(∫ 1

0

xyz dx

)
dy

)
dz

=
1

2

∫ 2

0

(∫ 2

−1

yz dy

)
dz =

3

4

∫ 2

0

z dz =
3

2
. �
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To be able to integrate over bounded sets Ω ⊂ R3, it is necessary to define
what ‘measurable’ means in space. In analogy to Definition 8.8, we substitute the
rectangle B with a parallelepiped containing Ω, and put

|Ω| =
∫
Ω

χΩ =

∫
B

χΩ .

This is independent of the choice of B. The familiar sets of Euclidean geometry,
like spheres, cylinders, polyhedra and so on, turn out to be all measurable. This
notion of measure is indeed the volume, so we shall sometimes write |Ω| = vol(Ω).
Definition 8.9, Theorem 8.10 and Property 8.12 hold also in higher dimensions.
For instance, if D ⊂ R2 is measurable and g : D → R integrable on D, the graph
has 3-dimensional measure equal zero. In particular, the traces of regular surfaces
have, as subsets of R3, zero measure.

Take f : Ω → R bounded, with Ω measurable. Given an arbitrary paral-
lelepiped B containing Ω, we extend f by setting it to zero on B \Ω, and call the
extension f̃ . One says f is integrable on Ω if f̃ is integrable on B, in which case∫

Ω

f =

∫
B

f̃ ;

this number, not depending on B, is the (triple) integral of f on Ω, also denoted
by ∫∫∫

Ω

f ,

∫
Ω

f(x, y, z) dxdy dz ,

∫
Ω

f dΩ .

Again, Definition 8.14 and Theorem 8.15 adapt to the present situation, and sim-
ilarly happens for Theorem 8.20.

A completely analogous construction leads to multiple integrals in dimen-
sion n > 3.

We would like to find examples of regions in space where integrals are easy
to compute explicitly. These should work as normal sets did in the plane, i.e.,
reducing triple integrals to lower-dimensional ones. We consider in detail normal
regions for the z-axis, the other cases being completely similar.

Definition 8.27 We call Ω ⊂ R3 a normal set for z (normal with respect
to the z-axis, to be precise) if

Ω = {(x, y, z) ∈ R3 : (x, y) ∈ D, g1(x, y) ≤ z ≤ g2(x, y)} , (8.13)

for a closed measurable region D in R2 and continuous maps g1, g2 : D → R.

Fig. 8.20 shows a few normal regions.
The boundary of a normal set has thus zero measure, hence a normal set is

measurable. Triple integrals over normal domains can be reduced to iterated double
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x
y

z

D

g1(x, y)

g2(x, y)

x
y

z

D

g1(y, z)

g2(y, z)
x

y

z

D

g1(x, z)

g2(x, z)

Figure 8.20. Normal sets

and/or simple integrals. For clarity, we consider normal domains for the vertical
axis, and let Ω be defined as in (8.13); then we have an iterated integral

∫
Ω

f =

∫
D

(∫ g2(x,y)

g1(x,y)

f(x, y, z) dz

)
dxdy , (8.14)

see Fig. 8.21, where f is integrated first along vertical segments in the domain.

Dimensional reduction is possible for other kinds of measurable sets. Suppose
the measurable set Ω ⊂ R3 is such that the z-coordinate of its points varies within
an interval [α,β ] ⊂ R. For any z0 in this interval, the plane z = z0 cuts Ω along
the cross-section Ωz0 (Fig. 8.22); so let us denote by

Az0 = {(x, y) ∈ R2 : (x, y, z0) ∈ Ω}

x
y

z

(x, y) D

g1(x, y)

g2(x, y)

Figure 8.21. Integration along segments
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z

α

β

Ωz

Az

Figure 8.22. Integration over cross-sections

the xy-projection of the slice Ωz0 . Thus Ω reads

Ω = {(x, y, z) ∈ R3 : z ∈ [α,β ], (x, y) ∈ Az} .

Now assume every Az is measurable in R2. This is the case, for example, if the
boundary of Ω is a finite union of graphs, or if Ω is convex.

Taking a continuous and bounded function f : Ω → R guarantees all integrals∫
Az

f(x, y, z) dxdy, z ∈ [α,β ], exist, and one could prove that

∫
Ω

f =

∫ β

α

(∫
Az

f(x, y, z) dxdy

)
dz ; (8.15)

this is yet another iterated integral, where now f is integrated first over two-
dimensional cross-sections of the domain.

Examples 8.28

i) Compute ∫
Ω

xdxdy dz

where Ω denotes the tetrahedron enclosed by the planes x = 0, y = 0, z = 0 and
x+ y + z = 1 (Fig. 8.23). The solid is a normal region for z, because

Ω = {(x, y, z) ∈ R3 : (x, y) ∈ D, 0 ≤ z ≤ 1− x− y}
where

D = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x} .
At the same time we can describe Ω as

Ω = {(x, y, z) ∈ R3 : 0 ≤ z ≤ 1, (x, y) ∈ Az}
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x

y

z

1

1

1D

Ωz

Figure 8.23. The tetrahedron relative to Example 8.28 i)

with

Az = {(x, y) ∈ R2 : 0 ≤ x ≤ 1− z, 0 ≤ y ≤ 1− z − x}.
See Fig. 8.24 for a picture of D and Az. Then we can integrate in z first, so that∫

Ω

xdxdy dz =

∫
D

(∫ 1−x−y

0

xdz

)
dxdy

∫
D

(1− x− y)xdxdy

=

∫ 1

0

(∫ 1−x

0

(1 − x− y)xdy

)
dx = −1

2

∫ 1

0

[
(1− x− y)2

]y=1−x

y=0
xdx

=
1

2

∫ 1

0

(1− x)2xdx =
1

24
.

x

y

1

1

y = 1− x

D

x

y

1− z

1− z

Az

y = 1− z − x

Figure 8.24. The sets D (left) and Az (right) relative to Example 8.28 i)
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But we can also compute the double integral in dxdy first,∫
Ω

xdxdy dz =

∫ 1

0

(∫
Az

xdxdy

)
dz =

∫ 1

0

(∫ 1−z

0

(∫ 1−x−z

0

xdy

)
dx

)
dz

=

∫ 1

0

(∫ 1−z

0

x(1 − x− z) dx

)
dz =

∫ 1

0

[1
2
x2(1− z)− 1

3
x3
]x=1−z

x=0
dz

=
1

6

∫ 1

0

(1− z)3 dz =
1

24
.

ii) Consider ∫
Ω

√
y2 + z2 dxdy dz ,

where Ω is bounded by the paraboloid x = y2+z2 and the plane x = 2 (Fig. 8.25,
left). We may write

Ω = {(x, y, z) ∈ R3 : 0 ≤ x ≤ 2, (y, z) ∈ Ax}
with slices

Ax = {(y, z) ∈ R2 : y2 + z2 ≤ x} .
See Fig. 8.25, right, for the latter. We can thus integrate over Ax first, and the
best option is to use polar coordinates in the plane yz, given the shape of the
region and the function involved. Then∫

Ax

√
y2 + z2 dy dz =

∫ 2π

0

(∫ √
x

0

r2 dr

)
dθ =

2

3
πx
√
x ,

and consequently∫
Ω

√
y2 + z2 dxdy dz =

2

3
π

∫ 2

0

x
√
xdx =

16

15

√
2π .

x

y

z

Ω2
y

z

√
x

Ax

Figure 8.25. Example 8.28 ii): paraboloid (left) and the set Ax (right)
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Notice the region Ω is normal for any coordinate, so the integral may be com-
puted by reducing in different ways; the most natural choice is to look at Ω as
being normal for x:

Ω = {(x, y, z) ∈ R3 : (y, z) ∈ D, y2 + z2 ≤ x ≤ 2}
with D = {(y, z) ∈ R2 : 0 ≤ x ≤ y2 + z2}. The details are left to the reader. �

8.4.1 Changing variables in triple integrals

Theorem 8.24, governing variable changes, now reads as follows.

Theorem 8.29 Let Φ : Ω′ → Ω, with Ω′, Ω measurable in R3, be a change
of variables on Ω, and set x = Φ(u). If f is a continuous and bounded map
on Ω, we have ∫

Ω

f(x) dΩ =

∫
Ω′

f
(
Φ(u)

)| detJΦ(u)| dΩ′ . (8.16)

The same formula holds in any dimension n > 3.

Let us see how a triple integral transforms if we use cylindrical or spherical
coordinates.

Let Φ define cylindrical coordinates in R3, see Sect. 6.6; Fig. 8.26, left, shows
the corresponding volume element. If Ω is a measurable set and Ω′ = Φ−1(Ω),
from formula (6.41) we have∫

Ω

f(x, y, z) dxdy dz =

∫
Ω′

f(r cos θ, r sin θ, t) r dr dθ dt .

O

x

y

z

r

Δθ

Δr
Δz

rΔθ

O

x y

z

r

ϕ

Δθ

Δr

rΔϕ

r sinϕΔθ

Figure 8.26. Volume element in cylindrical coordinates (left), and in spherical coordin-
ates (right)
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The variables x, y and z can be exchanged according to the need. Example 8.28
ii) indeed used the cylindrical transformation Φ(r, θ, t) = (t, r cos θ, r sin θ).

Consider the transformation Φ defining spherical coordinates in R3; the volume
element is shown in Fig. 8.26, right. If Ω′ and Ω are related by Ω′ = Φ−1(Ω),
equation (6.44) gives

∫
Ω

f(x, y, z) dxdy dz =

∫
Ω′

f(r sinϕ cos θ, r sinϕ sin θ, r cosϕ) r2 sinϕdr dϕdθ .

Here, too, the roles of the variables can be exchanged.

Examples 8.30

i) Let us compute ∫
Ω

(x2 + y2) dxdy dz ,

Ω being the region inside the cylinder x2 + y2 = 1, below the plane z = 3 and
above the paraboloid x2 + y2 + z = 1 (Fig. 8.27, left).
In cylindrical coordinates the cylinder has equation r = 1, the paraboloid t =
1− r2. Hence,

0 ≤ r ≤ 1 , 0 ≤ θ ≤ 2π , 1− r2 ≤ t ≤ 3
and∫

Ω

(x2 + y2) dxdy dz =

∫ 2π

0

∫ 1

0

∫ 3

1−r2
r3 dt dr dθ = 2π

∫ 1

0

[
r3t
]t=3

t=1−r2
dr

= 2π

∫ 1

0

(2r3 + r5) dr =
4

3
π .

 

 

 

 

x

y

z

Ω

x

y

z

Ω

Figure 8.27. The regions relative to Examples 8.30 i) e ii)
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ii) Find the volume of the solid defined by z ≥
√

x2 + y2 and x2 + y2 + z2 −
z ≤ 0. This region Ω lies above the cone z =

√
x2 + y2 and inside the sphere

x2 + y2 +
(
z − 1

2

)2
= 1

4 with centre (0, 0, 12 ) and radius 1
2 (Fig. 8.27, right).

The volume is given by
∫
Ω
dxdy dz, for which we use spherical coordinates. Then

0 ≤ θ ≤ 2π , 0 ≤ ϕ ≤ π

4
.

The bounds on r are found by noting that the sphere has equation r2 = r cosϕ,
i.e., r = cosϕ. Therefore 0 ≤ r ≤ cosϕ. In conclusion,

vol(Ω) =

∫
Ω

dxdy dz =

∫ 2π

0

∫ π/4

0

∫ cosϕ

0

r2 sinϕdr dϕdθ

=
2

3
π

∫ π/4

0

cos3 ϕ sinϕdϕ = −1

6
π
[
cos4 ϕ

]ϕ=π/4

ϕ=0
=

π

8
. �

8.5 Applications and generalisations

This last section is devoted to some applications of multiple integrals. We will
consider solids of revolution and show how to compute their volume, and eventually
extend the notion of integral to cover vector-values functions and integrals over
unbounded sets in Rn.

8.5.1 Mass, centre of mass and moments of a solid body

Double and triple integrals are used to determine the mass, the centre of gravity
and the moments of inertia of plane regions or solid figures. Let us consider, for
a start, a physical body whose width in the z-direction is negligible with respect
to the other dimensions x and y, such as a thin plate. Suppose its mean section,
in the z direction, is given by a region Ω in the plane. Call μ(x, y) the surface’s
density of mass (the mass per unit of area); then the body’s total mass is

m =

∫
Ω

μ(x, y) dxdy . (8.17)

The centre of mass (also known as centre of gravity, or centroid), of Ω is
the point G = (xG, yG) with coordinates

xG =
1

m

∫
Ω

xμ(x, y) dxdy , yG =
1

m

∫
Ω

yμ(x, y) dxdy . (8.18)

Assuming the body has constant density (a homogeneous body), we have
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xG =
1

area(Ω)

∫
Ω

xdxdy , yG =
1

area(Ω)

∫
Ω

y dxdy ;

the coordinates of the centre of mass of Ω are the mean values (see (8.9)) of the
coordinates of its generic point.

The moment (of inertia) of Ω about a given line r (the axis) is

Ir =

∫
Ω

d 2
r (x, y)μ(x, y) dxdy ,

where dr(x, y) denotes the distance of (x, y) from r. In particular, the moments
about the coordinate axes are

Ix =

∫
Ω

y2μ(x, y) dxdy , Iy =

∫
Ω

x2μ(x, y) dxdy .

Their sum is called (polar) moment (of inertia) about the origin

I0 = Ix + Iy =

∫
Ω

(x2 + y2)μ(x, y) dxdy =

∫
Ω

d 2
0 (x, y)μ(x, y) dxdy ,

with d0(x, y) denoting the distance between (x, y) and the origin.

Similarly, for a solid body Ω in R3 with mass density μ(x, y, z):

m =

∫
Ω

μ(x, y, z) dxdy dz , xG =
1

m

∫
Ω

xμ(x, y, z) dxdy dz ,

yG =
1

m

∫
Ω

yμ(x, y, z) dxdy dz , zG =
1

m

∫
Ω

zμ(x, y, z) dxdy dz .

Its moments about the axes are

Ix =

∫
Ω

(y2 + z2)μ(x, y, z) dxdy dz ,

Iy =

∫
Ω

(x2 + z2)μ(x, y, z) dxdy dz ,

Iz =

∫
Ω

(x2 + y2)μ(x, y, z) dxdy dz ,

and the moment about the origin is

I0 = Ix + Iy + Iz =

∫
Ω

(x2 + y2 + z2)μ(x, y) dxdy .
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x

y

1

1

x = 1− y2

Figure 8.28. The set Ω relative to Example 8.31

Example 8.31

Consider a thin plate Ω in the first quadrant bounded by the parabola x = 1−y2

and the axes. Knowing its density μ(x, y) = y, we want to compute the above
quantities.
The region Ω is represented in Fig. 8.28. We have

m =

∫
Ω

y dxdy =

∫ 1

0

(∫ 1−y2

0

dx

)
y dy =

∫ 1

0

y(1− y2) dy =
1

4
,

xG = 4

∫
Ω

xy dy dx = 4

∫ 1

0

(∫ 1−y2

0

xdx

)
y dy = 2

∫ 1

0

y(1− y2)2 dy =
1

3
,

yG = 4

∫
Ω

y2 dy dx = 4

∫ 1

0

(∫ 1−y2

0

dx

)
y2 dy = 4

∫ 1

0

y2(1− y2) dy =
8

15
,

Ix =

∫
Ω

y3 dy dx =

∫ 1

0

(∫ 1−y2

0

dx

)
y3 dy =

∫ 1

0

y3(1− y2) dy =
1

12
,

Iy =

∫
Ω

x2y dy dx =

∫ 1

0

(∫ 1−y2

0

x2 dx

)
y dy =

1

3

∫ 1

0

y(1− y2)3 dy =
1

24
.

�

8.5.2 Volume of solids of revolution

Let Ω be obtained by rotating around the z-axis the trapezoid T determined by the
function f : [a, b]→ R, y = f(z) in the yz-plane (Fig. 8.29). The region T is called
the meridian section of Ω. The volume of Ω equals the integral

∫
Ω dxdy dz.

The region Ωz0 , intersection of Ω with the plane z = z0, is a circle of radius f(z0).
Integrating over the slices Ωz and recalling the notation of p. 325, then

vol(Ω) =

∫ b

a

(∫
Az

dxdy

)
dz = π

∫ b

a

(
f(z)
)2
dz , (8.19)
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x
y

z

a

b

y = f(z)

Ωz0

Figure 8.29. A solid of revolution

since the double integral over Az coincides with the area of Ωz , that is π
(
f(z)
)2
.

Formula (8.19) can be understood geometrically using the centre of mass of the
section T . In fact,

yG =

∫
T y dy dz∫
T
dy dz

=
1

area(T )

∫ b

a

∫ f(z)

0

y dy dz =
1

2area(T )

∫ b

a

(
f(z)
)2
dz .

Using (8.19) then,

yG =
vol(Ω)

2π area(T )

or

vol(Ω) = 2πyG area(T ) . (8.20)

This proves the so-called Centroid Theorem of Pappus (variously known also as
Guldin’s Theorem, or Pappus–Guldin Theorem).

Theorem 8.32 The volume of a solid of revolution is the product of the area
of the meridian section times the length of the circle described by the section’s
centre of mass.

This result extends to the solids of revolution whose meridian section T is not
the trapezoid of a function f , but instead a measurable set in the plane. The
examples that follow are exactly of this kind.

Examples 8.33

i) Compute the volume of the solid Ω, obtained revolving the triangle T of
vertices A = (1, 1), B = (2, 1), C = (1, 3) in the plane yz around the z-axis.
Fig. 8.30 shows T , whose area is clearly 1. As the line through B and C is
z = −2y + 5, we have
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y

z

1

1

2

3
C

z = −2y + 5

BA

Figure 8.30. The triangle T in Example 8.33 i)

vol(Ω) = 2πyG = 2π

∫
T

y dy dz = 2π

∫ 2

1

(∫ −2y+5

1

dz

)
y dy

= 4π

∫ 2

1

(2− y)y dy =
8

3
π .

ii) Rotate the circle T given by (y − y0)
2 + (z − z0)

2 = r2, 0 < r < y0, in the
plane yz. The solid Ω obtained is a torus, see Fig. 8.31. Since area(T ) = πr2

and the centre of mass of a circle coincides with its geometric centre, we have

vol(Ω) = 2π2r2y0 . �

 

  

 

 

 

x

y

z

T

Figure 8.31. The torus relative to Example 8.33 ii)
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8.5.3 Integrals of vector-valued functions

Let f : Ω ⊂ Rn → Rm be a vector-valued map defined on a measurable set Ω

(with n, m ≥ 2 arbitrary); let f =

m∑
i=1

fiei be its representation in the canonical

basis of Rm.
Then f is said integrable on Ω if all its coordinates fi are integrable, in which

case one defines the integral of f over Ω as the vector of Rm

∫
Ω

f dΩ =

m∑
i=1

(∫
Ω

fi dΩ
)
ei .

For instance, if v is the velocity field of a fluid inside a measurable domain Ω ⊂ R3,
then

vΩ =
1

|Ω|
∫
Ω

v dΩ

is the mean velocity vector in Ω.

8.5.4 Improper multiple integrals

We saw in Vol. I how to define rigorously integrals of unbounded maps and integrals
over unbounded intervals. As far as multivariable functions are concerned, we shall
only discuss unbounded domains of integrations. For simplicity, let f(x, y) be a
map of two real variables defined on the entire R2, positive and integrable on
every disc BR(0) centred at the origin with radius R. As R grows to +∞, the discs
clearly become bigger and tend to cover the plane R2. So it is natural to expect
that f will be integrable on R2 if the limit of the integrals of f over BR(0) exists
and is finite, as R→ +∞. More precisely,

Definition 8.34 Let f : R2 → R be a positive and integrable map
over any disc BR(0). Then f is said integrable on R2 if the limit

lim
R→+∞

∫
BR(0)

f(x, y) dxdy exists and is finite. The latter, called improper

integral of f on R2, is denoted by∫
R2

f(x, y) dxdy = lim
R→+∞

∫
BR(0)

f(x, y) dxdy .

Remark 8.35 i) The definition holds for maps of any sign by requiring |f(x, y)|
to be integrable. Recall that each map can be written as the difference of two
positive functions, its positive part f+(x, y) = max

(
f(x, y), 0

)
and its negative

part f−(x, y) = max
(− f(x, y), 0

)
, i.e., f(x, y) = f+(x, y)− f−(x, y); then



336 8 Integral calculus in several variables∫
R2

f(x, y) dxdy =

∫
R2

f+(x, y) dxdy −
∫
R2

f−(x, y) dxdy .

ii) Other types of sets may be used to cover R2. Consider for example squares
QR(0) = [−R,R] × [−R,R] of base 2R, all centred at the origin. One can prove
that f integrable implies

lim
R→+∞

∫
BR(0)

f(x, y) dxdy = lim
R→+∞

∫
QR(0)

f(x, y) dxdy .

iii) If the map is not defined on all R2, but rather on an unbounded subset Ω, one

considers the limit of

∫
BR(0)∩Ω

f(x, y) dxdy as R→ +∞. If this is finite, again by

definition we set∫
Ω

f(x, y) dxdy = lim
R→+∞

∫
BR(0)∩Ω

f(x, y) dxdy .
�

Examples 8.36

i) Consider f(x, y) =
1√

(3 + x2 + y2)3
, a map defined on R2, positive and con-

tinuous. The integral on the disc BR(0) can be computed in polar coordinates:∫
BR(0)

f(x, y) dxdy =

∫ 2π

0

∫ R

0

r√
(3 + r2)3

dr dθ

= −2π
[
(3 + r2)−1/2

]R
0
= 2π

( 1√
3
− 1√

3 +R2

)
.

Therefore ∫
R2

f(x, y) dxdy = lim
R→+∞

2π
( 1√

3
− 1√

3 +R2

)
=

2π√
3
,

making f integrable on R2.

ii) Take f(x, y) =
1

1 + x2 + y2
. Proceeding as before, we have∫

BR(0)

f(x, y) dxdy =

∫ 2π

0

∫ R

0

r

1 + r2
dr dθ

= π
[
log(1 + r2)

]R
0
= π log(1 +R2) .

Thus

lim
R→+∞

∫
BR(0)

f(x, y) dxdy = lim
R→+∞

π log(1 +R2) = +∞

so the map is not integrable on R2.

iii) With what we have learned we are now able to compute an integral, of
paramount importance in Probability, that has to do with Gaussian density:

S =

∫ +∞

−∞
e−x2

dx .
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Let f(x, y) = e−x2−y2

and observe∫
R2

e−x2−y2

dxdy =

(∫
R

e−x2

dx

)(∫
R

e−y2

dy

)
= S2 .

On the other hand∫
R2

e−x2−y2

dxdy = lim
R→+∞

∫
BR(0)

e−x2−y2

dxdy = lim
R→+∞

∫ 2π

0

∫ R

0

e−r2r dr dθ

= lim
R→+∞

π
[
− e−r2

]R
0
= lim

R→+∞
π(1 − e−R2

) = π .

Therefore

S =

∫ +∞

−∞
e−x2

dx =
√
π . �

8.6 Exercises

1. Draw a rough picture of the region A and then compute the double integrals
below:

a)

∫
A

x

x2 + y2
dxdy where A = [1, 2]× [1, 2]

b)

∫
B

xy dxdy where B = {(x, y) ∈ R2 : x ∈ [0, 1], x2 ≤ y ≤ 1 + x}

c)

∫
C

(x + y) dxdy where C = {(x, y) ∈ R2 : 2x3 ≤ y ≤ 2
√
x}

d)

∫
D

√
xdxdy where D = {(x, y) ∈ R2 : y ∈ [0, 1], y ≤ x ≤ ey}

e)

∫
E

y3 dxdy where E is the triangle of vertices (0, 2), (1, 1), (3, 2)

f)

∫
F

ey
2

dxdy where F = {(x, y) ∈ R2 : 0 ≤ y ≤ 1, 0 ≤ x ≤ y}

g)

∫
G

x cos y dxdy where G is bounded by y = 0, y = x2, x = 1

h)

∫
H

yex dxdy where H is the triangle of vertices (0, 0), (2, 4), (6, 0)

2. Let f(x, y) be a generic continuous map on R2. Find the domain of integration
in the plane and change the order of integration in the following integrals:

a)

∫ 1

0

∫ x

0

f(x, y) dy dx b)

∫ π/2

0

∫ sin x

0

f(x, y) dy dx
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x

y

1

1

B1 B2

B3

x

y

1−1 2

1

−1

y = −x2

x = 1 + y2

Figure 8.32. The sets A and B relative to Exercise 4

c)

∫ 2

1

∫ log x

0

f(x, y) dy dx d)

∫ 1

0

∫ 2−y

y2

f(x, y) dxdy

e)

∫ 4

0

∫ 2

y/2

f(x, y) dxdy f)

∫ 1

0

∫ π/4

arctanx

f(x, y) dy dx

3. Draw a picture of the integration domain and compute the integrals:

a)

∫ 1

0

∫ π

πy

sinx

x
dxdy b)

∫ 1

0

∫ 1

y

e−x2

dxdy

c)

∫ 1

0

∫ 1

x

√
y

x2 + y2
dy dx d)

∫ 1

0

∫ 1

√
x

ey
3

dy dx

e)

∫ 3

0

∫ 9

y2

y cosx2 dxdy f)

∫ 1

0

∫ π/2

arcsin y

cosx
√
1 + cos2 x dxdy

4. Referring to Fig. 8.32, write the domains of integration as unions of normal
domains, then compute the integrals:

a)

∫
A

x2 dxdy b)

∫
B

xy dxdy

5. Compute

∫
A

y dxdy over the domain A defined by

R2 ≤ x2 + y2 , 0 ≤ x ≤ 2 , 0 ≤ y ≤ x

as R ≥ 0 varies.

6. As R ≥ 0 varies, calculate the double integral

∫
A

xdxdy over A defined by

R2 ≥ x2 + y2 , 0 ≤ x ≤ 1 , −x ≤ y ≤ 0 .
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7. Compute ∫
A

x sin |x2 − y| dxdy

where A is the unit square [0, 1]× [0, 1].

8. Determine ∫
A

| sinx− y| dxdy

where A is the rectangle [0, π]× [0, 1].

9. For any real α calculate ∫
A

ye−α|x−y2| dxdy

where A is the square [0, 1]× [0, 1].

10. Draw a picture of the given region and, using suitable coordinate changes,
compute the integrals:

a)

∫
A

1

x2y2
dxdy where A is bounded by y = x2, y = 2x2,

and by x = y2, x = 3y2

b)

∫
B

x5y5

x3y3 + 1
dxdy where B, in the first quadrant, is bounded by

y = x, y = 3x, xy = 2, xy = 6

c)

∫
C

(3x+ 4y2) dxdy where C = {(x, y) ∈ R2 : y ≥ 0, 1 ≤ x2 + y2 ≤ 4}

d)

∫
D

xy dxdy where D = {(x, y) ∈ R2 : x2 + y2 ≤ 9}

e)

∫
E

e−x2−y2

dxdy where E is bounded by x =
√
4− y2 and x = 0

f)

∫
F

arctan
y

x
dxdy where F = {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4,

|y| ≤ |x|}

g)

∫
G

x√
x2 + y2

dxdy where G = {(x, y) ∈ R2 : y ≥ 0, x+ y ≥ 0,

3 ≤ x2 + y2 ≤ 9}

h)

∫
H

xdxdy where H = {(x, y) ∈ R2 : x, y ≥ 0, x2 + y2 ≤ 4,

x2 + y2 − 2y ≥ 0}
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11. By transforming into Cartesian coordinates, compute the following integral in
polar coordinates ∫

A′

1√
cos2 θ + sin θ/r + 1/r2

dr dθ

where A′ =
{
(r,θ ) : 0 ≤ θ ≤ π

2
, r ≤ 1

cos θ
, r ≤ 1

sin θ

}
.

12. By transforming into Cartesian coordinates, compute the following integral in
polar coordinates ∫

A′

log r(cos θ + sin θ)

cos θ
dr dθ

where A′ =
{
(r,θ ) : 0 ≤ θ ≤ π

4
, 1 ≤ r cos θ ≤ 2

}
.

13. Use polar coordinates to write the sum of the integrals

∫ 1

1/
√
2

∫ x

√
1−x2

xy dy dx+

∫ √
2

1

∫ x

0

xy dy dx+

∫ 2

√
2

∫ √
4−x2

0

xy dy dx

as a single double integral, then compute it.

14. Determine mass and centre of gravity of a thin triangular plate of vertices
(0, 0), (1, 0), (0, 2) if its density is μ(x, y) = 1 + 3x+ y.

15. A thin plate, of the shape of a semi-disc of radius a, has density proportional
to the distance of the centre from the origin. Find the centre of mass.

16. Determine the moments Ix, Iy , I0 of a disc with constant density μ(x, y) = μ,
centre at the origin and radius a.

17. Let D be a disc with unit density, centre at C = (a, 0) and radius a. Verify
the equation

I0 = IC + a2A
holds, where I0 and IC are the moments about the origin and the centre C,
and A is the disc’s area.

18. Compute the moment about the origin of the thin plate C defined by

C = {(x, y) ∈ R2 : x2 + y2 ≤ 4, x2 + y2 − x ≥ 0}

knowing that its density μ(x, y) equals the distance of (x, y) from the origin.
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19. A thin plate C occupies the quarter of disc x2 + y2 ≤ 1 contained in the first
quadrant. Find its centre of mass knowing the density at each point equals the
distance of that point from the x-axis.

20. A thin plate has the shape of a parallelogramwith vertices (3, 0), (0, 6), (−1, 2),
(2,−4). Assuming it has unit density, compute Iy, the moment about the
axis y.

21. Determine the following multiple integrals:

a)

∫
A

(xy − z3) dxdy dz where A = [−1, 1]× [0, 1]× [0, 2]

b)

∫
B

2y dxdy dz where B = {(x, y, z) ∈ R3 : 0 ≤ x ≤ z ≤ 2,

0 ≤ y ≤ √
4− z2}

c)

∫
C

xz sin y5 dxdy dz where C = {(x, y, z) ∈ R3 : 0 ≤ x ≤ y ≤ 1,

y ≤ z ≤ 2y}

d)

∫
D

y dxdy dz where D, in the first octant, is bounded by

the planes x+ y = 1, y + z = 1

e)

∫
E

y dxdy dz where E is bounded by the paraboloid

y = 4x2 + 4z2 and the plane y = 4

f)

∫
F

z dxdy dz where F , in the first octant, is bounded by the

plane y = 3x and the cylinder y2 + z2 = 9

22. Write the triple integral

∫
A

f(x, y, z) dxdy dz as an iterated integral in at least

three different ways, with A being the solid with lateral surface:

a) x = 0, x = z, y2 = 1− z b) x2 + y2 = 9, z = 0, z = 6

23. Consider the region A in the first octant bounded by the planes x+y−z+1 = 0
and x + y = a. Determine the real number a > 0 so that the volume equals
vol(A) = 5

6 .

24. Compute the volume of the region A common to the cylinders x2+y2 ≤ 1 and
x2 + z2 ≤ 1.

25. Compute ∫
A

1

3− z
dxdy dz
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over the region A defined by

9z ≤ 1 + y2 + 9x2 , 0 ≤ z ≤
√
9− (y2 + 9x2) .

26. The plane x = K divides the tetrahedron of vertices (1, 0, 0), (0, 2, 0), (0, 0, 3),
(0, 0, 0) in two regions C1, C2. Determine K so that the two solids obtained
have the same volume.

27. By suitable variable changes, compute the following integrals:

a)

∫
A

√
x2 + y2 dxdy dz

with A bounded by the cylinder x2 + y2 = 25 and

the planes z = −1, z = 2

b)

∫
B

xdxdy dz

with B bounded by the cylinders x2 + z2 = 1, x2 + z2 = 4 and

the planes y = 0 and y = z + 2

c)

∫
C

(x + z) dxdy dz

with C = {(x, y, z) ∈ R3 : 1 ≤ x ≤ 2, x2 + y2 + z2 ≤ 4}

d)

∫
D

xdxdy dz

with D in the first octant and bounded by the spheres x2+ y2+ z2=1

and x2 + y2 + z2 = 4

e)

∫
E

√
x2 + y2 + z2 dxdy dz

with E bounded below by the cone ϕ = π
6 and above by the sphere r = 2

28. Compute the following integrals with the help of a variable change:

a)

∫ 1

−1

∫ √
1−z2

−√
1−z2

∫ 2−x2−z2

x2+z2

(x2 + z2)3/2 dy dxdz

b)

∫ 3

0

∫ √9−y2

0

∫ √18−x2−y2

√
x2+y2

(x2 + y2 + z2) dz dxdy

29. Calculate the integral ∫
Ω

(
4x2 +

16

9
y2 + z2

)
dxdy dz

where Ω is the solid bounded by the ellipsoid
x2

4
+

y2

9
+

z2

16
= 1.
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30. Find mass and centre of gravity ofΩ, the part of cylinder x2+y2 ≤ 1 in the first
octant bounded by the plane z = 1, assuming the density is μ(x, y, z) = x+ y.

31. What is the volume of the solid Ω obtained by revolution around the z-axis of

T = {(y, z) ∈ R2 : 2 ≤ y ≤ 3, 0 ≤ z ≤ y, y2 − z2 ≤ 4} ?

32. The region T , lying on the plane xy, is bounded by the curves y = x2, y = 4,
x = 0 with 0 ≤ x ≤ 2. Compute the volume of Ω, obtained by revolution of T
around the axis y.

33. Rotate around the z-axis the region

T = {(x, z) ∈ R2 : sin z < x < π− z, 0 < z < π}
to obtain the solid Ω. Find its volume and centre of mass.

8.6.1 Solutions

1. Double integrals:

a) The region A is a square, and the integral equals

I =
1

2

(
7 log 2− 3 log 5− 2 arctan2− 4 arctan

1

2
+
3

2
π
)
.

b) The domain B is represented in Fig. 8.33, left. The integral equals I = 5
8 .

x

y

1

1

y = 1 + x

y = x2

x

y

1

2

y = 2x3

y = 2
√
x

Figure 8.33. The sets B relative to Exercise 1. b) (left) and C to Exercise 1. c) (right)
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x

y

1

1
x = ey

y = x

x

y

1 3

1

2

y = 1
2 (x + 1)y = 2 − x

Figure 8.34. The sets D relative to Exercise 1. d) (left) and E to Exercise 1. e) (right)

c) See Fig. 8.33, right for the region C. The integral is I = 39
35 .

d) The region D is represented in Fig. 8.34, left. The integral’s value is I =
4
9e

3/2 − 32
45 .

e) The region E can be seen in Fig. 8.34, right. The lines through the triangle’s
vertices are y = 2, y = 1

2 (x+1) and y = −x+2. Integrating horizontally with
the bounds 1 ≤ y ≤ 2 and 2− y ≤ x ≤ 2y − 1 gives∫

E

y3 dxdy =

∫ 2

1

(∫ 2y−1

2−y

y3 dx

)
dy =

147

20
.

f) The region F is shown in Fig. 8.35, left. Let us integrate between 0 ≤ y ≤ 1
and 0 ≤ x ≤ y to obtain∫

F

ey
2

dxdy =

∫ 1

0

(∫ y

0

ey
2

dx

)
dy =

∫ 1

0

ey
2

[x]
y
0 dy

x

y

1

1

y = x

x

y

1

y = x2

Figure 8.35. The sets F relative to Exercise 1. f) (left), and G to Exercise 1. g) (right)
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x

y

2 6

4

y = 2x

y = 6 − x

Figure 8.36. The set H relative to Exercise 1. h)

=

∫ 1

0

yey
2

dy =

[
1

2
ey

2

]1
0

=
1

2
(e− 1) .

g) The set G is represented in Fig. 8.35, right. We integrate vertically with 0 ≤
x ≤ 1, 0 ≤ y ≤ x2:∫

G

x cos y dxdy =

∫ 1

0

(∫ x2

0

x cos y dy

)
dx =

∫ 1

0

x [sin y]
x2

0 dx

=

∫ 1

0

x sinx2 dx =

[
−1

2
cosx2

]1
0

=
1

2
(1 − cos 1) .

h) The region H is shown in Fig. 8.36. The lines passing through the vertices
of the triangle are y = 0, y = −x + 6, y = 2x. It is convenient to integrate
horizontally with 0 ≤ y ≤ 4 and y/2 ≤ x ≤ 6− y. Integrating by parts then,∫

H

yex dxdy =

∫ 4

0

(∫ 6−y

y/2

yex dx

)
dy = e6 − 9e2 − 4 .

2. Order of integration:

a) The domain A is represented in Fig. 8.37, left. Exchanging the integration
order gives ∫ 1

0

∫ x

0

f(x, y) dy dx =

∫ 1

0

∫ 1

y

f(x, y) dxdy .

b) For the domain B see Fig. 8.37, right. Exchanging the integration order gives∫ π/2

0

∫ sin x

0

f(x, y) dy dx =

∫ 1

0

∫ π/2

arcsin y

f(x, y) dxdy .
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x

y

1

1

y = x

x

y

π
2

y = sin x

1

Figure 8.37. The sets A relative to Exercise 2. a) (left) and B to Exercise 2. b) (right)

c) The domain C is represented in Fig. 8.38, left. Exchanging the integration
order gives ∫ 2

1

∫ log x

0

f(x, y) dy dx =

∫ log 2

0

∫ 2

ey
f(x, y) dxdy .

d) The region D is drawn in Fig. 8.38, right. In order to integrate vertically, we
must first divide D in two parts, to the effect that∫ 1

0

∫ 2−y

y2

f(x, y) dxdy =

∫ 1

0

∫ √
x

0

f(x, y) dy dx+

∫ 2

1

∫ 2−x

0

f(x, y) dy dx .

e) The domain E is given in Fig. 8.39, left. Exchanging the integration order
gives ∫ 4

0

∫ 2

y/2

f(x, y) dxdy =

∫ 2

0

∫ 2x

0

f(x, y) dy dx .

f) F is represented in Fig. 8.39, right. Exchanging the integration order gives∫ 1

0

∫ π/4

arctan x

f(x, y) dy dx =

∫ π/4

0

∫ tan y

0

f(x, y) dxdy .

x

y

1 2

log 2

y = log x

x

y

1

√
x

2

1

y = 2 − x

Figure 8.38. The sets C relative to Exercise 2. c) (left) and D to Exercise 2. d) (right)
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x

y

2

4

y = 2x

x

y

π
4

y = arctan x

1

Figure 8.39. The sets E relative to Exercise 2. e) (left) and F to Exercise 2. f) (right)

3. Double integrals:

a) The domain A is normal for x and y, so we may write

A = {(x, y) ∈ R2 : 0 ≤ y ≤ 1, π y≤ x ≤ π}

= {(x, y) ∈ R2 : 0 ≤ x ≤ π, 0 ≤ y ≤ x

π
} .

See Fig. 8.40, left.
Given that the integrand map is not integrable in elementary functions in x,
it is necessary to exchange the order of integration. Then∫ 1

0

∫ π

πy

sinx

x
dxdy =

∫ π

0

(∫ x/π

0

sinx

x
dy

)
dx =

∫ π

0

sinx

x
[y]

x/π
0 dx

=
1

π

∫ π

0

sinxdx =
2

π
.

b) The domain is normal for x and y, so

B = {(x, y) ∈ R2 : 0 ≤ y ≤ 1, y ≤ x ≤ 1}
= {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ x} .

x

y

π

1

y = x
π

x

y

1

1

y =
√
x

Figure 8.40. The sets A relative to Exercise 3. a) (left) and D to Exercise 3. d) (right)



348 8 Integral calculus in several variables

It coincides with the set A of Exercise 2. a), see Fig. 8.37, left.
As in the previous exercise, the map is not integrable in elementary functions
in x, so we exchange the order∫ 1

0

∫ 1

y

e−x2

dxdy =

∫ 1

0

(∫ x

0

e−x2

dy

)
dx =

∫ 1

0

xe−x2

dx =
1

2
(1− e−1) .

c) The integration domain is normal for x and y, so we write

C = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, x ≤ y ≤ 1}
= {(x, y) ∈ R2 : 0 ≤ y ≤ 1, 0 ≤ x ≤ y} .

It is the same as the set F of Exercise 1. f), see Fig. 8.35, left.
As in the previous exercise, the map is not integrable in elementary functions
in y, but we can exchange integration order∫ 1

0

∫ 1

x

√
y

x2 + y2
dy dx =

∫ 1

0

(∫ y

0

√
y

x2 + y2
dx

)
dy

=

∫ 1

0

[√
y
1

y
arctan

x

y

]y
0

dy =
π

4

∫ 1

0

1√
y
dy =

π

2
.

d) The domain D is as in Fig. 8.40, right, and the integral equals I = (e− 1)/3.
e) The domain E is represented by Fig. 8.41, the integral is I = 1

4 sin 81.
f) The domain is normal for x and y, so

F = {(x, y) ∈ R2 : 0 ≤ y ≤ 1, arcsiny ≤ x ≤ π

2
}

= {(x, y) ∈ R2 : 0 ≤ x ≤ π

2
, 0 ≤ y ≤ sinx} .

It is precisely the set B from Exercise 2. b), see Fig. 8.37, right.
As in the previous exercise the map is not integrable in elementary functions
in x, so we exchange orders∫ 1

0

∫ π/2

arcsin y

cosx
√
1 + cos2 xdxdy =

∫ π/2

0

(∫ sin x

0

cosx
√
1 + cos2 x dy

)
dx

x

y

9

3

y =
√
x

Figure 8.41. The set E relative to Exercise 3. e)
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0

sinx cos x
√
1 + cos2 x dx =

1

2

∫ 2

1

√
t dt =

2
√
2− 1

3
.

4. Double integrals:

a) The integral is 1.

b) Referring to Fig. 8.32 we divide B into three subsets:

B1 = {(x, y) ∈ R2 : −1 ≤ x ≤ 0, −x2 ≤ y ≤ 1}
B2 = {(x, y) ∈ R2 : 0 ≤ y ≤ 1, 0 ≤ x ≤ 1 + y2}
B3 = {(x, y) ∈ R2 : −1 ≤ y ≤ 0,

√−y ≤ x ≤ 1 + y2} .

After a little computation,∫
B

xy dxdy =

∫
B1

xy dxdy +

∫
B2

xy dxdy +

∫
B3

xy dxdy

=

∫ 0

−1

∫ 1

−x2

xy dy dx+

∫ 1

0

∫ 1+y2

0

xy dxdy +

∫ 0

−1

∫ 1+y2

√−y

xy dxdy

= 0 .

5. When 0 ≤ x ≤ 2 the circle x2 + y2 = R2 and the line y = x meet at P =(
R√
2
, R√

2

)
. Hence for R√

2
> 2, i.e., R > 2

√
2, A is empty and the integral is 0.

So let 0 ≤ R ≤ 2
√
2, and we have to distinguish two cases: 0 ≤ R ≤ 2 and

2 < R ≤ 2
√
2. See Fig. 8.42 for A.

Take 0 ≤ R ≤ 2: using Fig. 8.42 we can write∫
A

y dxdy =

∫
A1

y dxdy +

∫
A2

y dxdy

x

y

R√
2

R 2

0 ≤ R ≤ 2

A1 A2

x

y

R√
2

2 R

2 ≤ R ≤ 2
√
2

A

Figure 8.42. The set A relative to Exercise 5
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=

∫ R

R/
√
2

∫ x

√
R2−x2

y dy dx+

∫ 2

R

∫ x

0

y dy dx

=
1

2

∫ R

R/
√
2

(2x2 −R2) dx+
1

2

∫ 2

R

x2 dx =
4

3
+
1

6
R3(

√
2− 2) .

Now suppose 2 < R ≤ 2
√
2: then∫

A

y dxdy =

∫ 2

R/
√
2

∫ x

√
R2−x2

y dy dx

=
1

2

∫ 2

R/
√
2

(2x2 −R2) dx =
8

3
−R2 +

1

3
√
2
R3 .

6. We have

∫
A

xdxdy =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
2

6
R3 if 0 ≤ R < 1 ,

√
2

6
R3 − 1

3
(R2 − 1)3/2 if 1 ≤ R <

√
2 ,

1

3
if R ≥ √

2 .

7. The integrand changes sign according to whether (x, y) ∈ A is above or below
the parabola y = x2 (see Fig. 8.43). Precisely, for any (x, y) ∈ A,

x sin |x2 − y| =
{
x sin(x2 − y) if y ≤ x2 ,

−x sin(x2 − y) if y > x2 .

x

y

1

1
y = x2

A1

A2

Figure 8.43. The set A relative to Exercise 7
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Looking at Fig. 8.43 then, we have∫
A

x sin |x2 − y| dxdy =
∫
A1

x sin(x2 − y) dxdy −
∫
A2

x sin(x2 − y) dxdy

=

∫ 1

0

∫ x2

0

x sin(x2 − y) dy dx−
∫ 1

0

∫ 1

x2

x sin(x2 − y) dy dx

=

∫ 1

0

[
x cos(x2 − y)

]x2

0
dx−

∫ 1

0

[
x cos(x2 − y)

]1
x2 dx

=

∫ 1

0

x(1 − cosx2) dx−
∫ 1

0

x
(
cos(x2 − 1)− 1

)
dx = 1− sin 1 .

8. The result is I = π − 2.

9. We have

∫
A

ye−α|x−y2| dxdy =

⎧⎪⎪⎨⎪⎪⎩
1

α2
(e−α − 1 + α) if α �= 0 ,

1

2
if α = 0 .

10. Double integrals:

a) The region A is bounded by four parabolas, see Fig. 8.44, left. Set u =
y

x2
, v =

x

y2
, which define the transformation (u, v) = Ψ(x, y); with that change, A

becomes the rectangle A′ = [1, 2]× [1, 3]. The Jacobian of Ψ reads

JΨ(x, y) =

(−2y/x3 1/x2

1/y2 −2x/y3
)

x

y

y = x2

y = 2x2

x = y2

x = 3y2
A

x

y

y = x

y = 3x

xy = 6B

xy = 2

Figure 8.44. The sets A relative to Exercise 10. a) (left) and B to Exercise 10. b) (right)
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with

detJΨ(x, y) =
4

x2y2
− 1

x2y2
=

3

x2y2
= 3u2v2 ;

therefore, if Φ = Ψ−1, we have detJΦ(u, v) = 1
3u2v2 . Thus∫

A

1

x2y2
dxdy =

∫ 2

1

∫ 3

1

u2v2
1

3u2v2
dv du =

2

3
.

b) B is bounded by 2 lines and 2 hyperbolas, see Fig. 8.44, right.

Define (u, v) = Ψ(x, y) by u = xy, v =
y

x
. Then B becomes the rectangle

B′ = [2, 6]× [1, 3], and

JΨ(x, y) =

(
y x

−y/x2 1/x

)
, detJΨ(x, y) = 2

y

x
= 2v .

Calling Φ = Ψ−1, we have detJΦ(u, v) = 1/2v, so∫
B

x5y5

x3y3 + 1
dxdy =

∫ 3

1

∫ 6

2

u5

u3 + 1

1

2v
du dv =

1

2

[
log v
]3
1

∫ 6

2

(
u2 − u2

u3 + 1

)
du

=
1

2
log 3

[
1

3
u3 − 1

3
log(u3 + 1)

]6
2

=
1

6
log 3
(
208 + log

9

217

)
.

c) The region C is shown in Fig. 8.45, left.
Passing to polar coordinates (r,θ ), C transforms into C ′ = [1, 2]× [0, π], so∫

C

(3x+ 4y2) dxdy =

∫ π

0

∫ 2

1

(3r cos θ + 4r2 sin2 θ)r dr dθ

=

∫ π

0

[
r3 cos θ + r4 sin2 θ

]2
1
dθ =

∫ π

0

(
7 cos θ + 15 sin2 θ

)
dθ

=

∫ π

0

(
7 cos θ +

15

2
(1− cos 2θ)

)
dθ =

15

2
π .

x

y

21

C

x

y

3

D

Figure 8.45. The sets C relative to Exercise 10. c) (left) and D to Exercise 10. d) (right)
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x

y

1

E

x

y

1

F

2

Figure 8.46. The sets E relative to Exercise 10. e) (left) and F to Exercise 10. f) (right)

d) For D see Fig. 8.45, right. The integral is I = 0 .

e) Fig. 8.46, left, shows the region E, and the integral is I = π
2 (1− e−4).

f) F is represented in Fig. 8.46, right, the integral is I = 0.

g) G is shown in Fig. 8.47, left. The integral equals I = 3
√
2

2 .

h) The region H lies in the first quadrant, and consists of points inside the circle
centred at the origin of radius 2 but outside the circle with centre (0, 1) and
unit radius (Fig. 8.47, right). In polar coordinates H becomes H ′ in the (r,θ )-
plane defined by 0 ≤ θ ≤ π

2 and 2 sin θ ≤ r ≤ 2; that is because the circle
x2 + y2 − 2y ≥ 0 reads r − 2 sin θ ≥ 0 in polar coordinates. Therefore∫

H

xdxdy =

∫ π/2

0

∫ 2

2 sin θ

r2 cos θ dr dθ =
1

3

∫ π/2

0

cos θ
[
r3
]2
2 sin θ

dθ

=
8

3

∫ π/2

0

(cos θ − cos θ sin3 θ) dθ =
8

3

[
sin θ − 1

4
sin4 θ

]π/2
0

= 2 .

11. If we pass to Cartesian coordinates, the condition 0 ≤ θ ≤ π
2 means we

only have to consider points in the first quadrant, while r = 1
cos θ and r = 1

sin θ

x

y

√
3

G

3 x

y

2

1
H

Figure 8.47. The sets G relative to Exercise 10. g) (left) and H to Exercise 10. h) (right)



354 8 Integral calculus in several variables

correspond to the lines x = 1, y = 1. In the plane (x, y) then, A′ becomes the
square A = [0, 1]× [0, 1], so∫

A′

1√
cos2 θ + sin θ/r + 1/r2

dr dθ =

∫
A′

1√
r2 cos2 θ + r sin θ + 1

r dr dθ

=

∫
A

1√
x2 + y + 1

dxdy =

∫ 1

0

∫ 1

0

1√
x2 + y + 1

dxdy

= 2

∫ 1

0

[√
x2 + y + 1

]1
0
dx = 2

∫ 1

0

(√
x2 + 2−

√
x2 + 1

)
dx

= 2

[
x
√
x2 + 2

2
+ log(x+

√
x2 + 2)− x

√
x2 + 1

2
− 1

2
log(x+

√
x2 + 1)

]1
0

=
√
3−

√
2 + log

2 +
√
3

1 +
√
2
.

12. I = 4 log 2− 2.

13. Note x ∈ [ 1√
2
, 2
]
and the curves y =

√
1− x2 and y =

√
4− x2 are semi-circles

at the origin with radius 1 and 2. The region A in the coordinates (x, y) is made
of the following three sets:

A1 = {(x, y) ∈ R2 :
1√
2
≤ x ≤ 1,

√
1− x2 ≤ y ≤ x}

A2 = {(x, y) ∈ R2 : 1 ≤ x ≤
√
2, 0 ≤ y ≤ x}

A3 = {(x, y) ∈ R2 :
√
2 ≤ x ≤ 2, 0 ≤ y ≤

√
4− x2} ;

see Fig. 8.48.

x

y

1 2

A1

A2 A3

Figure 8.48. The set A relative to Exercise 13
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In polar coordinates A becomes A′ = {(r,θ ) : 0 ≤ θ ≤ π
4 , 1 ≤ r ≤ 2}, so

I =

∫
A′

r3 sin θ cos θ dr dθ =

∫ π/4

0

∫ 2

1

r3 sin θ cos θ dr dθ =
15

16
.

14. The thin plate is shown in Fig. 8.49, left, and we can write

A = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2− 2x} .
Hence

m(A) =

∫
A

μ(x, y) dxdy =

∫ 1

0

∫ 2−2x

0

(1 + 3x+ y) dy dx =
8

3
,

xB(A) =
1

m(A)

∫
A

xμ(x, y) dxdy =
3

8

∫ 1

0

∫ 2−2x

0

x(1 + 3x+ y) dy dx =
3

8
,

yB(A) =
1

m(A)

∫
A

yμ(x, y) dxdy =
3

8

∫ 1

0

∫ 2−2x

0

y(1 + 3x+ y) dy dx =
11

16
,

so the centre of mass has coordinates (38 ,
11
16 ).

15. The thin plate A is the upper semi-circle of x2 + y2 = a2 (Fig. 8.49, right).

The distance of (x, y) from the centre (the origin) is
√

x2 + y2, whence the

density becomes μ(x, y) = K
√

x2 + y2, with given K > 0. In polar coordinates,

m(A) =

∫
A

μ(x, y) dxdy =

∫ π

0

∫ a

0

Kr2 dr dθ =
Kπa3

3
.

Since the thin plate and its density are symmetric with respect to y, the centre of
mass has to lie on the axis, so xB(A) = 0. As for the other coordinate:

yB(A) =
1

m(A)

∫
A

yμ(x, y) dxdy =
3

Kπa3

∫ π

0

∫ a

0

Kr3 sin θ dr dθ =
3a

2π
.

Therefore the centroid’s coordinates are (0, 3a
2π ).

x

y

2

1

y = 2 − 2x

x

y

−a a

x2 + y2 = a2

Figure 8.49. The sets A relative to Exercises 14 (left) and 15 (right)



356 8 Integral calculus in several variables

16. In polar coordinates

I0 =

∫
D

(x2 + y2)μ dxdy = μ

∫ 2π

0

∫ a

0

r3 dr dθ =
π

2
μa4 .

By symmetry, Ix = Iy, so the equation I0 = Ix + Iy gives immediately

Ix = Iy =
π

4
μa4 .

17. Fig. 8.50 shows the disc D, whose boundary has equation (x − a)2 + y2 = a2,
or polar r = 2a cos θ. Thus

I0 =

∫
D

(x2 + y2) dxdy =

∫ π/2

−π/2

∫ 2a cos θ

0

r3 dr dθ

= 4

∫ π/2

−π/2

a4 cos4 θ dθ = 8a4
∫ π/2

0

cos4 θ dθ =
3

2
πa4 ,

IC =

∫
D

[(x− a)2 + y2] dxdy =

∫
D′
(t2 + y2) dt dy

=

∫ 2π

0

∫ a

0

r3 dr dθ =
1

2
πa4 .

But as A = πa2, we immediately find I0 = IC + a2A.
18. I0 =

64
5 π − 16

75 .

19. Since μ(x, y) = y we have

m(A) =

∫
C

y dxdy =

∫ π/2

0

∫ 1

0

r2 sin θ dr dθ =
1

3
,

x

y

1 2

Figure 8.50. The disc D relative to Exercise 17
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xB(A) = 3

∫
C

xy dxdy = 3

∫ π/2

0

∫ 1

0

r3 sin θ cos θ dr dθ =
3

8
,

yB(A) = 3

∫
C

y2 dxdy = 3

∫ π/2

0

∫ 1

0

r3 sin2 θ dr dθ =
3

16
π .

20. Iy = 33.

21. Triple integrals:

a) I = −8. b) I = 4. c) I = 3
20 (1 − cos 1).

d) We have ∫
D

y dxdy dz =

∫ 1

0

y

(∫ 1−y

0

dx

∫ 1−y

0

dz

)
dy

=

∫ 1

0

y(1− y)2 dy =
1

12
.

See Fig. 8.51, left.
e) Since ∫

E

y dxdy dz =

∫ 4

0

(∫
Ey

dxdz

)
y dy

with Ey = {(x, z) ∈ R2 : x2 + z2 = y
4}, the integral

∫
Ey

dxdz is the area of

Ey, hence π y
4 . Therefore∫

E

y dxdy dz =
π

4

∫ 4

0

y2 dy =
16

3
π ,

see Fig. 8.51, right.

x

y

z

1

1

1
x

y

z

Ey × {y}

Figure 8.51. The regions relative to Exercise 21. d) (left) and Exercise 21. e) (right)
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f) We have∫
F

z dxdy dz =

∫ 3

0

(∫ 1
3

√
9−z2

0

dx

)(∫ √
9−z2

0

dy

)
z dz =

27

4
.

See Fig. 8.52, left.

22. Triple integrals:

a) We have

I =

∫ 1

−1

∫ 1−y2

0

∫ z

0

f(x, y, z) dxdz dy =

∫ 1

0

∫ √
1−z

−√
1−z

∫ z

0

f(x, y, z) dxdy dz

=

∫ 1

0

∫ 1

x

∫ √
1−z

−√
1−z

f(x, y, z) dy dz dx =

∫ 1

0

∫ z

0

∫ √
1−z

−√
1−z

f(x, y, z) dy dxdz

=

∫ 1

−1

∫ 1−y2

0

∫ 1−y2

x

f(x, y, z) dz dxdy =

∫ 1

0

∫ √
1−x

−√
1−x

∫ 1−y2

x

f(x, y, z) dz dy dx .

b) Simply computing,

I =

∫ 3

−3

∫ 6

0

∫ √9−y2

−
√

9−y2

f(x, y, z) dxdz dy =

∫ 6

0

∫ 3

−3

∫ √9−y2

−
√

9−y2

f(x, y, z) dxdy dz

=

∫ 3

−3

∫ 6

0

∫ √
9−x2

−√
9−x2

f(x, y, z) dy dz dx =

∫ 6

0

∫ 3

−3

∫ √
9−x2

−√
9−x2

f(x, y, z) dy dxdz

=

∫ 3

−3

∫ √9−y2

−
√

9−y2

∫ 6

0

f(x, y, z) dz dxdy =

∫ 3

−3

∫ √
9−x2

−√
9−x2

∫ 6

0

f(x, y, z) dz dy dx .

x
y

z

1
3 a

a
D

x

y

z

Figure 8.52. The regions relative to Exercise 21. f) (left) and to Exercise 23 (right)
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23. Integrating in z first, with 0 ≤ z ≤ x+ y + 1, gives

vol(A) =

∫
D

∫ x+y+1

0

dz dxdy

where D = {(x, y) ∈ R2 : 0 ≤ x ≤ a, 0 ≤ y ≤ a − x}, see Fig. 8.52, right. The
computations yield

vol(A) =

∫ a

0

∫ a−x

0

(x + y + 1) dy dx =
1

2
a2 +

1

3
a3 .

Imposing vol(A) = 5
6 we obtain

1

2
a2 +

1

3
a3 =

5

6
i.e., (a− 1)(2a2 + 5a+ 5) = 0 .

In conclusion, a = 1.

24. By symmetry it suffices to compute the volume of the region restricted to the
first octant, then multiply it by 8. Reducing the integral,

vol(A) = 8

∫ 1

0

∫ √
1−x2

0

∫ √
1−x2

0

dz dxdy =
16

3
.

See Fig. 8.53.

25. The surface 9z = 1 + y2 + 9x2 is a paraboloid, whereas z =
√
9− (y2 + 9x2)

is an ellipsoid centred at the origin with semi-axes a = 1, b = 3, c = 3. Then∫
A

1

3− z
dxdy dz =

∫ 1

0

1

3− z

(∫
Az

dxdy

)
dz .

For the integral inbetween brackets we distinguish 0 ≤ z ≤ 1
9 and

1
9 ≤ z ≤ 1. In the

first case Az is an ellipse in (x, y) with semi-axes a = 1
3

√
9− z2 and b =

√
9− z2

x y

z

Figure 8.53. The region relative to Exercise 24



360 8 Integral calculus in several variables

 

 

 

 

 

 

 

 

x
y

z

Az × {z}

 

 

 

 

 

 

 

 

x
y

z

Az × {z}

Figure 8.54. The regions relative to Exercise 25

(Fig. 8.54, left); the integral is the area of Az , whence πab = π
3 (9 − z2). In case

1
9 ≤ z ≤ 1, Az is the region bounded by the ellipses 9x2 + y2 = 9z − 1 and
9x2 + y2 = 9− z2 (Fig. 8.54, right) with

a1 =

√
9z − 1

3
, b1 =

√
9z − 1 , a2 =

√
9− z2

3
, b2 =

√
9− z2 .

Therefore ∫
Az

dxdy = πa2b2 − πa1b1 =
π

3
(9 − z2)− π

3
(9z − 1) .

Returning to the starting integral,∫
A

1

3− z
dxdy dz =

π

3

∫ 1/9

0

9− z2

3− z
dz +

π

3

∫ 1

1/9

(
9− z2

3− z
− 9z − 1

3− z

)
dz

=
π

3

∫ 1

0

(3 + z) dz +
π

3

∫ 1

1/9

(
9 +

26

z − 3

)
dz

=
23

6
π +

26

3
π log

9

13
.

26. Both volumes can be found by integrating in x the cross-sections:

vol(C1) =

∫ K

0

(∫
Ax

dy dz

)
dx =

∫ 1

K

(∫
Ax

dy dz

)
dx = vol(C2) .

The set Ax, contained in (y, z), is

Ax =
{
(y, z) ∈ R2 : 0 ≤ y ≤ 2(1− x), 0 ≤ z ≤ 3− 3x− 3

2
y
}
;

Fig. 8.55 shows the product Ax × {x}. We must thus have∫ K

0

∫ 2(1−x)

0

∫ 3−3x− 3
2y

0

dz dy dx =

∫ 1

K

∫ 2(1−x)

0

∫ 3−3x− 3
2y

0

dz dy dx ,
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x y

z

Ax × {x}

1
2

3

Figure 8.55. The region relative to Exercise 26

hence
1− (1−K)3 = (1−K)3 ,

from which K = 1− 1/ 3
√
2.

27. Triple integrals:

a) In cylindrical coordinates A becomes

A′ = {(r, θ, t) : 0 ≤ r ≤ 5, 0 ≤ θ ≤ 2π, −1 ≤ t ≤ 2} .

Therefore ∫
A

√
x2 + y2 dxdy dz =

∫ 2

−1

∫ 2π

0

∫ 5

0

r2 dr dθ dt = 250π .

b) We shall use cylindrical coordinates with axis y, i.e., x = r cos θ, y = t, z =
r sin θ. Then (see Fig. 8.56)

B = {(x, y, z) ∈ R3 : 1 ≤ x2 + z2 ≤ 4, 0 ≤ y ≤ z + 2}

becomes

B′ = {(r, θ, t) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, 0 ≤ t ≤ r sin θ + 2} ;
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x y

z

Figure 8.56. The region relative to Exercise 27. b)

therefore∫
B

xdxdy dz =

∫ 2π

0

∫ 2

1

∫ r sin θ+2

0

r2 cos θ dt dr dθ

=

∫ 2π

0

∫ 2

1

r2 cos θ(r sin θ + 2) dr dθ

=
[1
4
r4
]2
1

[1
2
sin2 θ

]2π
0

+
[2
3
r3
]2
1

[
sin θ
]2π
0

= 0 .

c) 9
4π.

d) The region D is, in spherical coordinates,

D′ = {(r, ϕ,θ ) : 1 ≤ r ≤ 2, 0 ≤ ϕ,θ ≤ π

2
} ,

so ∫
D

xdxdy dz =

∫ 2

1

∫ π/2

0

∫ π/2

0

r3 sin2 ϕ cos θ dθ dϕdr

=

(∫ 2

1

r3 dr

)(∫ π/2

0

cos θ dθ

)(∫ π/2

0

sin2 ϕdϕ

)

=
15

4
· 1 · 1

2

∫ π/2

0

(
1− cos 2ϕ

)
dϕ =

15

16
π .

e) 4(2−√
3)π.
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28. Triple integrals:

a) In spherical coordinates Ω is defined by

−
√
1− z2 ≤ x ≤

√
1− z2 , x2 + z2 ≤ y ≤ 2− x2 − z2 , −1 ≤ z ≤ 1 .

The first and last constraints determine the inside of the cylinder x2+ z2 = 1,
so cylindrical coordinates (along y) are convenient:

x = r cos θ , y = t , z = r sin θ .

Thus Ω becomes

Ω′ = {(r, θ, t) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, r2 ≤ t ≤ 2− r2}
and the integral reads∫

Ω

(x2 + z2)3/2 dxdy dz =

∫ 1

0

∫ 2π

0

∫ 2−r2

r2
r4 dt dθ dr =

8

35
π .

b) 486
5 (
√
2− 1)π.

29. Let us use generalised spherical coordinates

x = 2r sinϕ cos θ , y = 3r sinϕ sin θ , z = 4r cosϕ

where dxdy dz = 24r2 sinϕdr dϕdθ; now Ω′ is described by 0 ≤ r ≤ 1 , 0 ≤ θ ≤
2π , 0 ≤ ϕ ≤ π . Thus,∫

Ω

(
4x2 +

16

9
y2 + z2

)
dxdy dz = 16 · 24

∫ 1

0

∫ 2π

0

∫ π

0

r4 sinϕdϕdθ dr =
1536

5
π .

30. Let us first find the mass using cylindrical coordinates. As Ω is

Ω′ = {(r, θ, t) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ π

2
, 0 ≤ t ≤ 1} ,

we have

m =

∫
Ω

(x+ y) dxdy dz =

∫ 1

0

∫ 1

0

∫ π/2

0

r2(cos θ + sin θ) dθ dr dt =
2

3
.

By symmetry, xG = yG, and, similarly to the previous calculation,

xG =
3

2

∫
Ω

x(x + y) dxdy dz =
3

2

∫ 1

0

∫ 1

0

∫ π/2

0

r3 cos θ(cos θ + sin θ) dθ dr dt

=
3

8

∫ π/2

0

(cos2 θ + cos θ sin θ) dθ dr dt =
3

16

[
θ +

1

2
sin 2θ + sin2 θ

]π/2
0

=
3

16

(
1 +

π

2

)
= yG ,

zG =
3

2

∫
Ω

z(x+ y) dxdy dz =
3

2

∫ 1

0

∫ 1

0

∫ π/2

0

t r2(cos θ + sin θ) dθ dr dt =
1

2
.
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y

z

2 3

z = y

z =
√

y2 − 4

Figure 8.57. The meridian section relative to Exercise 31

31. The meridian section T is shown in Fig. 8.57. Theorem 8.32 tells us

vol(Ω) = 2π

∫
T

y dy dz .

Then

vol(Ω) = 2π

∫ 3

2

(∫ y

√
y2−4

y dz

)
dy = 2π

∫ 3

2

(
y2 − y

√
y2 − 4

)
dy

= 2π
[1
3
y3 − 1

3
(y2 − 4)3/2

]3
2
=

2

3
(19− 5

√
5)π .

32. 8π.

33. The section T is drawn in Fig. 8.58, left. Using Theorem 8.32 the volume is

vol(Ω) = 2π

∫
T

xdxdz = 2π

∫ π

0

(∫ π−z

sin z

xdx
)
dz = π

∫ π

0

(
(π − z)2 − sin2 z

)
dz

= π
[
− 1

3
(π − z)3 − 1

2
(z − 1

2
sin 2z)

]π
0
=

1

3
π4 − 1

2
π2 .

But as Ω is a solid of revolution around z, the centre of mass is on that axis, so
xG = yG = 0. To find zG, we integrate cross-sections:

zG =
1

vol(Ω)

∫
Ω

z dxdy dz =
1

vol(Ω)

∫ π

0

z

(∫
Az

dxdy

)
dz

where Az is the projection on xy of the annulus Ωz of Fig. 8.58, right.
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x

z

π

π

x = π − z
x=sin z

x
y

z

Ωz

Figure 8.58. Meridian section (left) and region Ωz (right) relative to Exercise 33

The integral

∫
Az

dxdy is the area of Az, which is known to be π
(
(π−z)2−sin2 z).

In conclusion,

zG =
π

vol(Ω)

∫ π

0

z
(
(π − z)2 − sin2 z

)
dxdy dz =

1

vol(Ω)

(π5

12
− π3

4

)
=

π3 − 3π

4π2 − 6
.
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Integral calculus on curves and surfaces

With this chapter we conclude the study of multivariable integral calculus. In
the first part we define integrals along curves in Rm and over surfaces in space,
by considering first real-valued maps, then vector-valued functions. Integrating a
vector field’s tangential component along a curve, or its normal component on a
surface, defines line and flux integrals respectively; these are interpreted in Physics
as the work done by a force along a path, or the flow across a membrane immersed
in a fluid. Curvilinear integrals rely, de facto, on integrals over real intervals,
in the same way as surface integrals are computed by integrating over domains
in the plane. A certain attention is devoted to how integrals depend upon the
parametrisations and orientations of the manifolds involved.

Path and flux integrals crop up in a series of results, among which three are
pivotal: the Divergence Theorem (also known as Gauss’ Theorem), Green’s The-
orem and Stokes’ Theorem. They transfer to a multivariable framework the idea
at the heart of one-dimensional integration by parts, and namely: changing the
integral over a given domain into an integral over its boundary by modifying the
integrand function. The aforementioned theorems have a large number of applic-
ations, in particular differential equations governing physical laws; for instance,
the Divergence Theorem allows to compute the variation of the flow of a unit of
matter by means of an integral over the volume, thus giving rise to the so-called
conservation laws.

The last part deals with conservative fields, which are gradients of vector fields,
and with the problem of computing the potential of a given field. That is the mul-
tivariable version of indefinite integration, which seeks primitive maps on the real
line. The applicative importance of conservative fields and their potentials is well
known: in many cases a gravitational field or an electric force field is conservative,
a fact allowing to compute the force’s work simply by difference of two values of
the potential.

C. Canuto, A. Tabacco:Mathematical Analysis II, 2nd Ed.,
UNITEXT – La Matematica per il 3+2 85, DOI 10.1007/978-3-319-12757-6_9,
© Springer International Publishing Switzerland 2015
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9.1 Integrating along curves

Curvilinear integrals in several variables are the natural generalisation of the def-
inite integral of a real map over a real interval. Curves were introduced in Sect. 4.6,
while their differential aspects were discussed in Sect. 6.5.

Let γ : I = [a, b] → Rm (m ≥ 2) be a regular arc, and Γ = γ(I) its trace.
Suppose f : dom f ⊆ Rm → R is a map defined on Γ , at least, meaning Γ ⊆ dom f .
Suppose further that the composite f ◦ γ : [a, b] → R, (f ◦ γ)(t) = f(γ(t)), is
(piecewise) continuous on [a, b].

Definition 9.1 The integral of f along γ is the number∫
γ

f =

∫ b

a

f
(
γ(t)
) ‖γ′(t)‖ dt . (9.1)

Sometimes the name ‘curvilinear integral’ can be met.

The right-hand side of (9.1) is well defined, because the integrand function
f
(
γ(t)
) ‖γ′(t)‖ is (piecewise) continuous on [a, b]. As γ is regular, in fact, its com-

ponents’ first derivatives are continuous and so is the norm ‖γ′(t)‖, by composition;
moreover, f

(
γ(t)
)
is (piecewise) continuous by hypothesis.

The geometrical meaning is the following. Let γ be a simple plane arc and f
non-negative along Γ ; call

G(f) = {(x, y, z) ∈ R3 : (x, y) ∈ dom f, z = f(x, y)}
the graph of f . If

Σ = {(x, y, z) ∈ R3 : (x, y) ∈ Γ, 0 ≤ z ≤ f(x, y)}
denotes the upright surface fencing Γ up to the graph of f (see Fig. 9.1), it can be
proved that the area of Σ is given by the integral of f along γ. Say, for instance,
f is constant equal to h on Γ : then the area of Σ is the product of h times the

length of Γ ; by Sect. 6.5.2 the length is �(Γ ) =
∫ b
a ‖γ′(t)‖ dt, whence

area (Σ) = h �(Γ ) =

∫ b

a

f
(
γ(t)
)‖γ′(t)‖ dt =

∫
γ

f .

If f is not constant, instead, we can divide the interval I into K sub-intervals
Ik = [tk−1, tk] of width Δtk = tk − tk−1 sufficiently small. Call Γk = γ(Ik) the

restriction to Ik, whose length is �(Γk) =
∫ tk
tk−1

‖γ′(t)‖ dt; then let Σk = {(x, y, z) ∈
R3 : (x, y) ∈ Γk, 0 ≤ z ≤ f(x, y)} be the part of Σ over Γk (see again Fig. 9.1).
Given any t∗k ∈ Ik, with P ∗

k = γ(t∗k) ∈ Γk, we will have

area(Σk) � f(P ∗
k )�(Γk) =

∫ tk

tk−1

f
(
γ(t∗k)

)‖γ′(t)‖ dt .
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Figure 9.1. The geometrical meaning of integrating along a curve

Summing over k and letting the intervals’ width shrink to zero yields precisely
formula (9.1).

Recalling Definition 9.1, we can observe that the arc length s = s(t) of (6.20)
satisfies

ds

dt
= ‖γ′(t)‖

which, in Leibniz’s notation, we may re-write as

ds = ‖γ′(t)‖ dt .

The differential ds is the ‘infinitesimal’ line element along the curve, corresponding
to an ‘infinitesimal’ increment dt of the parameter t. Such considerations justify
indicating the integral of (9.1) by∫

γ

f ds , or

∫
γ

f dγ (9.2)

(in the latter case, the map s = s(t) is written as γ = γ(t), not to be confused
with the vector notation of an arc γ = γ(t)).

Examples 9.2

i) Let γ : [0, 1]→ R2 be the regular arc γ(t) = (t, t2) parametrising the parabola
y = x2 between O = (0, 0) and A = (1, 1). Since γ′(t) = (1, 2t), we have
‖γ′(t)‖ = √

1 + 4t2. Suppose f : R× [0,+∞)→ R is the map f(x, y) = 3x+
√
y.

The composite f ◦ γ is f
(
γ(t)
)
= 3t+

√
t2 = 4t, so∫

γ

f =

∫ 1

0

4t
√
1 + 4t2 dt ;
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this is computed by substituting r = 1 + 4t2,∫
γ

f =
1

2

∫ 5

1

√
r dr =

1

2

[2
3
r3/2
]5
1
=

1

3
(5
√
5− 1) .

ii) The regular arc γ : [0, 1]→ R3, γ(t) = ( 13 t
3,

√
2
2 t2, t), gives

γ′(t) = (t2,
√
2t, 1) whence ‖γ′(t)‖ =

√
t4 + 2t2 + 1 = (1 + t2) .

Take now f(x, y, z) = 3
√
2xyz2; then∫

γ

f =

∫ 1

0

t7(1 + t2) dt =
[1
8
t8 +

1

10
t10
]1
0
=

9

40
.

iii) Parametrise the circle centred in (2, 1) with radius 2 by γ : [0, 2π] → R2,
γ(t) = (2 + 2 cos t, 1 + 2 sin t). Then

‖γ′(t)‖ =
√
4 sin2 t+ 4 cos2 t = 2 , ∀t .

For the map f(x, y) = (x−2)(y−1)+1 we have f
(
γ(t)
)
= 4 sin t cos t+1, hence∫

γ

f = 2

∫ 2π

0

(4 sin t cos t+ 1) dt = 2
[− cos 2t+ t

]2π
0

= 4π .

Using the curve γ∗ with the same components of γ but t ranging in [0, 2kπ] (i.e.,
going around k times, instead of only once), we have∫

γ∗
f = 2

∫ 2kπ

0

(4 sin t cos t+ 1) dt = 4kπ. �

This last example explains that curvilinear integrals depend not only on the
trace of the curve, but also on the chosen parametrisation. Nonetheless, congruent
parametrisations give rise to equal integrals, as we now show.

Let f be defined on the trace of a regular arc γ : [a, b] → Rm so that f ◦ γ
is (piecewise) continuous and the integral along γ exists. Then f ◦ δ, too, where
δ is an arc congruent to γ, will be (piecewise) continuous because composition of
a continuous map between real intervals and the (piecewise-)continuous function
f ◦ γ.

Proposition 9.3 Let γ : [a, b] → Rm be a regular arc of trace Γ , and f a
map on Γ such that f ◦ γ is (piecewise) continuous. Then∫

δ

f =

∫
γ

f ,

for any curve δ congruent to γ.
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Proof. Let δ = γ ◦ ϕ, with ϕ : [c, d] → [a, b], be any congruent arc to γ, so
δ′(τ) = γ′(ϕ(τ))ϕ′(τ). Then∫

δ

f =

∫ d

c

f
(
δ(τ)
) ‖δ′(τ)‖ dτ = ∫ d

c

f
(
γ(ϕ(τ))

) ‖γ′(ϕ(τ))ϕ′(τ)‖ dτ

=

∫ d

c

f
(
γ(ϕ(τ))

) ‖γ′(ϕ(τ))‖ |ϕ′(τ)| dτ .

Substituting t = ϕ(τ) gives dt = ϕ′(τ) dτ . Note that ϕ(c) = a, ϕ(d) = b if
ϕ′ > 0 (δ and γ are equivalent), or ϕ(c) = b, ϕ(d) = a if ϕ′ < 0 (δ and γ

are anti-equivalent). In the first case we obtain∫
δ

f =

∫ b

a

f
(
γ(t)
) ‖γ′(t)‖ dt =

∫
γ

f

whereas in the second case∫
δ

f = −
∫ a

b

f
(
γ(t)
) ‖γ′(t)‖ dt =

∫ b

a

f
(
γ(t)
) ‖γ′(t)‖ dt =

∫
γ

f . �

By the previous proposition the following result is straightforward.

Corollary 9.4 The curvilinear integral of a function does not change by tak-
ing opposite arcs.

Given an arbitrary point c in (a, b) and setting γ1 = γ|[a,c], γ2 = γ|[c,b], by
additivity we have ∫

γ

f =

∫
γ1

f +

∫
γ2

f . (9.3)

This suggests how to extend the notion of integral to include piecewise-regular
arcs. More precisely, let γ : [a, b] → Rm be a piecewise-regular arc and a = a0 <
a1 < . . . < an = b points in [a, b] such that the arcs γi = γ|[ai−1,ai], i = 1, . . . , n,
are regular. Take f , as above, defined at least on Γ such that f ◦ γ is (piecewise)
continuous on [a, b]. By definition, then, we set∫

γ

f =

n∑
i=1

∫
γi

f . (9.4)

Remark 9.5 Computing integrals along curves is made easier by Proposition 9.3.
In fact, ∫

γ

f =

n∑
i=1

∫
δi

f , (9.5)

where each δi is an arc congruent to γi, i = 1, . . . , n, chosen in order to simplify
the corresponding integral on the right. �
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Example 9.6

Compute
∫
γ
x2, where γ : [0, 4] → R2 is the following parametrisation of the

square [0, 1]× [0, 1]

γ(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
γ1(t) = (t, 0) if 0 ≤ t < 1 ,

γ2(t) = (1, t− 1) if 1 ≤ t < 2 ,

γ3(t) = (3 − t, 1) if 2 ≤ t < 3 ,

γ4(t) = (0, 4− t) if 3 ≤ t ≤ 4

(see Fig. 9.2, left). Consider the parametrisations

δ1(t) = γ1(t) 0 ≤ t ≤ 1 , δ1 = γ1 ,

δ2(t) = (1, t) 0 ≤ t ≤ 1 , δ2 ∼ γ2 ,

δ3(t) = (t, 1) 0 ≤ t ≤ 1 , δ3 ∼ −γ3 ,

δ4(t) = (0, t) 0 ≤ t ≤ 1 , δ4 ∼ −γ4

(see Fig. 9.2, right). Then∫
γ

x2 =

∫ 1

0

t2 dt+

∫ 1

0

1 dt+

∫ 1

0

t2 dt+

∫ 1

0

0 dt =
5

3
. �

Curvilinear integrals bear the same properties of linearity, positivity, monoton-
icity and so on, seen for ordinary integrals.

Remark 9.7 Let γ : [a, b]→ R be a regular arc. Its length �(γ) can be written as

�(γ) =

∫
γ

1 . (9.6)

The arc length s = s(t), see (6.20) with t0 = a, satisfies s(a) = 0 and s(b) =∫ b
a ‖γ′(τ)‖ dτ = �(γ). We want to use it to integrate a map f by means of the

O 1γ1

γ2

γ3

γ4

O 1δ1

δ2

δ3

δ4

Figure 9.2. Parametrisations of the unit square relative to Example 9.6
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parametrisation γ̃(s) = γ(t(s)), equivalent to γ, already seen on p. 224. Then∫
γ

f =

∫
γ̃

f =

∫ �(γ)

0

f
(
γ̃(s)
)
ds ,

useful to simplify integrals if we know the arc length’s analytical expression. �

In view of subsequent applications, it makes sense to consider integrals along
a simple and regular arc Γ , thought of as a subset of Rm, see Definition 6.28.

We already know that all parametrisations of Γ by simple, regular arcs are con-
gruent (Proposition 6.27), and hence give rise to the same integral of a (piecewise-)
continuous map f along Γ (Proposition 9.3). For this reason one calls integral of
f along Γ the number ∫

Γ

f =

∫
γ

f , (9.7)

where γ is any regular and simple parametrisation of Γ . Equivalent symbols are∫
Γ

f ds ,

∫
Γ

f dγ ,

∫
Γ

f d� .

The generalisation to piecewise-regular, simple arcs should be clear. In case Γ is
closed, the integral might be denoted using the symbols∮

Γ

f ,

∮
Γ

f ds ,

∮
Γ

f dγ ,

∮
Γ

f d� .

Remark 9.8 The integral of a (piecewise-)continuous f can be defined along a
regular curve γ : I → Rm, where I is a bounded, but not closed, interval. For this,
t �→ f

(
γ(t)
)‖γ′(t)‖ must be integrable (improperly as well) on I, with integral∫

γ

f =

∫
I

f
(
γ(t)
)‖γ′(t)‖ dt .

For example, parametrise the unit semi-circle centred at the origin and lying on
y ≥ 0 by γ : [−1, 1]→ R2, γ(t) = (t,

√
1− t2); the curve is regular only on (−1, 1),

for γ′(t) =
(
1,− t√

1−t2

)
. If f(x, y) = 1,

∫
γ

f =

∫ 1

−1

1√
1− t2

dt =
[
arcsin t

]1
−1

= π ,

the right-hand-side integral being improper. �
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9.1.1 Centre of mass and moments of a curve

As with thin plates and solid bodies, see Sect. 8.5, we can use curvilinear integ-
rals to define certain physical quantities related to a thin wire resting along a
(piecewise-)regular, simple arc Γ ⊂ R3.

Let μ = μ(P ) be the wire’s linear density (mass per unit of length) at a generic
P = x = (x, y, z) ∈ Γ . The total mass will be

m =

∫
Γ

μ ,

and its centre of mass G = xG = (xG, yG, zG) is

xG =
1

m

∫
Γ

xμ ,

or

xG =
1

m

∫
Γ

xμ , yG =
1

m

∫
Γ

yμ , zG =
1

m

∫
Γ

zμ .

The moment (of inertia) about a line or a point is

I =

∫
Γ

d2μ ,

where d = d(P ) is the distance of P ∈ Γ from the line or point considered. The
axial moments

Ix =

∫
Γ

(y2 + z2)μ , Iy =

∫
Γ

(x2 + z2)μ , Iz =

∫
Γ

(x2 + y2)μ ,

are special cases of the above, and their sum I0 = Ix+Iy+Iz represents the wire’s
moment about the origin.

Example 9.9

Let us determine the moment about the origin of the arc Γ

x2 + y2 + z2 = 1 , y = z , y ≥ 0 ,

joining A = (1, 0, 0) to B = (0,
√
2
2 ,

√
2
2 ). We can parametrise the arc by γ(t) =

(
√
1− 2t2, t, t), 0 ≤ t ≤

√
2
2 , so that

‖γ′(t)‖ =
√

4t2

1− 2t2
+ 1 + 1 =

√
2√

1− 2t2
,

and

I0 =

∫ √
2/2

0

(1 − 2t2 + t2 + t2)

√
2√

1− 2t2
dt =

[
arcsin

√
2t
]√2/2

0
=

π

2
. �
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9.2 Path integrals

Integrating vector fields along curves gives rise to the notion of path integral,
presented below.

Let I = [a, b] and γ : I → Rm be a regular arc with trace Γ = γ(I). Take a
vector field f in Rm, defined on Γ at least. The composite map f ◦γ : t �→ f

(
γ(t)
)

from I to Rm is thus defined. We shall assume the latter (piecewise) continuous,
so that all fi

(
γ(t)
)
are (piecewise) continuous from I to R. For any t ∈ I, recall

that

τ (t) = τγ(t) =
γ′(t)
‖γ′(t)‖

is the unit tangent vector at P (t) = γ(t). The map fτ = f · τ ,
fτ (t) =

(
f · τ)(t) = f

(
γ(t)
) · τ (t) ,

is the component of f along the tangent direction to γ at P (t).

Definition 9.10 The path integral of f along γ is the integral along γ

of the map fτ : ∫
γ

f · τ =

∫
γ

fτ .

Another name for it is line integral of f along γ.

By definition of τ we have∫
γ

f · τ =

∫ b

a

f
(
γ(t)
) · τ (t) ‖γ′(t)‖ dt =

∫ b

a

f
(
γ(t)
) · γ′(t) dt .

Thus, the integral of f along the path γ can be computed using

∫
γ

f · τ =

∫ b

a

f
(
γ(t)
) · γ′(t) dt . (9.8)

Writing
dγ

dt
= γ′(t) as Leibniz does, or dγ = γ′(t) dt, we may also use the notation∫

γ

f · dγ .

There is a difference between the symbol dγ (a vector) and the differential dγ
of (9.2) (a scalar).

The physical meaning of path integrals is paramount. If f models a field of
forces applied to the trace of the curve, the path integral is the work (the work
integral) of the force during the motion along γ. The counterpart to Proposition 9.3
is the following.
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Proposition 9.11 Let γ : [a, b]→ Rm be a regular arc of trace Γ , f a vector
field on Γ such that f ◦ γ is (piecewise) continuous. Then∫

δ

f · τδ =
∫
γ

f · τγ , for any arc δ equivalent to γ,

and ∫
δ

f · τδ = −
∫
γ

f · τγ , for any arc δ anti-equivalent to γ.

Proof. This is a consequence of Proposition 9.3, because unit tangent vectors
satisfy τδ = τγ when δ ∼ γ, and τδ = −τγ when δ ∼ −γ. �

Corollary 9.12 Swapping an arc with its opposite changes the sign of the
path integral: ∫

−γ

f · τ(−γ) = −
∫
γ

f · τγ .

In Physics it means that the work done by a force changes sign if one reverses the
orientation of the arc; once that is fixed, the work depends only on the path and
not on the way one moves along it.

Here is another recurring definition in the applications.

Definition 9.13 If γ is a regular, closed arc, the path integral of f is said
circulation of f along γ and denoted∮

γ

f · τ .

Examples 9.14

i) The vector field f : R3 → R3, f(x, y, z) = (ex, x+y, y+z) along γ : [0, 1]→ R3,
γ(t) = (t, t2, t3), is given by

f
(
γ(t)
)
= (et, t+ t2, t2 + t3) with γ′(t) = (1, 2t, 3t2) .

Hence, the path integral of f on γ is∫
γ

f · τ =

∫ 1

0

(et, t+ t2, t2 + t3) · (1, 2t, 3t2) dt

=

∫ 1

0

[
et + 2(t2 + t3) + 3(t4 + t5)

]
dt = e +

19

15
.
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ii) Take the vector field f : R2 → R2 given by f(x, y) = (y, x). Parametrise the

ellipse x2

9 + y2

4 = 1 by γ : [0, 2π] → R2, γ(t) = (3 cos t, 2 sin t). Then f
(
γ(t)
)
=

(2 sin t, 3 cos t) and γ′(t) = (−3 sin t, 2 cos t). The integral of f along the ellipse

is zero:∮
γ

f · τ =

∫ 2π

0

(2 sin t, 3 cos t) · (−3 sin t, 2 cos t) dt = 6

∫ 2π

0

(− sin2 t+ cos2 t) dt

= 6

∫ 2π

0

(2 cos2 t− 1) dt = 12

∫ 2π

0

cos2 t dt− 12π = 0 ,

where we have used ∫ 2π

0

cos2 t dt =

[
1

2
t+

1

4
sin 2t

]2π
0

= π . �

Path integrals exist on piecewise-regular arcs, too: it is enough to define, as in
formula (9.4), ∫

γ

f · τ =

n∑
i=1

∫
γi

f · τγi
, (9.9)

where γi are regular arcs constituting γ.

At last, if we think geometrically (see Definition 6.28) and take a piecewise-
regular simple arc Γ ⊂ Rm, the path integral along Γ can be defined properly only
after one orientation on Γ has been chosen, and the orientation depends on the
tangent vector τ . Then we can define the path integral of f along Γ by

∫
Γ

f · τ =

∫
γ

f · τγ , (9.10)

where γ is any simple, (piecewise-)regular parametrisation of Γ with the chosen
orientation. Clearly, reversing the orientation has the effect of changing the integ-
ral’s sign. The circulation of f along a piecewise-regular Jordan arc (closed and
simple) will be indicated by ∮

Γ

f · τ .

A different notation for the path integral, based on the language of differential
forms, is provided in Appendix A.2.3, p. 529.

9.3 Integrals over surfaces

In perfect analogy to curves, the integral on a surface of a map in three variables is a
natural way to extend double integrals over flat regions. This section is dedicated



378 9 Integral calculus on curves and surfaces

to integrating over surfaces. To review surfaces, see Sect. 4.7, whilst for their
differential calculus see Sect. 6.7.

Let R be a compact, measurable region in R2, σ : R → R3 a compact regular
surface with trace Σ. The normal vector ν = ν(u, v) at P = σ(u, v) was defined
in (6.48). Take a map f : dom f ⊆ R3 → R defined on Σ at least, and assume
f ◦ σ is generically continuous on R.

Definition 9.15 The integral of f over the surface σ is the number∫
σ

f =

∫
R
f
(
σ(u, v)

)‖ν(u, v)‖ du dv . (9.11)

As the surface is regular, the function (u, v) �→ ‖ν(u, v)‖ is continuous on R, so
the right-hand-side integrand is generically continuous, hence integrable.

The definition is inspired by the following considerations. Suppose R is a rect-
angle with sides parallel to the (u, v)-axes, and let us divide it into rectangles
Rhk = [uh, uh +Δu]× [vk, vk +Δv] with lengths Δu, Δv, such that the interiors
◦
Rhk are pairwise disjoint (as in Fig. 9.3, left). The image of Rhk is the subset
Σhk of Σ bounded by the coordinate lines through σ(uh, vk), σ(uh + Δu, vk),
σ(uh, vk + Δv) and σ(uh + Δu, vk + Δv) (Fig. 9.3, right). If Δu and Δv are
small enough, the surface is well approximated by the parallelogram Πhk lying on
the surface’s tangent plane at σ(uh, vk), which is spanned by the tangent vectors
∂σ

∂u
(uh, vk)Δu and

∂σ

∂v
(uh, vk)Δv (Fig. 9.4). The area Δσ of Πhk is

Δσ =

∥∥∥∥∂σ∂u (uh, vk) ∧ ∂σ

∂v
(uh, vk)

∥∥∥∥ΔuΔv = ‖ν(uh, vk)‖ΔuΔv ,

a number that approximates the area of Σhk. Therefore, we may consider the term

vk −
vk +Δv −

uh

−

uh +Δu

−

Rhk

u

v
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Figure 9.3. Partitions of the domain (left) and of the trace (right) of a compact surface
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Figure 9.4. Element Σhk and corresponding tangent plane Πhk

dσ = ‖ν(u, v)‖ du dv

in the right-hand side of (9.11) as an ‘infinitesimal’ surface element on Σ. In
particular, if the surface is simple, we shall see that the area of Σ is precisely∫

σ

1 =

∫
R
‖ν(u, v)‖ du dv .

Example 9.16

Let us suppose the regular compact surface σ : R → R3 is given by σ(u, v) =
ui+ vj + ϕ(u, v)k. Recalling (6.49), we have

‖ν(u, v)‖ =
√
1 +

(
∂ϕ

∂u

)2

+

(
∂ϕ

∂v

)2

,

and so the integral of f = f(x, y, z) on σ is∫
σ

f =

∫
R
f
(
u, v,ϕ (u, v)

)√
1 +

(
∂ϕ

∂u

)2

+

(
∂ϕ

∂v

)2

du dv .

For example, if σ is defined by ϕ(u, v) = uv over the unit square R = [0, 1]2,

and f(x, y, z) = z/
√
1 + x2 + y2, then∫

σ

f =

∫ 1

0

∫ 1

0

uv√
1 + u2 + v2

√
1 + v2 + u2 du dv

=

∫ 1

0

∫ 1

0

uv du dv =
1

4
. �

Surface integrals are invariant under congruent parametrisations, as stated by
the next proposition.
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Proposition 9.17 Let σ : R → R3 be a compact surface with trace Σ and
f a map on Σ such that f ◦ σ is generically continuous on R. Then for any
parametrisation σ̃ : R̃ → Σ congruent to σ,∫

σ̃

f =

∫
σ

f .

Proof. Call Φ : R̃ → R the change of variables such that σ̃ = σ ◦Φ. By (6.50)
and Theorem 8.24,∫

σ̃

f =

∫
R̃
f
(
σ̃(ũ, ṽ)

)‖ν̃(ũ, ṽ)‖ dũdṽ
=

∫
R̃
f
(
σ(Φ(ũ, ṽ))

)‖ detJΦ(ũ, ṽ)ν(Φ(ũ, ṽ))‖ dũdṽ
=

∫
R̃
f
(
σ(Φ(ũ, ṽ))

)‖ν(Φ(ũ, ṽ))‖| detJΦ(ũ, ṽ)| dũdṽ
=

∫
R
f
(
σ(u, v)

)‖ν(u, v)‖ du dv = ∫
σ

f .
�

The above result allows us to define integrals over regular, simple, compact
surfaces Σ ⊂ R2 thought of as geometrical surfaces (see Definition 6.34). To be
precise, one calls integral of f on the surface Σ the quantity∫

Σ

f =

∫
σ

f , (9.12)

where σ is any regular, simple parametrisation ofΣ. Since all such σ are congruent,
the definition makes sense. Alternatively, one may also write∫

Σ

f(σ) dσ or

∫
Σ

f dσ .

Integrals can be defined over piecewise-regular compact surfaces Σ, meaning
the union of n regular, simple compact surfaces Σ1, . . . , Σn as of Definition 6.43.
In such a case, one declares

∫
Σ

f =
n∑

i=1

∫
Σi

f .

Remark 9.18 The definition extends to cover non-compact surfaces, as we did
for curvilinear integrals (Remark 9.8), with the proviso that the right-hand-side
map of (9.11) be integrable on R.
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For instance, the unit hemisphere Σ defined by

x2 + y2 + z2 = 1 , z ≥ 0 ,

is not compact in Cartesian coordinates, for

σ(u, v) =
(
u, v,
√
1− u2 − v2

)
cannot be prolonged differentiably to an arbitrary open set containing the unit
disc D. Nonetheless, we may still use (9.9) to find the surface’s area, because the
map

‖ν(u, v)‖ = 1√
1− u2 − v2

is integrable on D. In fact,∫
Σ

1 =

∫
D

‖ν(u, v)‖ du dv =
∫ 2π

0

∫ 1

0

r√
1− r2

dr dθ = 2π .
�

9.3.1 Area of a surface

Via surface integrals we can define the area of a compact surface Σ (piecewise
regular and simple) thoroughly, by

area(Σ) =

∫
Σ

1 .

Example 9.19

i) The example of Remark 9.18 adapts to show that the area of the hemisphere
Σ of radius r is

area(Σ) =

∫
Σ

1 = 2πr2 ,

as elementary geometry tells us.

ii) Let us compute the lateral surface Σ of a cylinder of radius r and height L.
Supposing the cylinder’s axis is the segment [0, L] along the z-axis, the surface Σ
is parametrised by σ(u, v) = r cosu i+r sinu j+v k, (u, v) ∈ R = [0, 2π]× [0, L].
Easily then,

ν(u, v) = r cosu i+ r sinu j + 0k ,

whence ‖ν(u, v)‖ = r. In conclusion,

area(Σ) =

∫ 2π

0

∫ L

0

r du dv = 2πrL ,

another old acquaintance of elementary geometry’s fame. �
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It is no coincidence that the area is found by integrating along a meridian arc.
The cylinder is in fact a surface of revolution (Example 4.37 iii)):

Proposition 9.20 Let Σ define the surface of revolution generated by re-
volving the arc Γ , on the plane xz, around the z-axis. Then

area(Σ) = 2π

∫
Γ

x .

Proof. Retaining the notation of Example 4.37 iii) we easily obtain

ν(u, v) = −γ1(u)γ′
3(u) cos v i+ γ1(u)γ

′
3(u) sin v j

+
(
γ1(u)γ

′
1(u) cos

2 v + γ1(u)γ
′
1(u) sin

2 v
)
k ,

whence

‖ν(u, v)‖ =
√

γ2
1(u)
(
(γ′

1(u))
2 + (γ′

3(u))
2
)
= γ1(u)‖γ′(u)‖ .

Above we assumed x = γ1(u) non-negative along the curve. Therefore

area(Σ) =

∫
Σ

1 =

∫ 2π

0

∫
I

γ1(u)‖γ′(u)‖ dudv

= 2π

∫
I

γ1(u)‖γ′(u)‖ dudv = 2π

∫
Γ

x . �

As 2πx is the length of the circle described by P = (x, 0, z) ∈ Γ during the
revolution around the axis, and

xG =

∫
Γ
x∫

Γ 1
=

∫
Γ
x

�(Γ )

is the coordinate of the centre of mass G of Γ , corresponding to unit density along
the curve, we can state the formula as

area(Σ) = 2π xG �(Γ ) .

This is known as Guldin’s Theorem.

Theorem 9.21 The area of a surface of revolution Σ is the product of the
length of the meridian section times the length of the circle described by the
arc’s centre of mass.
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9.3.2 Centre of mass and moments of a surface

Imagine a thin shell covering a (piecewise-)regular, simple, compact surface Σ ⊂
R3. Denoting by μ = μ(P ) the shell’s density of mass (mass per unit of area) at
P ∈ Σ, we can compute the total mass

m =

∫
Σ

μ

and the centre of mass G = (xG, yG, zG)

xG =
1

m

∫
Σ

xμ ,

so

xG =
1

m

∫
Σ

xμ , yG =
1

m

∫
Σ

yμ , zG =
1

m

∫
Σ

zμ .

The moment (of inertia) about an axis or a point is

I =

∫
Σ

d2μ ,

where d = d(P ) is the distance of the generic P ∈ Σ from the line or point given.
The moments about the coordinate axes

Ix =

∫
Σ

(y2 + z2)μ , Iy =

∫
Σ

(x2 + z2)μ , Iz =

∫
Σ

(x2 + y2)μ ,

are special cases; their sum I0 = Ix + Iy + Iz represents the moment about the
origin.

9.4 Flux integrals

After learning how to integrate scalar fields on surfaces, we now turn to vector-
valued maps and define the fundamental notion of flux integral, which will occupy
this section.

Let f be a vector field on R3 that is defined (at least) on the trace Σ of a
regular, compact surface σ : R → Σ, with R compact and measurable in R2. We
assume the composite f ◦ σ is generically continuous on R. If n = n(u, v) is the
unit normal to Σ, one calls normal component of f the component fn = f · n
along n.



384 9 Integral calculus on curves and surfaces

Definition 9.22 The surface integral of f on σ is the integral on the
surface σ of the map fn: ∫

σ

f · n =

∫
σ

fn .

Because of Definition 6.35 we can compute surface integrals by∫
σ

f · n =

∫
R
f
(
σ(u, v)

) · ν(u, v) du dv . (9.13)

As already seen for path integrals, congruent parametrisations in surface integrals
possibly entail a sign ambiguity.

Proposition 9.23 Let σ : R → R3 be a regular compact surface with trace
Σ, f a vector field on Σ such that f ◦ σ is generically continuous. Then∫

σ̃

f · ñ =

∫
σ

f · n , for any compact surface σ̃ equivalent to σ,

and∫
σ̃

f · ñ = −
∫
σ

f · n , for any compact surface σ̃ anti-equivalent to σ .

Proof. The proof descends from Proposition 9.17 by observing that unit normals
are equal, ñ = n, if σ̃ is equivalent to σ, and opposite, ñ = −n, if σ̃ is
anti-equivalent to σ . �

The proposition allows us to define the surface integral of a vector field f

over a (piecewise-)regular, simple, compact surface Σ seen as embedded in R3. In
the light of Sect. 6.7.2, it is though necessary to consider orientable surfaces only
(Definition 6.38).

Let us thus assume that Σ is orientable, and that we have fixed an orientation
on it, corresponding to one of the unit normals, henceforth denoted n. Now we
are in the position to define the flux integral of f on Σ as∫

Σ

f · n =

∫
σ

f · n , (9.14)

where σ is any simple and (piecewise-)regular parametrisation of Σ inducing
the chosen orientation. This integral is often called simply flux of f across, or
through,Σ. The terminology stems from Physics; suppose the surface is immersed
in a fluid of density μ = μ(x), and v = v(x) is the velocity of the point-particle
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at P = x. Set f = μv and denote by ΔΣ the element of area Δσ and normal n.
Then (f ·n)Δσ is the volume rate of fluid flow through ΔΣ per unit of time, i.e.,
the discharge. Summing, and passing to the limit, the flux integral of f across Σ
is the difference between the overall outflow and inflow through the surface Σ.

When the surface Σ is bounded and encloses an open domain Ω, one speaks
about outgoing flux or ingoing flux according to whether the normal n leaves
Ω or enters Ω respectively.

Example 9.24

Let us determine the outgoing flux of f(x) = yi − xj + zk through the sphere
centred in the origin and of radius r. We opt for spherical coordinates and para-
metrise by σ : [0, π] × [0, 2π] → R3, σ(u, v) = r sinu cos v i + r sinu sin v j +
r cosuk (see Example 4.37 iv)). The outgoing normal is

ν(x) = r sinux = r sinu(xi + yj + zk) ,

see Example 6.36 ii). Therefore (f · ν)(x) = r sinuz2 = r3 sinu cos2 u, and
recalling (9.13), we have∫

Σ

f · n =

∫ 2π

0

∫ π

0

r3 sinu cos2 u dudv =
4

3
πr3 . �

For the flux integral, too, we may use an alternative notation based on the
language of differential forms; see Appendix A.2.3, p. 529.

9.5 The Theorems of Gauss, Green, and Stokes

The three theorems of the title should be considered multi-dimensional versions
of the formula of integration by parts. Each one of them allows to transform the
integral of an expression involving the differential operators of Sect. 6.3.1 on a two-
or three-dimensional domain, or a surface, into the integral over the boundary of
an expression without derivatives.

The importance of such results is paramount, both from the theoretical point
of view and in relationship to applications. They typically manifest themselves,
for example, when one formulates a law of Physics (e.g., the conservation of mass
or energy) in mathematical language (a PDE); but they may also play a role in
determining the conditions that guarantee the solvability of said equations (exist-
ence and uniqueness of solutions); at last, several numerical techniques for solving
equations (such as the finite-volume method and the finite-element method) are
implemented by using one of the theorems.

At a more immediate level, these results enable to simplify an integral, and
crop up when examining special vector fields, like conservatives fields.

We start by discussing a class of open sets and surfaces, that we will call
admissible, for which the theorems hold. A first, basic study of Sects. 9.5.2 - 9.5.4
does not require such level of detail.
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Figure 9.5. Unit tangent to a portion of the Jordan arc Γ , and unit normal rotated
by π/2

9.5.1 Open sets, admissible surfaces and boundaries

Open sets in the plane. Let Γ ⊂ R2 be a piecewise-regular Jordan arc with a
given orientation. The unit tangent vector t = t1i+ t2j exists at all points P of Γ ,
with the exception of a finite number. At P the normal direction v to Γ (orthogonal
to t) is thus well defined. In particular, the unit vector n = n1i+n2j = t2i−t1j to
Γ at P is obtained rotating t clockwise by π/2 (Fig. 9.5); otherwise said, identifying
n and t with n+ 0k and t+ 0k in R3 makes the triple (n, t,k) right-handed, for
(n∧t) ·k = 1. (Notice that the unit vector n might not coincide with the principal
normal of (6.22), whose orientation varies with the curve’s convexity; at any rate
the two vectors clearly differ by a sign, at most.) Furthermore, Γ separates the
region inside Γ from the external region, by virtue of Jordan’s Curve Theorem 4.33.

Definition 9.25 We call a bounded open set Ω ⊂ R2 G-admissible if the
following hold:

i) the boundary ∂Ω is a finite union of piecewise-regular, pairwise-disjoint
Jordan arcs Γ1, . . . , ΓK ;

ii) Ω is entirely contained either inside, or outside, each Γk.

Each point P ∈ ∂Ω will belong to one, and one only, Jordan arc Γk, so there
will be (save for a finite number of points) a unit normal n to Γk at P , that
is chosen to point outwards Ω (precisely, all points Q = P + εn, with ε > 0
sufficiently small, lie outside Ω). We will say n is the outgoing unit normal to
∂Ω, or for short, the outgoing normal of ∂Ω.

The choice of the outward-pointing orientation induces an orientation on the
boundary ∂Ω. In fact, on every arc Γk we will fix the orientation so that, if t denotes
the tangent vector, the frame (n, t,k) is oriented positively. Intuitively, one could
say that a three-dimensional observer standing as k and walking along
Γk will see Ω on his left (Fig. 9.6). We shall call this the positive orientation
of ∂Ω (and the opposite one negative).
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n
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t

Ω

Figure 9.6. A G-admissible open set in the plane

Open sets in space. The whole discussion on two-dimensionalG-admissible open
sets extends easily to space. For this, we recall that every closed and orientable
surface divides space in a region enclosed by the surface and one outside it (The-
orem 6.42).

Definition 9.26 We call a bounded open set Ω ⊂ R3 G-admissible if:

i) its boundary ∂Ω is the union of a finite number of pairwise-disjoint sur-
faces Σ1, . . . , ΣK ;

ii) each Σk is piecewise regular, simple, orientable and closed;

iii)Ω lies entirely inside or outside every surface Σk.

For a given G-admissible open set there is a well-defined outgoing normal n
to ∂Ω, which will coincide with the normal to the surface Σk oriented from the
inside towards the outside of Ω (Fig. 9.7).

Here are some examples of G-admissible open sets.

Examples 9.27

i) The inside of the elementary solids (e.g., parallelepipeds, polyhedra, cylinders,
cones, spheres), and of any regular deformation of these, are G-admissible.

ii) We say an open bounded set Ω ⊂ R3 is regular and normal for z in case
Ω is normal for z as in Definition 8.27,

Ω =
{
(x, y, z) ∈ R3 : (x, y) ∈ D,α (x, y) < z < β(x, y)

}
,

where D is open in R2 with boundary ∂D a piecewise-regular Jordan arc, and
α,β are C1 maps on D. Such an open set is G-admissible.
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Figure 9.7. A G-admissible open set in R3 (with K = 1)

The boundary of Ω consists of a single surface Σ1, piecewise regular, normal,
orientable and closed; in fact, we can decompose Σ1 = Σβ ∪Σα ∪Σ�, where

Σβ =
{(

x, y,β (x, y)
) ∈ R3 : (x, y) ∈ D

}
,

Σα =
{(

x, y,α (x, y)
) ∈ R3 : (x, y) ∈ D

}
,

Σ� =
{
(x, y, z) ∈ R3 : (x, y) ∈ ∂D,α (x, y) ≤ z ≤ β(x, y)

}
.

The outgoing unit normal nβ to Σβ is obtained by normalising

νβ(x, y) = −∂β

∂x
(x, y) i − ∂β

∂y
(x, y) j + k ,

Σβ being a local graph (see Example 6.36, i)).
Similarly, the outgoing unit normal nα to Σα is the unit vector corresponding
to

να(x, y) =
∂α

∂x
(x, y) i +

∂α

∂y
(x, y) j − k .

The outgoing normal n� to Σ� is

n = n∂D + 0k ,

where n∂D is the outgoing unit normal (in two dimensions) of ∂D.
Regular and normal sets for x or y are defined in the same way.

iii) Let us see how to generalise the above situation. The open sets Ω1, . . . , ΩK

form a partition of an open set Ω if the Ωk are pairwise disjoint and the union
of their closures coincides with the closure of Ω:

Ω =
K⋃

k=1

Ωk with Ωh ∩Ωk = ∅ if h �= k .

We then say an open bounded set Ω of R3 is piecewise regular and normal
for xi (i = 1, 2, 3) if it admits a partition into open, regular, normal sets for xi

(see Fig. 9.8 for the two-dimensional picture). Such Ω is G-admissible. �
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Ω1

Ω2

Ω3

Ω4

Ω5

Ω6

Figure 9.8. Partition of Ω ⊂ R2 into the union of normal sets for y

Compact surfaces. Henceforth Σ will denote a piecewise-regular, normal and
orientable compact surface as of Sect. 6.7.4; let Σk, k = 1, . . . ,K, be its faces,
each of which is normal, regular and compact.

The notion of S-admissible compact surfaces is relevant in view of Stokes’
Theorem.

Definition 9.28 We call S-admissible a compact, piecewise-regular, nor-
mal, orientable surface Σ whose faces Σk, k = 1, . . . ,K, can be parametrised
by maps σk : Rk → Σk where Rk = Ωk is the closure of a G-admissible open
set Ωk in the plane.

Given such an S-admissible, compact surface Σ, we will assume to have fixed
one orientation by choosing a normal n to Σ. On each face Σk, n coincides with
one of the unit normals to Σk, say nk. Without loss of generality we may suppose
nk is the unit normal associated to the parametrisation σk, see Definition 6.35.
(If not, it is enough to swap σk with σ̃k on R̃k = {(u, v) ∈ R2 : (−u, v) ∈ Rk}
given by σ̃k(u, v) = (−u, v), whose unit normal is opposite to that of σk.)

By compactness, the unit normal n is defined right up to the boundary of Σ
(with the exception of finitely many points, at most). For this reason we can choose
an orientation on ∂Σ. Roughly speaking, the positive orientation is given by
the walking direction of an ideal observer standing as n that proceeds
along the boundary and keeps the surface at his left.

A more accurate definition requires a little extra work. Every point P belonging
to ∂Σ, except for a finite number, lies on the boundary of exactly one face Σk

(Fig. 9.9); moreover, around P the boundary ∂Σk is a regular arc Γk in R3, given by
the image under σk of a regular arcΔk in R2 contained in the boundary of a region
Rk. In other terms, Δk = {γk(t) : t ∈ Ik}, where γk is the parametrisation of the
Jordan arc containing Δk, and correspondingly Γk = {ηk(t) = σk

(
γk(t)

)
: t ∈ Ik};

the point P ∈ Γk will be image under σk of a point p0 ∈ Δk identified by t = t0,
hence P = σk(p0) = σk

(
γk(t0)

)
= ηk(t0). To the (column) vector τ = γ′

k(t0),
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Figure 9.9. The positive orientation of a compact surface’s boundary

tangent to Δk at p0, corresponds the (column) vector

dηk

dt
(t0) = Jσk(p0)γ

′
k(t0)

(recall the chain rule), tangent to Γk at P . Let t be the corresponding unit vector.
Then, if we assume that γk induces the positive orientation on the Jordan arc
where Δk lies, we will say the orientation of the arc Γk ⊂ ∂Σ induced by
the unit vector t is positive. We can say the same in the following way. Let Π
be the tangent plane to Σ at P that contains t, and denote by g the unit vector
orthogonal to t, lying on Π and pointing outside Σ; then the positive orientation
of ∂Σ is the one rendering (g, t,n) a positively-oriented triple (see again Fig. 9.9).

Example 9.29

Suppose Σ is given by

Σ = {(x, y, z) ∈ R3 : (x, y) ∈ R, z = ϕ(x, y)} , (9.15)

where R is a closed, bounded region of the plane, the boundary ∂R is a regular
Jordan arc Γ parametrised by γ : I → Γ , and ϕ is a C1 map on the open set A
containing R; let Ω indicate the region inside Γ .
The surface Σ is thus compact, S-admissible and parametrised by σ : R → Σ,
σ(x, y) =

(
x, y,ϕ (x, y)

)
. The corresponding unit normal is

n =
ν

‖ν‖ , where ν = −ϕxi− ϕyj + k . (9.16)

If γ parametrises Γ with positive orientation (counter-clockwise), also the bound-
ary

∂Σ =
{
η(t) =

(
γ1(t), γ2(t), ϕ(γ1(t), γ2(t)

)
: t ∈ I

}
will be positively oriented, that is to say, Σ lies constantly on its left.
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The corresponding unit tangent to ∂Σ is t = η′

‖η′‖ , where

η′(t) =
(
γ′
1(t), γ

′
2(t), ϕx(γ(t))γ

′
1(t) + ϕy(γ(t))γ

′
2(t)
)
. (9.17)

�

9.5.2 Divergence Theorem

The theorem in question asserts that under suitable hypotheses the integral of a
field’s divergence over an open bounded set of Rn is the flux integral of the field
across the boundary: letting Ω denote the open set and n the outward normal to
the boundary ∂Ω, we have ∫

Ω

div f =

∫
∂Ω

f · n . (9.18)

We held back on purpose from making precise hypotheses on Ω and f , as
multiple possibilities exist. The theorem’s proofs may be sensibly simplified by
sufficiently restrictive assumptions, at the cost of diminishing its far-reaching im-
pact. Finding ‘minimal’ hypotheses for its validity is a task beyond the scope of
our study.

In the sequel the Divergence Theorem will be stated under the assumption that
the domain Ω be G-admissible, as discussed in Sect. 9.5.1; far from being the most
general, our statement will hold nonetheless in the majority of cases of interest.
The reader that wishes to skip the details might think of a G-admissible set as
an open bounded set whose boundary is made of finitely many graphs of regular
maps, locally viewing the open set on the same side. The outward normal of the
open set will be the outward normal of each graph.

Let us begin in dimension three, by the following preparatory, but relevant
irrespectively, result. The proof is available in Appendix A.2.2, p. 524, under more
stringent, but still significant, assumptions on the domain. Hereafter, Cartesian
coordinates will be equivalently denoted by x1, x2, x3 or by x, y, z.

Proposition 9.30 Let the open set Ω ⊂ R3 be G-admissible, and assume

f ∈ C0(Ω) with ∂f

∂xi
∈ C0(Ω), i ∈ {1, 2, 3}. Then
∫
Ω

∂f

∂xi
dxdy dz =

∫
∂Ω

fni dσ ,

where ni is the ith component of the outward normal to ∂Ω.

Proposition 9.30 is the most straightforward multi-dimensional generalisation
of the recipe for integrating by parts on a bounded real interval, as we mentioned
in the chapter’s introduction. Its importance is cardinal, because the Divergence
Theorems and Green’s Theorem descend easily from it. Let us see the first of these
consequences.
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Theorem 9.31 (Divergence Theorem of Gauss) Let Ω ⊂ R3 be a G-
admissible open set, n the outward normal to ∂Ω. For any vector field f ∈(C1(Ω))3, ∫

Ω

div f dxdy dz =

∫
∂Ω

f · n dσ . (9.19)

Proof. Each component fi of f fulfills the assumptions of the previous proposition,
so ∫

Ω

∂fi
∂xi

dxdy dz =

∫
∂Ω

fini dσ for i = 1, 2, 3 .

Summing over i proves the claim. �

There is actually a version of the Divergence Theorem in every dimension
n ≥ 2. We will only show how the two-dimensional form below is a consequence
of the three-dimensional one; for this we shall use a trick.

Theorem 9.32 Let the open set Ω ⊂ R2 be G-admissible and the normal n

to ∂Ω point outwards. Then for any vector field f ∈ (C1(Ω))2∫
Ω

div f dxdy =

∫
∂Ω

f · n dγ . (9.20)

Proof. Define the open set Q = Ω × (0, 1) ⊂ R3, which is G-admissible (see

Fig. 9.10); let Φ = f +0k ∈ (C1(Ω))3, a vector field constant with respect
to z for which divΦ = div f . Then∫

Ω

div f dxdy =

∫ 1

0

∫
Ω

div f dxdy dz =

∫
Q

divΦ dxdy dz .

On the other hand, if N is the outward normal to ∂Q, it is easily seen that
f ·n = Φ ·N on ∂Ω× (0, 1), whereas Φ ·N = 0 on Ω×{0} and Ω×{1}.

 

 

 

 

 

 

 

 

Ω

Q

x

y

z

Figure 9.10. From the two-dimensional Ω to the three-dimensional Q
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Therefore∫
∂Ω

f · n dγ =

∫ 1

0

∫
∂Ω

f · n dγ =

∫
∂Ω×(0,1)

Φ ·N dσ =

∫
∂Q

Φ ·N dσ .

The result now follows by applying the Divergence Theorem to the field
Φ on Q. �

Example 9.33

Let us compute the flux of f(x, y, z) = 2i− 5j + 3k through the lateral surface
Σ of the solid Ω defined by

x2 + y2 < 9− z , 0 < z < 8 .

First, ∂Ω = Σ ∪B0 ∪B1, where B0 is the circle of centre the origin and radius 3
on the plane z = 0, while B1 is the circle with radius 1 and centre in the origin
of the plane z = 8. Since divf = 0, the Divergence Theorem implies

0 =

∫
Ω

div f dxdy dz =

∫
∂Ω

f · n =

∫
Σ

f · n+

∫
B0

f · n+

∫
B1

f · n .

But as∫
B0

f · n =

∫
B0

(−3) = −27π and

∫
B1

f · n =

∫
B1

3 = 3π ,

we conclude that ∫
Σ

f · n = 24π . �

9.5.3 Green’s Theorem

Other important facts ensue from Proposition 9.30. Let Ω ⊂ R3 be a G-admissible
open set and f a C1 vector field on Ω. As we know, the first component of the curl
of f is

(curl f)1 =
∂f3
∂y

− ∂f2
∂z

.

Therefore integrating over Ω and using the proposition repeatedly, we obtain∫
Ω

(curl f)1 dxdy dz =

∫
Ω

(∂f3
∂y

− ∂f2
∂z

)
dxdy dz =

∫
∂Ω

(n ∧ f)1 dσ .

Identities of this kind hold for the other components of the curl of f . Altogether
we then have the following result, that we might call Curl Theorem.

Theorem 9.34 Let Ω ⊂ R3 be open, G-admissible, and n the outward nor-

mal to ∂Ω. Then, for any vector field f ∈ (C1(Ω))3, we have∫
Ω

curl f dxdy dz =

∫
∂Ω

n ∧ f dσ . (9.21)
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Figure 9.11. Outward normal vector and positive orientation of ∂Ω

If we write the curl as ∇ ∧ f , the formula can be remembered as follows: the
integral over Ω becomes an integral on ∂Ω and the vector n takes the place of ∇.

As we show in the online material, Green’s Theorem should be considered a
two-dimensional version of the above, and can be easily deduced with the trick
used for Theorem 9.32.

One last remark is in order in the run up to Green’s Theorem. Let Ω ⊂ R2 be
open and G-admissible. If n = n1i + n2j is the outward normal to ∂Ω, the unit
vector t = −n2i+ n1j is tangent to ∂Ω and oriented along the positive direction
of the boundary: a three-dimensional observer standing as k and walking along
∂Ω will see Ω constantly on his left (Fig. 9.11). Now recall that given a field

f = f1i+ f2j ∈
(C1(Ω))2, we defined in (6.5) the function curlf =

∂f2
∂x

− ∂f1
∂y

.

Finally everything is in place for the statement, whose proof may be found in
Appendix A.2.2, p. 525.

Theorem 9.35 (Green) Let Ω ⊂ R2 be a G-admissible open set whose
boundary ∂Ω is positively oriented. Take a vector field f = f1i + f2j in(C1(Ω))2. Then ∫

Ω

(∂f2
∂x

− ∂f1
∂y

)
dxdy =

∮
∂Ω

f · τ . (9.22)

The theorem can be successfully employed to reduce the computation of the
area of a domain in the plane to a path integral. FixΩ ⊂ R2 open andG-admissible
as in the theorem. Then

area(Ω) =

∮
∂Ω

1

2
(−yi+ xj) · τ . (9.23)
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In fact, f(x, y) = −yi+ xj has constant curl f = 2, so Green’s Theorem gives∮
∂Ω

f · τ = 2

∫
Ω

dxdy ,

whence (9.23).
But notice that any vector field with constant curl on Ω may be used to obtain

other expressions for the area of Ω, like

area(Ω) =

∮
∂Ω

(−y)i · τ =

∮
∂Ω

xj · τ .

Example 9.36

Let us determine the area of the elliptical region E = {(x, y) ∈ R2 : x2

a2 +
y2

b2 ≤ 1}.
We may parametrise the boundary by γ(t) = a cos t i+ b sin t j, t ∈ [0, 2π]. Then

area(E) =
1

2

∫ 2π

0

(ab sin2 t+ ab cos2 t) dt =
1

2
ab

∫ 2π

0

dt = πab . �

9.5.4 Stokes’ Theorem

We discuss Stokes’ Theorem for a rather large class of surfaces, that is S-admissible
compact surfaces, introduced with Definition 9.28. Eschewing the formal definition,
the reader may think of an S-admissible compact surface as the union of finitely
many regular local graphs forming an orientable and simple compact surface. With
a given crossing direction fixed, we shall say the boundary is oriented positively if
an observer standing as the normal and advancing along the boundary, views the
surface on the left.

First of all we re-phrase Green’s Theorem in an equivalent way, the advantage
being to understand it now as a special case of Stokes’ Theorem. We can identify
the closure of Ω, in R2, with the compact surface Σ = Ω×{0} in R3 (see Fig. 9.12);
the latter admits the trivial parametrisation σ : Ω → Σ, σ(u, v) = (u, v, 0), and
is obviously regular, simple and orientable, hence S-admissible. The boundary is
∂Σ = ∂Ω×{0}. Fix as crossing direction ofΣ the one given by the z-axis: by calling
n the unit normal, we have n = k. Furthermore, the positive orientation on ∂Ω
coincides patently with the positive orientation of ∂Σ. The last piece of notation
is the vector field Φ = f + 0k (constant in z), for which curl f = (curlΦ )3 =
(curlΦ ) · n; Equation (9.22) then becomes∫

Σ

(curlΦ ) · n =

∮
∂Σ

Φ · τ ,

which – as we shall see – is precisely what Stokes’ Theorem claims.
We are then ready to state Stokes’ Theorem in full generality; the proof is

available in Appendix A.2.2, p. 526, in the case the faces are sufficiently regular
local graphs.
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Figure 9.12. Green’s Theorem as a special case of Stokes’ Theorem

Theorem 9.37 (Stokes) Let Σ ⊂ R3 be an S-admissible compact surface
oriented by the unit normal n; correspondingly, let the boundary ∂Σ be ori-
ented positively. Suppose the vector field f , defined on an open set A ⊆ R3

containing Σ, is such that f ∈ (C1(A))3. Then∫
Σ

(curl f) · n =

∮
∂Σ

f · τ . (9.24)

In other words, the flux of the curl of f across the surface equals the path
integral of f along the surface’s (closed) boundary.

Example 9.38

We use Stokes’ Theorem to tackle Example 9.33 in an alternative way. The idea
is to write f = 2i − 5j + 3k as f = curlΦ . Since the components of f are
constant, it is natural to look for a Φ of the form

Φ(x, y, z) = (α1x+ α2y + α3z)i+ (β1x+ β2y + β3z)j + (γ1x+ γ2y + γ3z)k ,
so

curlΦ = (γ2 − β3)i + (α3 − γ1)j + (β1 − α2)k .

Then γ2 − β3 = 2, α3 − γ1 = −5, β1 − α2 = 3. A solution is then Φ(x, y, z) =
−5zi+ 3xj + 2yk. (Notice that the existence of a field Φ such that f = curlΦ
is warranted by Sect. 6.3.1, for divf = 0 and Ω is convex.) By Stokes’ Theorem,∫

Σ

f · n =

∫
Σ

curlΦ · n =

∫
∂Σ

Φ · τ .

We know ∂Σ = ∂B0 ∪ ∂B1, see Example 9.33, where the circle ∂B0 is oriented
clockwise, while ∂B1 counter-clockwise.
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Then∫
B0

Φ · τ =

∫ 2π

0

(0i+ 9 cos t j + 6 sin tk) · (3 cos t i+ 3 sin t j + 0k) dt

= 27

∫ 2π

0

cos2 t dt = 27π ,∫
B1

Φ · τ = −
∫ 2π

0

(−40i+ 3 cos t j + 2 sin tk) · (cos t i+ sin t j + 0k) dt

= 40

∫ 2π

0

cos t dt− 3

∫ 2π

0

cos2 t dt = −3π ,

so eventually ∫
∂Σ

f · n = 24π . �

9.6 Conservative fields and potentials

In Sect. 6.3.1, Definition 6.10, we introduced the notion of a conservative field on
an open set Ω of Rn as a field f that is the gradient of a map ϕ, called the potential
of f

f = gradϕ , on Ω .

Path integrals of conservative fields enjoy very special properties. The first one
we encounter is in a certain sense the generalisation to curves of the Fundamental
Theorem of Integral Calculus (see in particular Vol. I, Cor. 9.39).

Proposition 9.39 If f = gradϕ is a conservative and continuous field on
Ω ⊆ Rn, then ∫

γ

f · τ = ϕ
(
γ(b)
)− ϕ

(
γ(a)
)

for any (piecewise-)regular arc γ : [a, b]→ Ω.

Proof. It suffices to consider a regular curve. Recalling formula (9.8) for path
integrals, and the chain rule (esp. (6.13)), we have

(gradϕ)
(
γ(t)
) · γ′(t) =

d

dt
ϕ
(
γ(t)
)
,

so ∫
γ

f · τ =

∫ b

a

d

dt
ϕ
(
γ(t)
)
dt =

[
ϕ
(
γ(t)
)]b

a
= ϕ
(
γ(b)
)− ϕ

(
γ(a)
)
.

�
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Corollary 9.40 Under the hypotheses of the previous proposition, let Γ ⊂
Rn be a (piecewise-)regular, simple arc oriented by the tangent vector τ . Then∫

Γ

f · τ = ϕ(P1)− ϕ(P0) ,

where P0 and P1 are the initial and end points of Γ .

An elementary but remarkable use of this corollary is that the potential of a
conservative field is defined up to a constant on each connected component of Ω.
Hence potentials behave somehow similarly to primitives in R, namely:

Proposition 9.41 Two scalar fields ϕ, ψ are potentials of the same continu-
ous vector field f on Ω if and only if on every connected component Ωi of Ω
there is a constant ci such that ϕ− ψ = ci.

Proof. It is clear that if ϕ and ψ differ by a constant on Ωi, then ∇ϕ = ∇ψ.
For the converse, fix P0 arbitrarily in Ωi; given any P ∈ Ωi, let Γ be a
polygonal path starting at P0 and ending at P (such will exist because Ωi

is connected, see Definition 4.13). Then the corollary guarantees∫
Γ

f · τ = ϕ(P ) − ϕ(P0) = ψ(P )− ψ(P0) ,

from which ϕ(P )− ψ(P ) = ϕ(P0)− ψ(P0) = ci. �

Proposition 9.39 and Corollary 9.40 tell us the path integral of a conservat-
ive field depends only on the end points and not on the path itself. Equivalently,
arcs joining the same two points give rise to equal path integrals. In particular,
the integral along a closed arc is zero. That each of these two facts character-
ise conservative fields is of primary importance. To establish this, we need some
notation, also useful for later. If γ : [a, b] → Rn is an arc between P0 = γ(a)
and P1 = γ(b), we shall write γ[P0, P1] to mean that γ goes from P0 to P1. The
opposite arc −γ (see Definition 6.25) joins P1 to P0, i.e., −γ[P1, P0] = γ[P0, P1].
Given γ1 = γ1[P0, P1] and γ2 = γ2[P1, P2], by γ ∼ γ1 + γ2 we will denote any
arc γ with the following property: if γ : [a, b] → Rn, there is a c ∈ (a, b) with
γ|[a,c] ∼ γ1 and γ|[c,b] ∼ γ2. (An example can be easily found using increas-
ing linear maps from [a, c], [c, b] to the domains of γ1, γ2 respectively.) Observe
γ(c) = P1 and γ = γ[P0, P2], so γ connects P0 to P2 passing through P1; moreover,
the traces Γ,Γ 1 and Γ2 satisfy Γ = Γ1 ∪ Γ2. The symbol γ ∼ γ1 − γ2 will stand
for γ ∼ γ1 + (−γ2) whenever γ1 = γ1[P0, P1] and γ2 = γ2[P2, P1]. By the ad-
ditivity of curvilinear integrals, and recalling how they depend upon congruent
parametrisations (9.5), we have∫

γ

f · τ =

∫
γ1

f · τ ±
∫
γ2

f · τ if γ ∼ γ1 ± γ2 . (9.25)
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Now we are in a position to state the result.

Theorem 9.42 If f is a continuous vector field on the open set Ω ⊆ Rn, the
following are equivalent:

i) f is conservative;
ii) for any (piecewise-)regular arcs γ1, γ2 with trace in Ω and common end

points, ∫
γ1

f · τ =

∫
γ2

f · τ ;

iii) for any (piecewise-)regular, closed arc γ with trace in Ω,∮
γ

f · τ = 0 .

Proof. The implication i) ⇒ ii) follows easily from Proposition 9.39 on γ1, γ2

(Fig. 9.13, left). For the converse, we manufacture an explicit potential for
f . Let Ωi denote a connected component of Ω and P0 ∈ Ωi a given point.
For any P ∈ Ωi of coordinates x = (x1, . . . , xn), set

ϕ(x) =

∫
γ

f · τ

where γ = γ[P0, P ] is an arbitrary (piecewise-)regular arc with trace inside
Ωi, joining P0 and P . The definition of ϕ(x) does not depend on the choice
of γ, by ii). We claim that gradϕ = f , and will prove it only for the first
component

∂ϕ

∂x1
(x) = f1(x) .

Let Δx1 �= 0 be an increment such that P + ΔP = x + Δx1e1 still
belongs to Ωi, and call γ[P, P +ΔP ] the curve γ(t) = x+ te1 from P to

P0

P1
γ1

γ2

P0

P P +ΔP

γ[P0, P +ΔP ]
γ[P0, P ]

γ[P, P +ΔP ] = (x+ tΔx)e1

Figure 9.13. Proof of Theorem 9.42



400 9 Integral calculus on curves and surfaces

P + ΔP , with t ∈ [0, Δx1] if Δx1 > 0 and t ∈ [Δx1, 0] if Δx1 < 0. Let
γ[P0, P ] and γ[P0, P +ΔP ] be regular, simple curves from P0 to P and
P +ΔP respectively (Fig. 9.13, right). Then γ[P0, P +ΔP ] ∼ γ[P0, P ] +
γ[P, P +ΔP ], and by (9.25) and (9.8), we have

ϕ(x+Δx1e1)− ϕ(x)

Δx1
=

1

Δx1

(∫
γ[P0,P+ΔP ]

f · τ −
∫
γ[P0,P ]

f · τ
)

=
1

Δx1

∫
γ[P,P+ΔP ]

f · τ =
1

Δx1

∫ Δx1

0

f1(x1 + t, x2, . . . , xn) dt .

The last term is the integral average of the map t �→ f1(x1 + t, x2, . . . , xn)
on the interval between 0 and Δx1, so the continuity of f and the Mean
Value Theorem (Vol. I, Thm. 9.35) force

ϕ(x+Δx1e1)− ϕ(x)

Δx1
= f1(x1 + t̄, x2, . . . , xn)

for a certain t̄ with |t̄| ≤ |Δx1|. The limit for Δx1 → 0 proves the claim.
The equivalence of ii) and iii) is an immediate consequence of (9.25): if
γ1, γ fulfill ii) then each γ ∼ γ1−γ2 satisfies iii), while a γ satisfying iii),
as seen above, is the difference of γ1, γ2 with common end points. �

The question remains of how to characterise conservative fields. A necessary
condition is the following.

Property 9.43 Let f be a C1 vector field on Ω ⊆ Rn. If it is conservative,
we have

∂fi
∂xj

=
∂fj
∂xi

∀i �= j . (9.26)

Proof. Take a potential ϕ for f , so fi =
∂ϕ
∂xi

for i = 1, . . . , n; in particular ϕ ∈
C2(Ω). Then formula (9.26) is nothing but Schwarz’s Theorem 5.17. �

We met this property in Sect. 6.3.1 (Proposition 6.8 for dimension two and Pro-
position 6.7 for dimension three); in fact, it was proven there that a conservative
C1 vector field is necessarily irrotational, curl f = 0, on Ω.

At this juncture one would like to know if, and under which conditions, being
curl-free is also sufficient to be conservative. From now on we shall suppose Ω
is open in R2 or R3. By default we will think in three dimensions, and highlight
a few peculiarities of the two-dimensional situation. Referring to the equivalent
formulation appearing in Theorem 9.42 iii), note that if γ is any regular, simple
arc whose trace Γ is the boundary of a regular and simple compact surface Σ
contained in Ω, Stokes’ Theorem 9.37 makes sure that f irrotational implies
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γ

f · τ =

∫
Σ

curl f · n = 0 .

Nevertheless, not all regular and simple closed arcs Γ in Ω are boundaries of a
regular and simple compact surface Σ in Ω: the shape of Ω might prevent this
from happening. If, for example, Ω is the complement in R3 of the axis z, it is
self-evident that any compact surface having a closed boundary encircling the axis
must also intersect the axis, so it will not be contained entirely in Ω (see Fig. 9.14);
in this circumstance Stokes’ Theorem does not hold. This fact in itself does not
obstruct the vanishing of the circulation of a curl-free field around z; it just says
Stokes’ Theorem does not apply. In spite of that, if we consider the field

f(x, y, z) = − y

x2 + y2
i+

x

x2 + y2
j + 0k

on Ω, undoubtedly curl f = 0 on Ω, whereas∮
Γ

f · τ = 2π

with Γ the counter-clockwise unit circle on the xy-plane centred at the origin. This
is therefore an example (extremely relevant from the physical viewpoint, by the
way, f being the magnetic field generated by a current along a wire on the z-axis)
of an irrotational vector field that is not conservative on Ω.

The discussion suggests to narrow the class of open sets Ω, in such a way that

f curl-free ⇒ f conservative

holds. With this in mind, let us give a definition.

 

 

x
y

z

Σ

Γ

Figure 9.14. A compact surface Σ, with boundary Γ , crossed by the z-axis
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Definition 9.44 An open connected set Ω ⊆ Rn is simply connected if the
trace Γ of any arc in Ω can be deformed with continuity to a point, always
staying within Ω.

More precisely: Ω is simply connected if any closed curve γ : I → Rn belongs to a
one-parameter family of closed curves γs : I → Rn, 0 ≤ s ≤ 1, with the following
properties:

i) the map (t, s) �→ γs(t) from I × [0, 1] to Rn is continuous;
ii) each trace Γs = γs(I) is contained in Ω;
iii) γ1 = γ and γ0 is constant, i.e., Γ0 is a point.

One says γ is homotopic to a point, and the map (t, s) �→ γs(t) is known as
a homotopy.

Simply connectedness can be defined alternatively. For instance, in dimension
2 we may equivalently demand that

• the complement of Ω in R2 is a connected set,

or

• for any Jordan arc γ in Ω, the interior Σi is entirely contained in Ω.

Näıvely, an open connected set in the plane is simply connected if it has no
‘holes’; an (open) annulus is thus not simply connected (see Fig. 9.15, left).

The situation in three dimension is more intricate. The open domain enclosed
by two concentrical spheres is simply connected, whereas an open torus is not
(Fig. 9.15, middle and right).

Likewise, the open set obtained by removing one point from R3 is simply con-
nected, but if we take out a whole line it is not simply connected any longer. It
can be proved that an open connected set Ω in R3 is simply connected if and only
if for any (piecewise-)regular Jordan arc Γ in Ω, there exists a regular compact
surface Σ in Ω that has Γ as boundary.

    

 

 
 

 

Figure 9.15. A simply connected open set (middle) and non-simply connected ones (left
and right)
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Figure 9.16. A closed simple arc (left) bordering a compact surface (right)

The above characterisation leads to the rather-surprising result for which any
curve in space that closes up, even if knotted, is the boundary of a regular compact
surface. This is possible because the surface is not required to be simple; as a matter
of fact its trace may consist of faces intersecting transversely (as in Fig. 9.16).

Returning to the general set-up, there exist geometrical conditions that guar-
antee an open set Ω ⊆ Rn is simply connected. For instance, convex open sets
are simply connected, and the same is true for star-shaped sets; the latter admit
a point P0 ∈ Ω such that the segment P0P from P0 to an arbitrary P ∈ Ω is con-
tained in Ω (see Fig. 9.17). In particular, a convex set is star-shaped with respect
to any of its points.

Finally, here is the awaited characterization of conservative fields; the proof is
given in Appendix A.2.2, p. 527.

Theorem 9.45 Let Ω ⊆ Rn, with n = 2 or 3, be open and simply connected.
A vector field f of class C1 on Ω is conservative if and only if it is curl-free.

A similar result ensures the existence of a potential vector for a field with no
divergence.

Remark 9.46 The concepts and results presented in this section may be equi-
valently expressed by the terminology of differential forms. We refer to Ap-
pendix A.2.3, p. 529, for further details. �

  

  

  

  

P0

P1

P2

Figure 9.17. A star-shaped set for P0
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9.6.1 Computing potentials explicitly

Suppose f is conservative on an open (without loss of generality, connected) set
Ω ⊆ Rn. We wish to find a potential for f , which we already know will be defined
up to a constant. Let us explain two different methods for doing this.

The first method uses the representation seen in Theorems 9.42 and 9.45. To
be precise, fix a point P0 and define the potential at every P ∈ Ω of coordinate x
by

ϕ(x) =

∫
Γ [P0,P ]

f · τ ,

where Γ [P0, P ] ⊂ Ω is a simple and (piecewise-)regular arc from P0 to P . The
idea is to choose the path to make the integral as simple as possible to compute
(recall that the integral is independent of the path, by part ii) of Theorem 9.42).
In many cases, the best option is a polygonal path with segments parallel to the
coordinate axes; if so, over each segment the integrand f · τ depends only on one
component of f .

Example 9.47

Consider the field

f(x, y) =
y√

1 + 2xy
i +

x√
1 + 2xy

j

defined on the open set Ω between the branches of the hyperbola xy = −1/2. It
is not hard to convince oneself that Ω is star-shaped with respect to the origin,
and curl f = 0 on Ω; hence the vector field is conservative. To find a potential,
we may use as path the segment from (0, 0) to P = (x, y) given by γ(t) = (tx, ty),
0 ≤ t ≤ 1. Then

ϕ(x, y) =

∫ 1

0

f
(
γ(t)
) · γ′(t) dt =

∫ 1

0

2xyt√
1 + 2xyt2

dt .

Substituting u = 1 + 2xyt2, so du = 4xyt dt, we have

ϕ(x, y) =

∫ 1+2xy

1

1

2
√
u
du =

[√
u
]1+2xy

1
=
√
1 + 2xy − 1 .

The generic potential of f on Ω will be

ϕ(x, y) =
√
1 + 2xy + c . �

The second method we propose, often easier to use than the previous one,
consists in integrating with respect to the single variables, using one after the
other the relationships

∂ϕ

∂x1
= f1 ,

∂ϕ

∂x2
= f2 , . . . ,

∂ϕ

∂xn
= fn .

We exemplify the procedure in dimension 2 and give an explicit example for di-
mension 3.
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From
∂ϕ

∂x
(x, y) = f1(x, y)

we obtain
ϕ(x, y) = F1(x, y) + ψ1(y) ,

where F1(x, y) is any primitive map of f1(x, y) with respect to x, i.e., it satisfies
∂F1

∂x
(x, y) = f1(x, y), while ψ1(y), for the moment unknown, is the constant of the

previous integration in x, hence depends on y only. To pin down this function, we
differentiate the last displayed equation with respect to y

dψ1

dy
(y) =

∂ϕ

∂y
(x, y)− ∂F1

∂y
(x, y) = f2(x, y)− ∂F1

∂y
(x, y) = g(y) .

Note f2(x, y) − ∂F1

∂y
(x, y) depends only on y, because its x-derivative vanishes

by (9.26), since

∂f2
∂x

(x, y)− ∂

∂y

∂F1

∂x
(x, y) =

∂f2
∂x

(x, y)− ∂f1
∂y

(x, y) = 0 .

Calling G(y) an arbitrary primitive of g(y), we have

ψ1(y) = G(y) + c

whence

ϕ(x, y) = F1(x, y) +G(y) + c .

In higher dimension, successive integrations determine one after the other the
unknown maps ψ1(x2, . . . , xn), ψ2(x3, . . . , xn), . . . , ψn−1(xn) that depend on a de-
creasing number of variables.

Example 9.48

Consider the vector field in R3

f(x, y, z) = 2yz i+ 2z(x+ 3y)j +
(
y(2x+ 3y) + 2z

)
k .

It is straightforward to check curl f = 0, making the field conservative. Integ-
rating

∂ϕ

∂x
(x, y, z) = 2yz

produces ϕ(x, y, z) = 2xyz + ψ1(y, z). Its derivative in y, and
∂ϕ

∂y
(x, y, z) =

2xz + 6yz, tells that
∂ψ1

∂y
(y, z) = 6yz, so

ψ1(y, z) = 3y2z + ψ2(z) .
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Differentiating the latter with respect to z, and recalling
∂ϕ

∂z
(x, y, z) = 2xy +

3y2 + 2z, gives
dψ2

dz
(z) = 2z ,

hence ψ2(z) = z2 + c. In conclusion, all potentials for f are of the form

ϕ(x, y, z) = 2xyz + 3y2z + z2 + c . �

We close the section by calling the attention to a class of conservative fields
for which the potential is particularly easy to find. These are the so-called radial
vector fields,

f(x) = g(‖x‖)x ,

where g = g(r) is a real, continuous function on an interval I of [0,+∞). A field is
radial when at each point P it is collinear with the vectorOP , and its norm depends
merely on the distance of P from the origin. A straightforward computation shows
f is conservative on Ω = {x ∈ Rn : ‖x‖ ∈ I} and gives a potential. Precisely,
define

ϕ(x) = G(‖x‖)

where G = G(r) is an arbitrary primitive map of rg(r) on I. In fact, the chain
rule plus Example 5.3 i), give

∇ϕ(x) = G′(‖x‖) x

‖x‖ = ‖x‖g(‖x‖) x

‖x‖ = f(x) .

For example, f(x) =
x√

1 + ‖x‖2 admits ϕ(x) =
√
1 + ‖x‖2 as potential.

9.7 Exercises

1. Compute the integral of the map

f(x, y, z) =
x2(1 + 8y)√
1 + y + 4x2y

along the arc γ defined by γ(t) = (t, t2, log t) , t ∈ [1, 2].

2. Let Γ be the union of the parabolic arc y = 4 − x2 going from A = (−2, 0)
to C = (2, 0), and the circle x2 + y2 = 4 from C to A. Integrate the function
f(x, y) = x along the closed curve Γ .
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3. Integrate f(x, y) = x+ y along the closed loop Γ , contained in the first quad-
rant, that is union of the segment between O = (0, 0) and A = (1, 0), the

elliptical arc 4x2+ y2 = 4 from A to B = (
√
2
2 ,
√
2) and the segment joining B

to the origin.

4. Compute the integral of f(x, y) =
1

x2 + y2 + 1
along the simple closed arc γ

whose trace is made of the segment from the origin to A = (
√
2, 0), the circular

arc x2 + y2 = 2 from A to B = (1, 1), and the segment from B back to the
origin.

5. Let γ1 : [0,
2
3π]→ R2 be given by γ1(t) = (t cos t, t sin t), and γ2, γ3 paramet-

rise the segments from B = (−π
3 ,

π√
3
) to C = (−π, 0) and from C to A = (0, 0).

Compute the length of γ ∼ γ1 + γ2 + γ3 whose trace is the union Γ of the
traces of γ1, γ2, γ3, and then find the area of the domain inside Γ .

6. Find the centre of mass of the arc Γ , parametrised by γ(t) = et cos t i−et sin t j,
t ∈ [0, π /2], with unit density.

7. Consider the arc γ whose trace Γ is the union of the segment from A =

(2
√
3,−2) to the origin, and the parabolic arc y2 = 2x from (0, 0) to B =

(12k
2, k). Knowing it has unit density, determine k so that the centre of gravity

of Γ belongs to the x-axis.

8. Determine the moment about z of the arc Γ parametrised by γ(t) = t cos t i+

t sin t j + tk, t ∈ [0,
√
2] and having unit density.

9. Integrate the field f(x, y) = (x2, xy) along γ(t) = (t2, t), t ∈ [0, 1].

10. What is the path integral of f(x, y, z) = (z, y, 2x) along the arc γ(t) =
(t, t2, t3), t ∈ [0, 1]?

11. Integrate f(x, y, z) = (2
√
z, x, y) along γ(t) = (− sin t, cos t, t2), t ∈ [0, π

2 ].

12. Compute the integral of f(x, y) = (xy2, x2y) along Γ , the polygonal path
joining A = (0, 1), B = (1, 1), C = (0, 2) and D = (1, 2).

13. Integrate f(x, y) = (0, y) along the following simple closed arc: a segment from

the origin to A = (1, 0), a circle x2+y2 = 1 from A to B = (
√
2
2 ,

√
2
2 ), a segment

from B to the origin.

14. Determine k so that the work done by the force

f(x, y) = (x2 − xy)i+ (y2 − x2)j

along the parabola y2 = 2kx from the origin to P = (k/2, k) equals 9/5.
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15. Compute the work integral of

f(x, y) = (ax2y − sinx)i+ (x3 + y log y)j

along Γ , union of the arcs Γ1, Γ2, Γ3 of respective equations y = x2, y = 1,
x = 0. Determine the parameter a so that the work is zero.

16. Let f(x, y, z) = z(y−2x). Compute the integral of f over the surface σ(u, v) =

(u, v,
√
16− u2 − v2), defined on R = {(u, v) ∈ R2 : u ≤ 0, v ≥ 0, u2 + v2 ≤

16, u2

4 + v2 ≥ 1}.

17. Integrate

f(x, y, z) =
y + 1√

1 + x2

4 + 4y2

over Σ, which is the portion of the elliptical paraboloid z = −x2

4 − y2 above
the plane z = −1.

18. Determine the area of the compact surface Σ, intersection of the surface z =
1
2y

2 with the prism given by the planes x+ y = 4, y − x = 4, y = 0.

19. Compute the area of the portion of surface z =
√
x2 + y2 below the plane

z = 1√
2
(y + 2).

20. Find the moment, about the axis z, of the surface Σ part of the cone z2 =
3(x2 + y2) satisfying 0 ≤ z ≤ 3, y ≥ x (assume unit density).

21. Let R in the zy-plane be the union of

R1 = {(y, z) ∈ R2 : y ≤ 0,
√
1− (y + 1)2 ≤ z ≤

√
4− y2}

and
R2 = {(y, z) ∈ R2 : y ≥ 0, y ≤ z ≤

√
4− y2}.

Find the coordinate xG of the centre of mass for the part of the surface x =√
4− y2 − z2 projecting onto R (assume unit density).

22. Using Green’s Theorem, compute the work done by

f(x, y) = xyi + x4yj

along the closed counter-clockwise loop Γ , union of Γ1, Γ2, Γ3, Γ4 of respective
equations x = y2, y = 1, x2 + y2 = 5, y = 0, (x, y ≥ 0).
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23. Using Green’s Theorem, compute the work done by f(x, y) = x2y2i+ axj, as
the parameter a varies, along the closed counter-clockwise curve Γ , union of
Γ1, Γ2, Γ3 of equations x2 + y2 = 1, x = 1, y = x2 + 1 (x, y ≥ 0).

24. Let Γ be the union of Γ1 parametrised by γ1(t) = (e−(t−π/4) cos t, sin t), t ∈
[0, π /4], and the segments from the origin to the end points of Γ1, A = (eπ/4, 0)
and B = (

√
2/2,

√
2/2). Find the area of the region Ω bounded by Γ .

25. With the aid of the Divergence Theorem, determine the outgoing flux of

f(x, y, z) = (x3 + yz)i+ (xz + y3)j + (xy + z3 + 1)k

across Ω, defined by

x2 + y2 + z2 ≤ 1 , x2 + y2 − z2 ≤ 0 , y ≥ 0 , z ≥ 0 .

26. Find the flux of

f(x, y, z) = (xy2 + z3)i+ (x2 +
1

3
y3)j + 2(x2z +

1

3
z3 + 2)k

leaving the compact surface

x2 + y2 + z2 ≤ 2 , x2 + y2 − z2 ≥ 0 , y ≥ 0 , z ≥ 0 .

27. Using Stokes’ Theorem, compute the integral of

f(x, y, z) = xi + yj + xyk

along the boundary of Σ, intersection of the cylinder x2 + y2 = 4 and the

paraboloid z = x2

9 + y2

4 , oriented so that the normal points toward the z-axis.

28. Given the vector field

f(x, y, z) = (y + z)i+ 2(x+ z)j + 3(x+ y)k

and the sphere x2 + y2+ z2 = 2, find the flux of the curl of f going out of the
portion of sphere above z = y.

29. Verify the field f(x, y, z) = xi− 2yj+3zk is conservative and find a potential
for it.

30. Determine the map g ∈ C∞(R) with g(0) = 0 that makes the vector field

f(x, y) = (y sinx+ xy cosx+ ey)i+
(
g(x) + xey

)
j

conservative. Find a potential for the resulting f .
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31. Consider

f(x, y) =
(g(y)

x
+ cos y

)
i+ (2y log x− x sin y)j .

a) Determine the map g ∈ C∞(R) with g(1) = 1, so that f is conservative.
b) Determine for the field thus obtained the potential ϕ such that ϕ(1, π

2 ) = 0.

32. Consider the field

f(x, y) = (2x log y − y sinx)i +
(g(x)

y
+ cosx

)
j .

a) Determine g ∈ C∞(R) such that g(0) = 1 and making f conservative.
b) For this field find the potential ϕ such that ϕ(π3 , 1) = 0.

33. Consider

f(x, y, z) = (3y + cos(x+ z2))i + (3x+ y + g(z))j + (y + 2z cos(x + z2))k .

a) Determine the map g ∈ C∞(R) so that g(1) = 0 and f is conservative.
b) For the above field determine the potential ϕ with ϕ(0, 0, 0) = 0.

34. Determine the value of λ such that

f(x, y, z) = (x2 + 5λy + 3yz)i+ (5x+ 3λxz − 2)j + ((2 + λ)xy − 4z)k

is conservative. Then find the potential ϕ with ϕ(3, 1,−2) = 0.

9.7.1 Solutions

1. For t ∈ [1, 2] we have f
(
γ(t)
)
=

t2(1 + 8t2)√
1 + t2 + 4t4

, and γ′(t) =
(
1, 2t, 1t

)
, so

∫
γ

f =

∫ 2

1

t2(1 + 8t2)√
1 + t2 + 4t4

1

t

√
1 + t2 + 4t4 dt =

∫ 2

1

t(1 + 8t2) dt =
63

2
.

2. 0.

3. Let us compute first the coordinates of B, in the first quadrant, intersection

of the line y = 2x and the ellipse 4x2 + y2 = 4, which are B = (
√
2
2 ,
√
2). The

piecewise-regular arc γ can be divided in three regular arcs γ1, γ2, γ3 of respective
traces the segment OA, the elliptical arc AB and the segment BO. We can define
arcs δ1, δ2, δ3 congruent to γ1, γ2, γ3 as follows:

δ1(t) = (t, 0) 0 ≤ t ≤ 1 , δ1 = γ1 ,

δ2(t) = (cos t, 2 sin t) 0 ≤ t ≤ π

4
, δ2 ∼ γ2 ,

δ3(t) = (t, 2t) 0 ≤ t ≤
√
2

2
, δ3 ∼ −γ3 ,
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so that ∫
γ

f =

∫
δ1

f +

∫
δ2

f +

∫
δ3

f .

Since

f
(
δ1(t)

)
= t , f

(
δ2(t)

)
= cos t+ 2 sin t , f

(
δ3(t)

)
= 3t ,

δ′1(t) = (1, 0) , δ′1(t) = (− sin t, 2 cos t) , δ′3(t) = (1, 2) ,

‖δ′1(t)‖ = 1 , ‖δ′2(t)‖ =
√
sin2 t+ 4 cos2 t , ‖δ′3(t)‖ =

√
5 ,

it follows∫
γ

f =

∫ 1

0

t dt+

∫ π/4

0

(
cos t+ 2 sin t

)√
sin2 t+ 4 cos2 t dt+

∫ √
2/2

0

3
√
5t dt

=
1

2
+
3

4

√
5 +

∫ π/4

0

cos t
√
4− 3 sin2 t dt+ 2

∫ π/4

0

sin t
√
1 + 3 cos2 tdt

=
1

2
+
3

4

√
5 + I1 + I2 .

For I1, set u =
√
3 sin t, so du =

√
3 cos t dt, and obtain

I1 =
1√
3

∫ √
6/2

0

√
4− u2 du .

Substituting v = u
2 we have

I1 =
1√
3

[
1

2
u
√
4− u2 + 2 arcsin

u

2

]√6/2

0

=

√
5

4
+

2√
3
arcsin

√
6

4
.

Similarly for I2, we set u =
√
3 cos t, so du = −√3 sin t dt and

I2 = − 2√
3

∫ √
6/2

√
3

√
1 + u2 du .

Then

I2 = − 1√
3

[
u
√
1 + u2 + log

(√
1 + u2 + u

)]√6/2

√
3

= −
√
5

2
+ 2 +

1√
3

(
log(2 +

√
3)− log

√
10 +

√
6

2

)
.

4. 2 arctan
√
2 +

√
2

12 π.

5. Since �(γ) = �(γ1) + �(γ2) + �(γ3), we compute the lengths separately. The last

two are elementary, �(γ2) =
√
7
3 π and �(γ3) = π. As for the first one,
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Ω1

A

B

x

y

C

π√
3

γ1

γ2

γ3

Figure 9.18. The arc γ and the region Ω1 relative to Exercise 5

�(γ1) =

∫ 2/3π

0

‖γ′(t)‖ dt =
∫ 2/3π

0

√
1 + t2 dt

=
1

3
π

√
1 +

4

9
π2 +

1

2
log
(2
3
π +

√
1 +

4

9
π2
)
.

The area is then the sum of the triangle ABC and the set Ω1 of Fig. 9.18. We

know that area(ABC) = π2

2
√
3
. As Ω1 reads, in polar coordinates,

Ω′
1 =
{
(r,θ ) : 0 ≤ r ≤ θ, 0 ≤ θ ≤ 2

3
π
}
,

we have

area(Ω1) =

∫
Ω1

dxdy =

∫ (2/3)π

0

∫ θ

0

r dr dθ =
4

81
π3 .

6. We have

xG =
eπ − 2

5(eπ/2 − 1)
, yG =

2eπ + 1

5(1− eπ/2)
.

7. The parameter k is fixed by imposing yG = 0. At the same time,

yG =

∫
γ1

y +

∫
γ2

y

where γ1(t) = (−√3t, t), t ∈ [−2, 0] and γ2(t) = (12 t
2, t), t ∈ [0, k]. Then

yG =

∫ 0

−2

2t dt+

∫ k

0

t
√
1 + t2 dt =

1

3

(
(1 + k2)3/2 − 13

)
;

the latter is zero when k =
√
132/3 − 1.

8. As γ′(t) = (cos t− t sin t)i+ (sin t+ t cos t)j + k and ‖γ′(t)‖2 = 2+ t2, we have

Iz =

∫
Γ

(x2 + y2) =

∫ √
2

0

t2
√
2 + t2 dt =

3

2

√
2− 1

2
log(1 +

√
2) .
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9. From f
(
γ(t)
)
= (t4, t3) and γ′(t) = (2t, 1) follows∫

γ

f · dP =

∫ 1

0

(t4, t3) · (2t, 1) dt =
∫ 1

0

(2t5 + t3) dt =
7

12
.

10.
9

4
; 11.

π

4
.

12. The piecewise-regular arc γ restricts to three regular arcs γ1, γ2, γ3, whose
traces are the segments AB, BC, CD. We can define arcs δ1, δ2 and δ3 congruent
to γ1, γ2, γ3:

δ1(t) = (t, 1) 0 ≤ t ≤ 1 , δ1 ∼ γ1 ,

δ2(t) = (t, 2− t) 0 ≤ t ≤ 1 , δ2 ∼ −γ2 ,

δ3(t) = (t, 2) 0 ≤ t ≤ 1 , δ3 ∼ γ3 ,

Then from

f
(
δ1(t)

)
= (t, t2) , f

(
δ2(t)

)
=
(
t(2− t)2, t2(2− t)

)
, f

(
δ3(t)

)
= (4t, 2t2)

δ′1(t) = (1, 0) , δ′2(t) = (1,−1) , δ′3(t) = (1, 0) ,

we have∫
γ

f · dP =

∫
δ1

f · dP −
∫
δ2

f · dP +

∫
δ3

f · dP

=

∫ 1

0

(t, t2) · (1, 0) dt−
∫ 1

0

(
t(2 − t)2, t2(2 − t)

) · (1,−1) dt
+

∫ 1

0

(4t, 2t2) · (1, 0) dt = 2 .

13. 0.

14. Let us impose ∫
γ

f · τ =
9

5

where γ(t) =
(

1
2k t

2, t
)
, t ∈ [0, k] (note k �= 0, otherwise the integral is zero). Since

γ′(t) =
(
1
k t, 1
)
,∫

γ

f · τ =

∫ k

0

( t5

4k3
− t4

2k2
+ t2 − t4

4k2

)
dt =

9

40
k3 .

Therefore 9
40k

3 = 9
5 , so k = 2.

15. The work integral equals L = 2
5 − 2

15a, which vanishes if a = 3.

16. The surface is the graph of ϕ(u, v) =
√
16− u2 − v2, so (6.49) gives
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D1

D2

−4 −2

1

4

u

v

Figure 9.19. The regions D1 and D2 relative to Exercise 16

‖ν(u, v)‖ =
√
1 +
(∂ϕ
∂u

)2
+
(∂ϕ
∂v

)2
=

4√
16− u2 − v2

.

Therefore ∫
σ

f =

∫
R

√
16− u2 − v2(v − 2u)

4√
16− u2 − v2

du dv

= 4

∫
R
(v − 2u) du dv .

The region R is in the second quadrant and lies between the circle with radius
4, centre the origin, and the ellipse with semi-axes a = 2, b = 1 (Fig. 9.19).
Integrating in v first and dividing the domain into D1 and D2, we find∫

σ

f = 4
(∫ −2

−4

∫ √
16−u2

0

(v − 2u) dv du+

∫ 0

−2

∫ √
16−u2

√
1−u2

4

(v − 2u) dv du
)
=

728

3
.

17. A parametrisation for Σ is (Fig. 9.20)

σ(u, v) = (u, v,−u2

4
− v2) , (u, v) ∈ R = {(u, v) ∈ R2 :

u2

4
+ v2 = 1} .

Then ‖ν(u, v)‖2 = 1 + u2

4 + 4v2 and∫
Σ

f =

∫
R
(v + 1) du dv .

Passing to elliptical polar coordinates,∫
Σ

f = 2

∫ 2π

0

∫ 1

0

(r sin θ + 1)r dr dθ = 2π .
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Figure 9.20. The region R (left) and the surface Σ (right) relative to Exercise 17

18. Parametrise Σ by

σ(u, v) =
(
u, v,

1

2
v2
)
, (u, v) ∈ R ,

where R is the triangle in the uv-plane of vertices (−4, 0), (4, 0), (0, 4) (Fig. 9.21).
In this way ‖ν(u, v)‖ = √

1 + v2, so

area(Σ) =

∫
Σ

1 =

∫
R

√
1 + v2 du dv =

∫ 4

0

( ∫ 4−v

v−4

√
1 + v2 du

)
dv

=
14

3

√
17 + 4 log(4 +

√
17) +

2

3
.

19. area(Σ) = 8π.

20. Using cylindrical coordinates Σ reads

σ(r,θ ) = (r, θ,
√
3r) , (r,θ ) ∈ R = {(r,θ ) : 0 ≤ r ≤

√
3,

π

4
≤ θ ≤ 5

4
π}

(see Fig. 9.22). Then ‖ν(r,θ )‖ = 2 and

−4 4

4

u

v

v = 4− uv = 4 + u R

 

 

 

 

x

y

z

−4
4

4

8

Figure 9.21. The region R (left) and the surface Σ (right) relative to Exercise 18
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u

v

√
3

u = v

R

 

 

 

 

 

 

 

 

x
y

z

3

y = x

Figure 9.22. The region R (left) and the surface Σ (right) relative to Exercise 20

∫
Σ

(x2 + y2) = 2

∫
R
r2r dr dθ = 2

∫ (5/4)π

π/4

∫ √
3

0

r3 dr dθ =
9

2
π .

21. xG = 2π
π+4 .

22. The arc is shown in Fig. 9.23. The work equals L =
∮
Γ
f · τ , but also

L =

∫
Ω

(∂f2
∂x

− ∂f1
∂y

)
dxdy

by Green’s Theorem, with Ω inside Γ and f1(x, y) = xy, f2(x, y) = x4y. Then if
we integrate in x first,

L =

∫ 1

0

∫ √5−y2

y2

(4x3y − x) dxdy =
47

6
.

Ω

0 1

1

x

y

2
√
3

γ1

γ2

γ3

γ4

x =
√

5− y2x = y2

Figure 9.23. The arc Γ and the region Ω relative to Exercise 22
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Ω

1

1

2

x

y

γ1

γ2

γ3

y = 1 + x2

y =
√
1− x2

Figure 9.24. The arc Γ and the region Ω relative to Exercise 23

23. The arc Γ is shown in Fig. 9.24. Green’s Theorem implies the work is

L =

∮
Γ

f · τ =

∫
Ω

(a− 2x2y) dxdy ,

where Ω is inside Γ . Integrating vertically,

L =

∫ 1

0

∫ x2+1

√
1−x2

(a− 2x2y) dy dx =

∫ 1

0

[
ay − x2y2

]y=x2+1

y=
√
1−x2

dx = a
(4
3
− π

4

)
− 26

35
.

24. We use (9.23) on the arc Γ (see Fig. 9.25). The integral along OA and OB is
zero; since γ′

1(t) = (−e−(t−π/4)(cos t+ sin t), cos t), it follows

area(Ω) =
1

2

∫ π/4

0

(
sin t(cos t+ sin t) + cos2 t

)
e−(t−π/4) dt = −11

20
+
3

5
eπ/4 .

Ω

A

B

0 x

y

γ1

Figure 9.25. The arc Γ and the region Ω relative to Exercise 24
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25. The Divergence Theorem tells∫
∂Ω

f · n =

∫
Ω

div f =

∫
Ω

3(x2 + y2 + z2) dxdy dz .

In spherical coordinates Ω becomes Ω′ defined by 0 ≤ r ≤ 1, 0 ≤ ϕ ≤ π/4 and
0 ≤ θ ≤ π. Then∫

∂Ω

f · n =

∫ π

0

∫ π/4

0

∫ 1

0

3r4 sinϕdr dϕdθ =
3

10
π(2−

√
2) .

26. The flux is 8
5π(

√
2− 1).

27. Let us parametrise Σ by

σ(u, v) =
(
u, v,

u2

9
+

v2

4

)
, with (u, v) ∈ R =

{
(u, v) ∈ R2 : u2 + v2 ≤ 4

}
.

Then ν(u, v) = (− 2
9u,− v

2 , 1) is oriented as required. In order to use Stokes’ The-
orem, notice curl f = xi− yj + 0k, and∫

∂Σ

f · τ =

∫
Σ

curl f · n =

∫
R
(ui− vj + 0k) · (− 2

9
u i− v

2
j + k

)
du dv

=

∫
R
(−2

9
u2 +

1

2
v2) du dv .

In polar coordinates,∫
∂Σ

f · τ =

∫ 2π

0

∫ 2

0

(− 2

9
cos2 θ +

1

2
sin2 θ

)
r3 dr dθ =

10

9
π .

28. We use Stokes’ Theorem with

Σ =
{
(x, y, z) ∈ R3 : x2 + y2 + z2 = 2, z ≥ y

}
,

whose boundary is ∂Σ = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 2, z = y}. So we
parametrise ∂Σ by

γ(t) = (
√
2 cos t, sin t, sin t) , t ∈ [0, 2π] ;

then

f
(
γ(t)
)
= 2 sin t i+ 2(

√
2 cos t+ sin t) j + 3(

√
2 cos t+ sin t)k ,

γ′(t) = −
√
2 sin t i+ cos t j + cos tk

and ∫
Σ

curl f · n =

∫
∂Σ

f · τ = 3
√
2π .
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29. The field f is defined on the whole R3 (clearly simply connected), and its curl
is zero. By Theorem 9.45 then, f is conservative.

To find a potential ϕ, start from

∂ϕ

∂x
= x ,

∂ϕ

∂y
= −2y , ∂ϕ

∂z
= 3z . (9.27)

From the first we get

ϕ(x, y, z) =
1

2
x2 + ψ1(y, z) .

Differentiating in y and using the second equation in (9.27) gives

∂ϕ

∂y
(x, y, z) =

∂ψ1

∂y
(y, z) = −2y ,

hence

ψ1(y, z) = −y2 + ψ2(z) and ϕ(x, y, z) =
1

2
x2 − y2 + ψ2(z) .

Now we differentiate ϕ in z and use the last in (9.27):

∂ϕ

∂z
(x, y, z) =

dψ2

dz
(z) = 3z , so ψ2(z) =

3

2
z2 + c .

All in all, a potential for f is

ϕ(x, y, z) =
1

2
x2 − y2 +

3

2
z2 + c , c ∈ R .

30. The field is defined over the simply connected plane R2. It is thus enough to
impose

∂f1
∂y

(x, y) =
∂f2
∂x

(x, y) ,

where f1(x, y) = y sinx + xy cosx + ey and f2(x, y) = g(x) + xey, for the field to
be conservative. This translates to

sinx+ x cosx+ ey = g′(x) + ey ,

i.e., g′(x) = sinx+ x cosx. Integrating,

g(x) =

∫
(sinx+ x cosx) dx = x sinx+ c , c ∈ R .

The condition g(0) = 0 forces c = 0, so the required map is g(x) = x sinx.
To find a potential ϕ for f , we must necessarily have

∂ϕ

∂y
(x, y, z) = y sinx+ xy cosx+ ey and

∂ϕ

∂y
(x, y, z) = x sinx+ xey .
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The second equation gives

ϕ(x, y) = xy sinx+ xey + ψ(x) ;

differentiating in x and using the first equation gives

∂ϕ

∂x
(x, y, z) = y sinx+ xy cosx+ ey + ψ′(x) = y sinx+ xy cosx+ ey .

Therefore ψ′(x) = 0, so ψ(x) = c for an arbitrary constant c in R. In conclusion,

ϕ(x, y) = xy sinx+ xey + c , c ∈ R .

31. a) g(y) = y2; b) ϕ(x, y) = y2 log x+ x cos y.

32. a) g(x) = x2 + 1; b) ϕ(x, y) = (x2 + 1) log y + y cosx− 1
2 .

33. a) g(z) = z − 1; b) ϕ(x, y, z) = 3xy + 1
2y

2 + yz − y + sin(x+ z2).

34. λ = 1 e ϕ(x, y, z) = 1
3x

3 + 3xyz + 5xy − 2z2 − 2y + 4.



10

Ordinary differential equations

Differential equations are among the mathematical instruments most widely used
in applications to other fields. The book’s final chapter presents in a self-contained
way the main notions, theorems and techniques of so-called ordinary differential
equations. After explaining the basic principles underlying the theory we review
the essential methods for solving several types of equations. We tackle existence
and uniqueness issues for a solution to the initial value problem of a vectorial
equation, then describe the structure of solutions of linear systems, for which
algebraic methods play a central role, and equations of order higher than one. In
the end the reader will find a concise introduction to asymptotic stability, with
applications to pendulum motion, with and without damping.

Due to the matter’s richness and complexity, this exposition is far from ex-
haustive and will concentrate on the qualitative aspects especially, keeping rigorous
arguments to a minimum1.

10.1 Introductory examples

The reader will presumably be already familiar with differential equation that
formalise certain physical principles, like Newton’s law of motion. Differential
equations are natural tools, hence widely employed to build mathematical mod-
els describing phenomena and processes of the real world. The reason is that
two quantities (the variables) often interact by affecting one another’s variation,
which is expressed by a relationship between one variable and some derivative of
the other. Newton’s law, for instance, states that a force influences a particle’s ac-
celeration, i.e., the change of its velocity in time; and velocity itself is the variation
of displacement. If the force is a function of the particle’s position, as happens in
the case of a spring, we obtain an equation of motion in terms of time t

1 For proofs, the interested reader may consult, among others, the rich monograph by
G. Teschl, Ordinary Differential Equations and Dynamical Systems, American Math-
ematical Society, 2012.

C. Canuto, A. Tabacco:Mathematical Analysis II, 2nd Ed.,
UNITEXT – La Matematica per il 3+2 85, DOI 10.1007/978-3-319-12757-6_10,
© Springer International Publishing Switzerland 2015
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m
d2x

dt2
= −kx ;

what this says is that the spring’s pulling force is proportional to the displacement,
and acts against motion (k > 0). A more complicated example is

m
d2x

dt2
= −(k + βx2)x ,

where the spring’s rigidity is enhanced by an increase of the displacement; both
these are differential equations of second order in the variable t. Another ex-
ample originating from classical Mechanics, that will accompany us throughout
the chapter, is that of a pendulum swinging freely on a vertical plane under the
effect of gravity and possibly some friction. The relationship between the angle θ
swept by the rod and the bob’s angular velocity and acceleration reads

d2θ

dt2
+ α

dθ

dt
+ k sin θ = 0 .

Multiple mass-spring systems, or compound pendulums, are governed by systems
of differential equations correlating the positions of the various masses involved,
or the angles of the rods forming the pendulum.

The differential equations of concern, like all those treated in the chapter,
are ordinary, which means the unknowns depend upon one independent variable,
conventionally called t (the prevailing applications are dynamical, of evolution
type, so t is time). Partial differential equations, instead, entail unknown functions
of several variables (like time and space coordinates), and consequently also partial
derivatives.

Ordinary differential equations and systems are fundamental to explain how
electric and electronic circuits work. The simplest situation is that of an LRC
circuit, where the current i = i(t) satisfies a linear equation of second order of the
type

�
d2i

dt2
+ r

di

dt
+

i

c
= f .

Electric networks can be modelled by systems of as many of the above equations
as the number of loops, to which one adds suitable conservation laws at the nodes
(Kirchhoff’s laws). For electronic circuits with active components, differential mod-
els are typically non-linear.

Materials Sciences, Chemistry, Biology, and more generally Life and Social Sci-
ences, are all fertile sources of mathematical models based on ordinary differential
equations. For instance,

y′ = ky
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describes the radioactive decay of a substance y (the rate of disappearance is pro-
portional, for k < 0, to the quantity of matter itself). But the same equation
regulates the dynamics of populations (called in this case Malthus’ law, it predicts
that the rate of growth y′/y of a population in time equals the difference k = n−m
between the constant birth rate n and death ratem). Malthus’ model becomes real-
istic by further assuming k is corrected by a braking term that prevents unlimited
growth, via the so-called logistic growth equation

y′ = (k − βy)y .

Another example are the Volterra-Lotka equations

{
p′1 = (k1 − β1p2)p1

p′2 = (−k2 + β2p1)p2 ,

that preside over the interactions of two species, labelled preys p1 and predators p2,
whose relative change rates p′i/pi are functions not only of the species’ respective
features (k1, k2 > 0), but also of the number of antagonist individuals present on
the territory (β1, β2 > 0).

At last, we mention a source – intrinsic, so to say, to differential modelling – of
very large systems of differential equations: the discretisation with respect to the
spatial variables of partial differential equations describing evolution phenomena.
A straightforward example is the heat equation

∂u

∂t
− k

∂2u

∂x2
= 0 , 0 < x < L , t > 0 , (10.1)

controlling the termperature u = u(t) of a metal bar of length L in time. Dividing
the bar in n + 1 parts of width Δx by points xj = jΔx, 0 ≤ j ≤ n + 1 (with
(n + 1)Δx = L), we can associate to each node the variable uj = uj(t) telling
how the temperature at xj changes in time. Using Taylor expansions, the second
spatial derivative can be approximated by a difference quotient

∂2u

∂x2
(xj , t) ∼ uj−1(t)− 2uj(t) + uj+1(t)

Δx2
,

so equation (10.1) is well approximated by a system of n linear ordinary differential
equations, one for each internal node:

u′
j −

k

Δx2
(uj−1 − 2uj + uj+1) = 0 , 1 ≤ j ≤ n .

The first and last equation of the system contain the temperatures u0 and un+1 at
the bar’s ends, which can be fixed by suitable boundary conditions (e.g., u0(t) = φ,
un+1(t) = ψ if the temperatures at the ends are kept constant by thermostats).
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10.2 General definitions

We introduce first of all ‘scalar’ differential equations (those with one unknown),
for the benefit of readers who have not seen them in other courses.

An ordinary differential equation (ODE is the standard acronym) is a
relationship between a real independent variable (here, t), an unknown function
y = y(t), and the derivatives y(k) up to order n

F(t, y, y′, ..., y(n)) = 0, (10.2)

where F is a real map of n+ 2 real variables. The differential equation has order
n, if n is the highest order of the derivatives of y appearing in (10.2). A solution
(in the classical sense) of the differential equation on the real interval J is a map
y : J → R, differentiable n times on J , such that

F(t, y(t), y′(t), ..., y(n)(t)) = 0 for all t ∈ J.

Using (10.2) it is often useful to write the highest derivative y(n) in terms of
t and the other derivatives (in several applications this is precisely the way a dif-
ferential equation is typically written). In general, the Implicit Function Theorem
(Sect. 7.1) makes sure that equation (10.2) can be solved for y(n) when the partial
derivative of F in the last variable is non-zero. If so, (10.2) reads

y(n) = f(t, y, ..., y(n−1)), (10.3)

with f a real map of n+1 real variables. Then one says the differential equation is
in normal form. The definition of solution for normal ODEs changes accordingly.

As the warm-up examples have shown, beside single equations also systems of
differential equations are certainly worth studying. The simplest instance is that
of a system of order one in n unknowns, written in normal form as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y′1 = f1(t, y1, y2, . . . , yn)

y′2 = f2(t, y1, y2, . . . , yn)

...
y′n = fn(t, y1, y2, . . . , yn) ,

(10.4)

where fi is a function of n+ 1 variables. The vectorial notation

y′ = f(t,y) (10.5)

where y = (yi)1≤i≤n and f = (fi)1≤i≤n is quite convenient. A solution is now
understood as a vector-valued map y : J → Rn, differentiable on J and satisfying

y′(t) = f
(
t,y(t)

)
for all t ∈ J .
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An especially relevant case is that of linear systems⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y′1 = a11(t)y1 + a12(t)y2 + . . .+ a1n(t)yn + b1(t)

y′2 = a21(t)y1 + a22(t)y2 + . . .+ a2n(t)yn + b2(t)

...

y′n = an1(t)y1 + an2(t)y2 + . . .+ ann(t)yn + bn(t) ,

or, in compact form,

y′ = A(t)y + b(t) (10.6)

where A(t) =
(
aij(t)

)
1≤i,j≤n

maps J to the vector space Rn,n or square n × n

matrices, and b(t) =
(
bi(t)
)
1≤i≤n

is a map from J to Rn. First-order linear equa-

tions play a particularly important role, both theoretically and in view of the
applications: on one hand, they describe many problems that are linear in nature,
on the other hand they approximate more complicated, non-linear equations by a
linearisation process (see Remark 10.25).

In writing a differential equation like (10.5) or (10.6), it is customary not to
write the t-dependency of the solution y explicitly.

Systems of first order are the main focus of our study, because they capture
many types of differential equations provided one adds the necessary number of
unknowns. Each differential equation of order n can be indeed written as a system
of order one in n unknonws. To be precise, given equation (10.3), set

yi = y(i−1) , 1 ≤ i ≤ n ,

i.e.,

y1 = y(0) = y

y2 = y′ = y′1
y3 = y′′ = (y′)′ = y′2

...

yn = y(n−1) = (y(n−2))′ = y′n−1 .

(10.7)

The differential equation then becomes

y′n = f(t, y1, . . . , yn) ,

so we obtain the first-order system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y′1 = y2

...
y′n−1 = yn

y′n = f(t, y1, y2, . . . , yn) .

(10.8)
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It is clear that any solution of equation (10.3) generates a solution y of the system,
by (10.7); conversely, if y solves the system, it is easy to convince ourselves the
first component y1 is a solution of the equation. System (10.8) is then equivalent
to equation (10.3).

The generalisation of (10.4) is a system of n differential equations in n un-
knonws, where each equation has order greater or equal than 1. Every equation of
order at least two transforms into a system of first order. Altogether, then, we can
always reduce to a system of order one in m ≥ n equations and unknonws.

Let us go back to equation (10.5), and suppose it is defined on the open set
Ω = I ×D ⊆ Rn+1, where I ⊆ R is open and D ⊆ Rn open, connected; assume
further f is continuous on Ω.

Definition 10.1 A solution of the differential equation (10.5) is a C1 func-
tion y = y(t) : J → D, with J a non-empty open interval in I, such that
y′(t) = f

(
t,y(t)

)
, ∀t ∈ J .

We remark that a solution may not be defined on the entire I.
A solution y(t) is therefore a differentiable curve defined on J with trace con-

tained in D. The vector f
(
t∗,y(t∗)

)
, when not 0, is tangent to the curve at each

point t∗ ∈ J .
The graph of y(t)

G(y) =
{
(t,y(t)) ∈ I ×D ⊆ Rn+1 : t ∈ J

}
is called an integral curve of the differential equation (see Fig. 10.1).

 

 

 

 

 

 

 

 

t0 t1 t2

y2

y1

t

 

 

 

 

 

 

  
  

 

 

 

  
 

 

Figure 10.1. Integral curves of a differential equation and corresponding tangent vectors
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The differential equation has, in general, infinitely many solutions. Typically
these depend, apart from t, upon n arbitrary constants c1, . . . , cn. We indicate
with y(t; c1, . . . , cn) the set of solutions, which is called general integral.

A natural way to select a special solution is to impose that this solution takes
at the time t0 ∈ I a given value y0 ∈ D. We thus consider the problem of finding
y = y(t) such that {

y′ = f(t,y) in J ,

y(t0) = y0 ,
(10.9)

where J is an open sub-interval of I containing t0. Since J in general depends on the
solution, it cannot be determined a priori. This kind of question is called Cauchy
problem for the differential equation, or initial value problem because it models
the temporal evolution of a physical system, which at t0, the initial moment of the
mathematical simulation, is in the configuration y0. Geometrically speaking, the
condition at time t0 is equivalent to asking that the integral curve pass through the
point (t0,y0) ∈ Ω. A Cauchy problem may be solvable locally (on a neighbourhood
J of t0), or globally (J = I, in which case one speaks of a global solution); these
two situations will be treated in Sects. 10.4.1 and 10.4.3, respectively.

A particularly important class of ODEs is that of autonomous equations

y′ = f(y) ,

for which f does not depend explicitly on t. The linear system

y′ = Ay

with given A ∈ Rn.n, is one such example, and will be studied in Sect. 10.6. For
autonomous ODEs, the structure of solutions can be analysed by looking at their
traces in the open set D ⊆ Rn. The space Rn then represents the phase space of
the equation.

The projection of an integral curve on the phase space (Fig. 10.2)

Γ (y) =
{
y(t) ∈ D : t ∈ J

}
is called an orbit or trajectory of the solution y. A solution y of the Cauchy
problem (10.9) defines an orbit passing through y0, which consists of a past tra-
jectory (t < t0) and a future trajectory (t > t0). The orbit is closed if it is closed
viewed as trace of y. Conventionally an orbit in phase space is pictured by the
streamline of the flow, and the orientation on it describes the generating solution’s
evolution.

Application: the simple pendulum (I). The simple (gravity) pendulum is the
idealised model of a massm (the bob) fixed to the end of a massless rod of length L
suspended from a pivot (the point O). When given an initial push, the pendulum
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y1

y2

t

t = t0

Γ (y)

G(y)

Figure 10.2. An integral curve and the orbit in phase space y1y2 of an autonomous
equation

swings back and forth on a vertical plane, and the bob describes a circle with
centre O and radius L (Fig. 10.3). In absence of external forces, e.g., air drag or
friction of sorts, the bob is subject to the force of gravity g, a vector lying on the
fixed plane of motion and pointing downwards. To describe the motion of m, we
use polar coordinates (r,θ ) for the point P on the plane where m belongs: the
pole is O and the unit vector i = (cos 0, sin 0) is vertical and heads downwards; let
tr = tr(θ), tθ = tθ(θ) be the orthonormal frame, as of (6.31).

The position of P in time is given by the vector OP (t) = Ltr(θ(t)), itself
determined by Newton’s law

m
d2OP

dt2
= g . (10.10)

y

I

S

0

g

θ

θ

P

Figure 10.3. The simple pendulum
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Successively differentiating OP (t), with the aid of (6.39) we obtain

dOP

dt
= L

dtr
dθ

dθ

dt
= L

dθ

dt
tθ ,

d2OP

dt2
= L

d2θ

dt2
tθ + L

dθ

dt

dtθ
dθ

dθ

dt
= L

d2θ

dt2
tθ − L

(
dθ

dt

)2

tr .

On the other hand, if g is the modulus of gravity’s pull, then g = mgi =
mg cos θ tr −mg sin θ tθ, so Newton’s law becomes

mL

(
−
(
dθ

dt

)2

tr +
d2θ

dt2
tθ

)
= mg

(
cos θ tr − sin θ tθ

)
.

Taking only the angular component, with k = g/L > 0, produces the equation of
motion

d2θ

dt2
+ k sin θ = 0 ; (10.11)

notice that the mass does not appear anywhere in the formula.
A mathematically more realistic model takes into account the deceleration

generated by a damping force at the point O: this will be proportional but opposite
to the velocity, and given by the vector

a = −αmL
dθ

dt
tθ , with α > 0 ,

adding to g in Newton’s equation. As previously, the equation of motion (10.11)
becomes

d2θ

dt2
+ α

dθ

dt
+ k sin θ = 0 . (10.12)

An ideal (free, undamped) motion is subsumed by taking α = 0, so we shall
suppose from now on α ≥ 0 and k > 0.

To find the position of P at time t, we first need to know its position and
velocity at the starting time, say t0 = 0. Let us then declare θ0 = θ(0) and
θ1 =

dθ
dt (0), which, in essence, is the statement of an initial value problem for an

equation of order two:

⎧⎪⎨⎪⎩
d2θ

dt2
+ α

dθ

dt
+ k sin θ = 0 , t > 0 ,

θ(0) = θ0 ,
dθ

dt
(0) = θ1 .

(10.13)

To capture the model’s properties, let us transform this to first-order form
(10.34) by setting
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y = (y1, y2) = (θ,
dθ

dt
) , y0 = (θ0, θ1) , f(t,y) = f(y) = ( y2 ,−k sin y1 − αy2) .

The system is autonomous, with I = R and D = R2.
(The example continues on p. 448.) �

10.3 Equations of first order

Before we undertake the systematic study of differential equations of order n,
we examine a few types of first-order ODEs that stand out, in that they can be
reduced to the computation of primitive maps.

10.3.1 Equations with separable variables

One speaks of separable variables (or of a separable ODE) for equations of the
following sort

y′ = g(t)h(y), (10.14)

where g is continuous in t and h continuous in y. This means the function f(t, y)
is a product of a map depending only on t and a map depending only on y, so that
the variables are ‘separate’.

If ȳ ∈ R is a zero of h, h(ȳ) = 0, the constant map y(t) = ȳ is a particular
integral of (10.14), for the equation becomes 0 = 0. Therefore a separable ODE
has, first of all, as many integrals y(t) = constant as the number of the distinct
roots of h. These are called singular integrals of the equation.

On every interval J where h(y) does not vanish we can write (10.14) as

1

h(y)

dy

dt
= g(t) .

Let H(y) be a primitive of
1

h(y)
(with respect to y). The formula for differentiating

composite functions gives

d

dt
H(y(t)) =

dH

dy

dy

dt
=

1

h(y)

dy

dt
= g(t) ,

whence H(y(t)) is a primitive of g(t). Thus, given any primitive G(t) of g(t) we
will have

H(y(t)) = G(t) + c , c ∈ R . (10.15)

But since
1

h(y)
=

dH

dy
never vanishes on J by assumption – and thus does not

change sign, being continuous – the map H(y) will be strictly monotone on J ,
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hence invertible (Vol. I, Thm. 2.8). This implies we may solve (10.15) for y(t), to
get

y(t) = H−1(G(t) + c), (10.16)

where H−1 is the inverse of H . The above is the general integral of (10.14) on
every interval where h(y(t)) is not zero. But, should we not be able to attain the
analytic expression of H−1(x), formula (10.16) would have a paltry theoretical
meaning. In such an event one is entitled to stop at the implicit form (10.15).

If equation (10.14) admits singular integrals, these might be of the form (10.16)
for suitable constants c. Certain singular integrals can be inferred formally from
(10.16) letting c tend to ±∞.

One recovers expression (10.15) in a formal and easy-to-remember manner

by interpreting the derivative
dy

dt
as a ‘quotient’, in Leibniz’s notation. In fact,

dividing (10.14) by h(y) and ‘multiplying’ by dt gives

dy

h(y)
= g(t) dt ,

which can be then integrated

∫
dy

h(y)
=

∫
g(t) dt.

This corresponds exactly to (10.15). At any rate the reader must not forget that
the correct proof of the formula is the aforementioned one!

Examples 10.2

i) Let us solve y′ = y(1− y). If we set g(t) = 1 and h(y) = y(1− y), the zeroes
of h determine two singular integrals y1(t) = 0 and y2(t) = 1. Next, assuming
h(y) different from 0, we rewrite the equation as∫

dy

y(1− y)
=

∫
dt,

then integrate with respect to y on the left and t on the right to obtain

log

∣∣∣∣ y

1− y

∣∣∣∣ = t+ c

Exponentiating yields ∣∣∣∣ y

1− y

∣∣∣∣ = et+c = ket,

where k = ec is an arbitrary constant > 0. Therefore
y

1− y
= ±ket = Ket,
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with K being any non-zero constant. Solving now for y in terms of t gives

y(t) =
Ket

1 +Ket
.

In this case the singular integral y1(t) = 0 belongs to the above family of solutions
for K = 0, a value originally excluded. The other integral y2(t) = 1 arises
formally by taking the limit, for K going to infinity, in the general expression.

ii) Consider the ODE

y′ =
√
y.

It has a singular integral y1(t) = 0. Separating variables gives∫
dy√
y
=

∫
dt ,

so

2
√
y = t+ c , i.e., y(t) =

(
t

2
+ c

)2

, c ∈ R ,

where we have written c in place of c/2.

iii) The differential equation

y′ =
et + 1

ey + 1

has g(t) = et+1, h(y) =
1

ey + 1
> 0 for any y, so there are no singular integrals.

The separating recipe gives∫
(ey + 1) dy =

∫
(et + 1) dt ,

so
ey + y = et + t+ c , c ∈ R .

But now we are forced to stop for it is not possible to explicitly write y as
function of the variable t. �

10.3.2 Homogeneous equations

Homogeneous are ODEs of the type

y′ = ϕ
(y
t

)
(10.17)

with ϕ = ϕ(z) continuous in z. The map f(t, y) depends on t and y in terms of

their ratio
y

t
only; equivalently, f(λt,λy ) = f(t, y) for any λ �= 0.

A homogeneous equation can be transformed into one with separable variables

by the obvious substitution z =
y

t
, understood as z(t) =

y(t)

t
. Then y(t) = tz(t)

and y′(t) = z(t) + tz′(t), so (10.17) becomes

z′ =
ϕ(z)− z

t
,
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which has separable variables z and t, as required. The technique of Section 10.3.1
solves it: each solution z̄ of ϕ(z) = z gives rise to a singular integral z(t) = z̄,
hence y(t) = z̄t. Assuming ϕ(z) different from z, instead, we have

∫
dz

ϕ(z)− z
=

∫
dt

t
,

giving
H(z) = log |t|+ c

where H(z) is a primitive of
1

ϕ(z)− z
. Indicating by H−1 the inverse function, we

have
z(t) = H−1(log |t|+ c),

hence, returning to y, the general integral of (10.17) reads

y(t) = tH−1(log |t|+ c).

Example 10.3

We solve

t2y′ = y2 + ty + t2. (10.18)

In normal form, this is

y′ =
(y
t

)2
+

y

t
+ 1,

a homogeneous equation with ϕ(z) = z2+z+1. The substitution y = tz generates
a separable equation

z′ =
z2 + 1

t
.

There are no singular integrals, for z2 + 1 is always positive. Integration gives

arctan z = log |t|+ c

so the general integral of (10.18) is

y(t) = t tan(log |t|+ c).

The constant c can be chosen independently in (−∞, 0) and (0,+∞), because
of the singularity at t = 0. Notice also that the domain of each solution depends
on the value of c. �

10.3.3 Linear equations

The differential equation

y′ = a(t)y + b(t) (10.19)
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with a, b continuous on I, is called linear.2 The map f(t, y) = a(t)y + b(t) is
a polynomial of degree one in y with coefficients dependent on t. The equation
is called homogeneous if the source term vanishes identically, b(t) = 0, non-
homogeneous otherwise.
Let us start by solving the homogeneous equation

y′ = a(t)y. (10.20)

It is a special case of equation with separable variables where g(t) = a(t) and
h(y) = y, see (10.14). Therefore the constant map y(t) = 0 is a solution. Apart
from that, we can separate variables∫

1

y
dy =

∫
a(t) dt.

If A(t) indicates a primitive of a(t), i.e., if∫
a(t) dt = A(t) + c, c ∈ R, (10.21)

then
log |y| = A(t) + c ,

or equivalently
|y(t)| = eceA(t) ,

so
y(t) = ±KeA(t),

where K = ec > 0. The particular solution y(t) = 0 is subsumed by the gen-
eral formula if we let K be 0. Therefore the solutions of the homogeneous linear
equation (10.20) are given by

y(t) = KeA(t), K ∈ R,

with A(t) as in (10.21).
Now we tackle the non-homogeneous case. We use the so-called method of

variation of constants, or parameters, which consists in searching for solutions of
the form

y(t) = K(t) eA(t),

where nowK(t) is a function to be determined. The representation of y(t) is always
possible, for eA(t) > 0. Substituting into (10.19), we obtain

K ′(t)eA(t) +K(t)eA(t)a(t) = a(t)K(t)eA(t) + b(t),

so K ′(t) = e−A(t)b(t).

2 Contrary to the description of Vol. I, here we prefer to write the linear term y on the
right, to be consistent with the theory of linear systems.
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Calling B(t) a primitive of e−A(t)b(t),∫
e−A(t)b(t) dt = B(t) + c, c ∈ R, (10.22)

we have
K(t) = B(t) + c,

so the general solution to (10.19) is

y(t) = eA(t)
(
B(t) + c

)
, (10.23)

with A(t) and B(t) defined by (10.21) and (10.22). The integral is more often than
not found in the form

y(t) = e
∫
a(t) dt

∫
e−

∫
a(t) dt b(t) dt, (10.24)

where the steps leading to the solution are clearly spelt out, namely: one has to
integrate twice in succession.

If we want to solve the Cauchy problem{
y′ = a(t)y + b(t) on the interval I,

y(t0) = y0, with t0 ∈ I and y0 ∈ R,
(10.25)

it might be convenient to choose as primitive of a(t) the one vanishing at t0, which

we write A(t) =

∫ t

t0

a(s) ds, according to the Fundamental Theorem of Integral

Calculus; the same can be done for B(t) by putting

B(t) =

∫ t

t0

e
− ∫

s

t0
a(u) du

b(s) ds

(recall that the variables in the definite integral are arbitrary symbols). Using these
expressions for A(t) and B(t) in (10.23) we obtain y(t0) = c, hence the solution of
the Cauchy problem (10.25) will satisfy c = y0, i.e.,

y(t) = e
∫

t

t0
a(u) du

(
y0 +

∫ t

t0

e
− ∫

s

t0
a(u) du

b(s) ds

)
. (10.26)

Examples 10.4

i) Find the general integral of the linear equation

y′ = ay + b,

where a �= 0 and b are real numbers.
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Choosing A(t) = at and B(t) = − b
ae

−at generates the integral

y(t) = ceat − b

a
.

If a = 1 and b = 0, the formula shows that all solutions of y′ = y come in the
form y(t) = cet.

If we want to solve the Cauchy problem{
y′ = ay + b on [1,+∞),

y(1) = y0,

it is better to choose A(t) = a(t− 1) and B(t) =
b

a

(
1− e−a(t−1)

)
, so that

y(t) =

(
y0 +

b

a

)
ea(t−1) − b

a
.

In case a < 0, the solution converges to −b/a (independent of the initial datum
y0) as t→ +∞.

ii) We find the integral curves of the ODE

ty′ + y = t2

that lie in the first quadrant of the plane (t, y). Written as (10.19), the equation
is

y′ = −1

t
y + t,

so a(t) = −1/t, b(t) = t. Choose A(t) = − log t, and then eA(t) = 1/t, e−A(t) = t;
consequently, ∫

e−A(t)b(t) dt =

∫
t2 dt =

1

3
t3 + c.

Therefore for t > 0, the general integral reads

y(t) =
1

t

(
1

3
t3 + c

)
=

1

3
t2 +

c

t
.

If c ≥ 0, then y(t) > 0 for any t > 0, while if c < 0, y(t) > 0 when t > 3
√
3|c|. �

Remark 10.5 In the sequel it will turn out useful to consider linear equations of
the form

z′ = λz , (10.27)

where λ is a complex number. We should determine the solution over the complex
field: this will be a differentiable map z = Re z + i Im z : R→ C (i.e., its real and
imaginary parts are differentiable). Recall that the equation

d

dt
eλt = λ eλt , t ∈ R (10.28)
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(proved in Vol. I, Eq. (11.30)) is still valid for λ ∈ C. Then we can say that any
solution of (10.27) can be written as

z(t) = c eλt (10.29)

with c ∈ C arbitrary. �

10.3.4 Bernoulli equations

This family of equations is characterised by the following form

y′ = p(t)yα + q(t)y , α �= 0, α �= 1 , (10.30)

with p, q continuous on I. If α > 0, the constant map 0 is a solution. Supposing
then y �= 0 and dividing by yα gives

y−αy′ = p(t) + q(t)y1−α .

As (y1−α)′ = (1 − α)y−αy′, the substitution z = y1−α transforms the equation
into a linear equation in z

z′ = (1− α)p(t) + (1− α)q(t)z ,

solvable by earlier methods.

Example 10.6

Take y′ = t3y2 + 2ty, a Bernoulli equation where p(t) = t3, q(t) = 2t and α = 2.
The transformation suggested above reduces the equation to z′ = −(2tz + t3),

solved by z(t) = cet
2 − (2 + t2). Hence

y(t) =
1

cet2 − (2 + t2)
solves the original equation. �

10.3.5 Riccati equations

Equations of Riccati type crop up in optimal control problems, and have the typical
form

y′ = p(t)y2 + q(t)y + r(t) , (10.31)

where p, q, r are continuous on I. The general integral can be found provided we
know a particular integral y = u(t). In fact, putting

y = u(t) +
1

z
, hence y′ = u′(t)− z′

z2
,
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we obtain

u′(t)− z′

z2
= p(t)

(
u2(t) + 2

u(t)

z
+

1

z2
)
+ q(t)

(
u(t) +

1

z

)
+ r(t) .

Since u is a solution, this simplifies to

z′ = −(2u(t)p(t) + q(t)
)
z − p(t) ,

and once again we recover a linear equation in the unknown z.

Example 10.7

Consider the Riccati equation

y′ = ty2 +

(
1− 2t2

t

)
y +

t2 − 1

t
,

where

p(t) = t , q(t) =
1− 2t2

t
, r(t) =

t2 − 1

t
.

There is a particular solution u(t) = 1. The aforementioned change of variables
gives

z′ = −z

t
− t ,

solved by

z(t) =
c− t3

3|t| .

It follows the solution is

y(t) = 1 +
3|t|

c− t3
, c ∈ R . �

10.3.6 Second-order equations reducible to first order

When a differential equation of order two does not explicitly contain the dependent
variable, as in

y′′ = f(t, y′) , (10.32)

the substitution z = y′ leads to the equation of order one

z′ = f(t, z)

in z = z(t). If the latter has a general integral z(t; c1), all solutions of (10.32) arise
from

y′ = z ,
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hence from the primitives of z(t; c1). This introduces another integration constant
c2. The general integral of (10.32) is thus

y(t; c1, c2) =

∫
z(t; c1) dt = Z(t; c1) + c2,

where Z(t; c1) is a particular primitive of z(t; c1).

Example 10.8

Solve the second-order equation

y′′ − (y′)2 = 1.

Set z = y′ to obtain the separable ODE

z′ = z2 + 1.

The general integral is arctan z = t+ c1, so

z(t, c1) = tan(t+ c1).

Integrating again gives

y(t; c1, c2) =

∫
tan(t+ c1) dt = − log

(
cos(t+ c1)

)
+ c2 , c1, c2 ∈ R .

�

Consider, at last, a second-order autonomous equation

y′′ = f(y, y′) . (10.33)

We shall indicate a method for each interval I ⊆ R where y′(t) has constant sign.
In such case y(t) is strictly monotone, so invertible; we may consider therefore
t = t(y) as function of y on J = y(I), and consequently everything will depend on
y as well; in particular, z = dy

dt should be thought of as map in y. Then

y′′ =
dz

dt
=

dz

dy

dy

dt
=

dz

dy
z ,

whereby y′′ = f(y, z) becomes

dz

dy
= g(y, z) =

1

z
f(y, z) .

This is of order one, y being the independent variable and z the unknown. Sup-
posing we are capable of finding all its solutions z = z(y; c1), the solutions y(t)
arise from the autonomous equation of order one

dy

dt
= z(y; c1) ,

coming from the definition of t.
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Example 10.9

Find the solutions of

yy′′ = (y′)2

i.e.,

y′′ =
(y′)2

y
, (y �= 0) .

Set f(y, z) = z2

y , and solve

dz

dy
= g(y, z) =

z

y
.

This gives z(y) = c1y, and then

dy

dt
= c1y ,

whence y(t) = c2e
c1t, c2 �= 0. �

10.4 The Cauchy problem

We return to differential equations in their most general form (10.5) and discuss
the solvability of the Cauchy problem.

As in Sect. 10.2, let I ⊆ R be an open interval and D ⊆ Rn an open connected
set. Call Ω = I ×D ⊆ Rn+1, and take a map f : Ω → Rn defined on Ω. Given
points t0 in I and y0 in D, we examine the Cauchy problem{

y′ = f(t,y) ,

y(t0) = y0 .
(10.34)

10.4.1 Local existence and uniqueness

Step one of our study is to determine conditions on f that guarantee the Cauchy
problem can be solved locally, by which we mean on a neighbourhood of t0.

It is remarkable that the continuity of f alone, in t and y simultaneously, is
enough to ensure the existence of a solution, as the next result, known as Peano’s
Existence Theorem, proves.

Theorem 10.10 (Peano) Suppose f is continuous on Ω. Then there exist
a closed neighbourhood [t0−α, t0+α] of t0 and a map y : [t0−α, t0+α]→ D,
differentiable with continuity, that solves the Cauchy problem (10.34).

There is a way of estimating the size of the interval where the solution exists.
Let Ba(t0) and Bb(y0) be neighbourhoods of t0 and y0 such that the compact set
K = Ba(t0)×Bb(y0) is contained in Ω, and set M = max

(t,y)∈K
‖f(t,y)‖. Then the

theorem holds with α = min(a, b/M).
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Peano’s Theorem does not claim anything on the solution’s uniqueness, and in
fact the mere continuity of f does not prevent to have infinitely many solutions
to (10.34).

Example 10.11

The initial value problem {
y′ = 3

2
3
√
y ,

y(0) = 0 ,

solvable by separating variables, admits solutions y(t) = 0 (the singular integral)

and y(t) =
√
t3; actually, there are infinitely many solutions, some of which

y(t) = yα(t) =

{
0 if t ≤ α ,√
(t− α)3 if t > α ,

α ≥ 0 ,

are obtained by ‘glueing’ the previous two in a suitable way (Fig. 10.4). �

That is why we need to add further hypotheses in order to grant uniqueness,
besides requiring the solution depend continuously on the initial datum.

A very common assumption is this one:

Definition 10.12 A map f defined on Ω = I ×D is said Lipschitz in y,
uniformly in t, over Ω, if there exists a constant L ≥ 0 such that

‖f(t,y1)− f(t,y2)‖ ≤ L‖y1 − y2‖ , ∀y1,y2 ∈ D, ∀t ∈ I . (10.35)

t

y

α

yα(t)

Figure 10.4. The infinitely many solutions of the Cauchy problem relative to Ex-
ample 10.11
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Using Proposition 6.4 for every t ∈ I, it is easy to see that a map is Lipschitz if
all its components admit bounded yj-derivatives on Ω:

sup
(t,y)∈Ω

∣∣∣∣ ∂fi∂yj
(t,y)

∣∣∣∣ < +∞ , 1 ≤ i, j ≤ n .

Examples 10.13

i) Let us consider the function f(t, y) = y2, defined and continuous on R × R.
Then ∀y1, y2 ∈ R and ∀t ∈ R,

|f(t, y1) = f(t, y2)| = |y21 − y22 | = |y1 + y2| |y1 − y2| .
Hence f is Lipschitz in the variable y, uniformly in t, on every domain Ω =
ΩR = R×DR with DR = (−R,R), R > 0; the corresponding Lipschitz constant
L = LR equals LR = 2R. Note that the function is not Lipschitz on R × R,
because |y1 + y2| tends to +∞ as y1 and y2 tend to infinity with the same sign.

ii) Consider now the map f(t, y) = sin(ty), defined and continuous on R×R. It
satisfies

| sin(ty1)− sin(ty2)| ≤ |(ty1)− (ty2)| = |t| |y1 − y2| ,
∀y1, y2 ∈ R, ∀t ∈ R, because θ �→ sin θ is Lipschitz on R with constant 1.
Therefore f is Lipschitz in y, uniformly in t, on every region Ω = ΩR = IR ×R,
with IR = (−R,R), R > 0, with Lipschitz constant L = LR = R. Again, f is
not Lipschitz on the whole R× R.

iii) Finally, let us consider the affine map f(t,y) = A(t)y + b(t), where A(t) ∈
Rn,n, b(t) ∈ Rn are defined and continuous on the open interval I ⊆ R. Then f

is defined and continuous on I×Rn. For any y1,y2 ∈ Rn and any t ∈ I, we have

‖f(t,y1)− f(t,y2)‖ = ‖A(t)y1 −A(t)y2‖
= ‖A(t)(y1 − y2)‖ ≤ ‖A(t)‖ ‖y1 − y2‖ ,

where ‖A(t)‖ is the norm of the matrix A(t) defined in (4.9), and the inequality
follows from (4.10). Observe that the map α(t) = ‖A(t)‖ is continuous on I (as
composite of continuous maps). If α is bounded, f is Lipschitz in y, uniformly
in t on Ω = I × R, with Lipschitz constant L = supt∈I α(t). If not, we can at
least say α is bounded on every closed and bounded interval J ⊂ I (Weierstrass’
Theorem), so f is Lipschitz on every Ω = J × Rn. �

The next result is of paramount importance. It is known as the Theorem of
Cauchy-Lipschitz (or Picard-Lindelöf).

Theorem 10.14 (Cauchy-Lipschitz) Let f(t,y) be continuous on Ω and
Lipschitz in y, uniformly in t. Then the Cauchy problem (10.34) admits one,
and only one, solution y = y(t) defined on a closed neighbourhood [t0−α, t0+
α] of t0, with values in Ω, and differentiable with continuity on Ω.
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t0

y0

D

t

y

(t,y(t))

Ω

I

Figure 10.5. Local existence and uniqueness of a solution

The solution’s uniqueness and its dependency upon the initial datum are con-
sequences of the following property.

Proposition 10.15 Under the assumptions of the previous theorem, let y,
z be solutions of the Cauchy problems{

y′ = f(t,y) ,

y(t0) = y0 ,
and

{
z′ = f(t, z) ,

z(t0) = z0 ,

over an interval J containing t0, for given y0 and z0 ∈ D. Then

‖y(t)− z(t)‖ ≤ eL|t−t0|‖y0 − z0‖ , ∀t ∈ J . (10.36)

In particular, if z0 = y0, z coincides with y on J .

What the property is saying is that the solution of (10.34) depends in a continuous
way upon the initial datum y0: a small deformation ε of the initial datum perturbs
the solution at t �= t0 by eL|t−t0|ε at most. In other words, the distance between
two orbits at time t grows by a factor not larger than eL|t−t0|. Since this factor
is exponential, its magnitude depends on the distance |t − t0| as well as on the
Lipschitz constant of f .

For certain equations it is possible to replace eL|t−t0| with eσ(t−t0) if t > t0,
or eσ(t0−t) if t < t0, with σ < 0 (see Example 10.22 ii) and Sect. 10.8.1). In these
cases the solutions move towards one another exponentially.

Remark 10.16 Assume that a mathematical problem is formalised as

P (s) = d

where d is the datum and s the solution. Whenever s

• exists for any datum d,
• is unique, and
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• depends upon d with continuity,

the problem is said to be well posed (in the sense of Hadamard).
Theorem 10.14 and the subsequent proposition guarantee the Cauchy prob-

lem (10.34) is well posed with the assumptions made on f . �

From the Theorem of Cauchy-Lipschitz we infer important consequences of
qualitative nature regarding the solution set of the differential equation. To be
precise, its hypotheses imply:

• two integral curves with a common point must necessarily coincide (by unique-
ness of the solution on the neighbourhood of every common point);

• for autonomous systems in particular, the orbits Γ (y), as y varies among
solutions, form a disjoint partition of phase space; it can be proved that an
orbit is closed if and only if the corresponding solution is periodic in time,
y(t+ T ) = y(t), for all t ∈ R and a suitable T > 0;

• the solutions on Ω of the ODE depend on n real parameters, as anticipated
in Sect. 10.2: given any t0 ∈ I, there is a distinct solution for every choice of
datum y0 on the open set D, and the coordinates c1 = y01, . . . , cn = y0n of y0

should be considered as the free parameters upon which the solution depends.

10.4.2 Maximal solutions

The Theorem of Cauchy-Lipschitz ensures the existence of a closed interval [t0 −
α, t0 + α], containing t0, where the problem (10.34) is solvable; we shall call u =
u(t) the corresponding solution henceforth. However, this interval might not be
the largest interval containing t0 where the problem can be solved (the maximal
interval of existence). In fact, suppose t1 = t0 + α lies inside I and y1 = u(t1) is
inside D. Then we can re-ignite the Cauchy problem at t1{

y′ = f(t,y) ,

y(t1) = y1 .
(10.37)

Because the assumptions of Theorem 10.14 are still valid, the new problem has a
unique solution v = v(t) defined on an interval [t1−β, t1+β] ⊆ I. Both functions
u, v solve the ODE and satisfy the condition u(t1) = y1 = v(t1) on the interval
J = [t0, t1] ∩ [t1 − β, t1], which contains a left neighbourhood of t1 (see Fig. 10.6).
Therefore they must solve problem (10.37) on J . We can use inequality (10.36)
with t0 replaced by t1, to obtain

‖u(t)− v(t)‖ ≤ eL|t1−t0|‖y1 − y1‖ = 0 , ∀t ∈ J ;

that shows v must coincide with u on J . Since v is also defined on the right of t1,
we may consider the prolongation

ũ(t) =

{
u(t) in [t0 − α, t0 + α] ,

v(t) in [t0 + α, t0 + α+ β] ,
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t

y

y0

y1

u(t)

v(t)

J

t0t0 − α

t1 = t0 + α

t1 − β t1 + β

Figure 10.6. Prolongation of a solution beyond t1

that extends the previous solution to the interval [t0 − α, t0 + α + β]. A similar
prolongation to the left of t0−α is possible if t0 −α is inside I and u(t0−α) still
lies in D.

The procedure thus described may be iterated so that to prolong u to an open
interval Jmax = (t−, t+), where, by definition:

t− = inf{t∗ ∈ I : problem (10.34) has a solution on [t∗, t0]}

and

t+ = sup{t∗ ∈ I : problem (10.34) has a solution on [t0, t
∗]} .

This determines precisely the maximal interval on which a solution u to prob-
lem (10.34) lives.

Suppose t+ is strictly less than the least upper bound of I (so that the solution
cannot be extended beyond t+, despite f is continuous and Lipschitz in y). Then

 

 

 

 

t

y

t+t0

D

Figure 10.7. Right limit t+ of the maximal interval Jmax for the solution of a Cauchy
problem
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one could prove u(t) moves towards the boundary ∂D as t tends to t+ (from the
left), see Fig. 10.7. Similar considerations hold for t−.

Example 10.17

Consider the Cauchy problem {
y′ = y2 ,

y(0) = y0 .

The Lipschitz character of f(t, y) = y2 was discussed in Example (10.13) i):
for any R > 0 we know f is Lipschitz on ΩR = R × DR, DR = (−R,R). The
problem’s solution is

y(t) =
y0

1− y0t
.

If y0 ∈ DR, it is not hard to check that the maximal interval of existence in DR,
i.e., the set of t for which y(t) ∈ DR, is

Jmax =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−∞,

1

y0
− 1

R
) if y0 > 0 ,

(−∞,+∞) if y0 = 0 ,

(
1

y0
+

1

R
,+∞) if y0 < 0 .

Notice that limt→t+ y(t) = R when y0 > 0, confirming that the solution reaches
the boundary of DR as t→ t+. �

10.4.3 Global existence

We wish to find conditions on f that force every solution of (10.34) to be defined
on the whole interval I. A solution for which Jmax = I is said to exist globally,
and called a global solution.

The petty example of an autonomous system in dimension 1,

y′ = f(y) ,

is already sufficient to show the various possibilities. The map f(t, y) = f(y) =
ay + b is Lipschitz on all R× R, and the corresponding ODE’s solutions

y(t) = ceat − b

a

are defined on R (see Example 10.4 i)). In contrast, f(t, y) = f(y) = y2 is not
Lipschitz on the entire R2 (Example 10.13 i)) and its non-zero solutions exist on
semi-bounded intervals (Example 10.17). The linear example is justified by the
following sufficient condition for global existence.

Theorem 10.18 Let Ω = I × Rn and assume Theorem 10.14 holds. Then
the solution of the Cauchy problem (10.34) is defined everywhere on I.
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This result is coherent with the fact, remarked earlier, that if the supremum t+
of Jmax is not the supremum of I, the solution converges to the boundary of D,
as t → t+ (and analogously for t−). In the present situation D = Rn has empty
boundary, and therefore the end-points of Jmax must coincide with those of I.

Being globally Lipschitz imposes a severe limitation on the behaviour of f as
y →∞: f can grow, but not more than linearly. In fact if we choose y1 = y ∈ Rn

arbitrarily, and y2 = 0 in (10.35), we deduce

‖f(t,y)− f(t,0)‖ ≤ L‖y‖ , ∀y ∈ Rn .

The triangle inequality then yields

‖f(t,y)‖ = ‖f(t,0) + f(t,y)− f(t,0)‖
≤ ‖f(t,0)‖+ ‖f(t,y)− f(t,0)‖ ,

so necessarily

‖f(t,y)‖ ≤ ‖f(t,0)‖+ L‖y‖ , y ∈ Rn .

Observe that f continuous on Ω forces the map β(t) = ‖f(t,0)‖ to be continuous
on I.

Consider the autonomous equation

y′ = y log2 y ,

for which f(t, y) = f(y) = y log2 y grows slightly more than linearly as y → +∞.
The solutions

y(t) = e−1/(x+c)

are defined over not all of R, showing that a growth that is at most linear is close
to being optimal. Still, we can achieve some level of generalisation in this direction.

We may attain the same result as Theorem 10.18, in fact, imposing that f

grows in y at most linearly, and weakening the Lipschitz condition on I × Rn;
precisely, it is enough to have f locally Lipschitz (in y) over Ω. Equivalently, f
is Lipschitz in y, uniformly in t, on every compact set K in Ω; if so, the Lipschitz
constant LK may depend on K. All maps considered in Examples 10.13 are indeed
locally Lipschitz (on R× R for the first two examples, on I × Rn for the last).

Theorem 10.19 Let f be continuous and locally Lipschitz in y, uniformly
in t, over Ω = I × Rn; assume

‖f(t,y)‖ ≤ α(t)‖y‖ + β(t) , ∀y ∈ Rn, ∀t ∈ I . (10.38)

with α,β continuous and non-negative on I. Then the solution to the Cauchy
problem (10.34) is defined everywhere on I.

Moreover, if α and β are integrable on I (improperly, possibly), every solution
is bounded on I.
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A crucial application regards linear systems.

Corollary 10.20 Let A(t) ∈ Rn,n, b(t) ∈ Rn be continuous on the open
interval I ⊆ R. Then any solution of the system of ODEs

y′ = A(t)y + b(t)

is defined on the entire I. In particular, the corresponding Cauchy prob-
lem (10.34) with arbitrary y0 ∈ Rn admits one, and one only, solution over
all of I.

Proof. The map f(t,y) = A(t)y + b(t) is locally Lipschitz on I × Rn, by Ex-
ample 10.13 iii). Following that argument,

‖f(t,y)‖ ≤ ‖A(t)‖ ‖y‖+ ‖b(t)‖ , ∀y ∈ Rn, ∀t ∈ I ,

and α(t) = ‖A(t)‖, β(t) = ‖b(t)‖ are continuous by hypothesis. The claim
follows from the previous theorem. �

Application: the simple pendulum (II). Let us resume the example of p. 430.
The map f(y) has

Jf(y) =

(
0 1

−k cos y1 −α
)

so the Jacobian’s components are uniformly bounded on R2, for∣∣∣∣ ∂fi∂yj
(y)

∣∣∣∣ ≤ max(k,α ) , ∀y ∈ R2 , 1 ≤ i, j ≤ 2 ;

then f is Lipschitz on the whole of R2. Theorems 10.14, 10.18 guarantee existence
and uniqueness for any (θ0, θ1) ∈ R2, and the solution exists for all t > 0.
(Continues on p. 453.) �

10.4.4 Global existence in the future

Many concrete applications require an ODE to be solved ‘in the future’, rather
than ‘in the past’: it is important, namely, to solve for all t > t0, and the aim is
to ensure the solution exists on some interval J bounded by t0 on the left (e.g.,
[t0,+∞)), whereas the solution for t < t0 is of no interest. The next result cashes
in on a special feature of f to warrant the global existence of the solution in the
future to an initial value problem.

A simple example will help us to understand. The autonomous problem{
y′ = −y3 ,
y(0) = y0 ,
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is determined by f(y) = −y3: this is locally Lipschitz on R, and clearly grows faster
than a linear map as y → ∞; therefore it does not fulfill the previous theorems,
as the solution

y(t) =
y0√

1 + 2y20t
, (10.39)

not defined on the entire R, confirms. Yet y exists on [0,+∞), whichever the initial
datum y0. The fact that the solution does not ‘blow up’, as t increases, can be
derived directly from the differential equation, even without solving. Just multiply
the ODE by y and observe

yy′ =
1

2
2y
dy

dt
=

d

dt

(
1

2
y2
)
;

then
d

dt

(
1

2
y2
)
= −y4 ≤ 0 ,

i.e., the quantity E(y(t)) = 1
2 |y(t)|2 is non-increasing as t grows. In particular,

1

2
|y(t)|2 ≤ 1

2
|y(0)|2 = 1

2
|y0|2 , ∀t ≥ 0 ,

so
|y(t)| ≤ |y0| , ∀t ≥ 0 .

At all ‘future’ instants the solution’s absolute value is bounded by the initial value,
which can also be established from the analytic expression (10.39).

The argument relies heavily on the sign of f(y) (flipping from −y3 to +y3

invalidates the result); this property is not ‘seen’ by other conditions like (10.35)
or (10.38), which involve the norm of f(t,y).

This example is somehow generalised by a condition for global existence in the
future.

Proposition 10.21 Let f be continuous and locally Lipschitz in y, uniformly
in t, on Ω = I × Rn. If

y · f(t,y) ≤ 0 , ∀y ∈ Rn , ∀t ∈ I , (10.40)

the solution of the Cauchy problem (10.34) exists everywhere to the right of
t0, hence on J = I ∩ [t0,+∞). Moreover, one has

‖y(t)‖ ≤ ‖y0‖ , ∀t ∈ J . (10.41)

Proof. Dot-multiply the ODE by y:

y · y′ = y · f(t,y) .



450 10 Ordinary differential equations

As

y · y′ =
n∑

i=1

yi
dyi
dt

=
1

2

n∑
i=1

d

dt
y2i =

1

2

d

dt
‖y‖2 ,

we have
d

dt

(
1

2
‖y‖2

)
≤ 0 ,

whence ‖y(t)‖ ≤ ‖y0‖ for any t > t0 where the solution exists. Thus we
may use the Local Existence Theorem to extend the solution up to the
right end-point of I. �

A few examples will shed light on (10.40).

Examples 10.22

i) Let y′ = Ay, with A a real skew-symmetric matrix, in other words A satisfies
AT = −A. Then

y · f(y) = y ·Ay = 0 , ∀y ∈ Rn ,

because y ·Ay = yTAy = (Ay)Ty = yTATy = −yTAy, so this quantity must
be zero. Hence

d

dt

(
1

2
‖y‖2

)
= 0 ,

i.e., the map E(y(t)) = 1
2‖y(t)‖2 is constant in time. We call it a first integral

of the differential equation, or an invariant of motion. The differential system is
called in this case conservative.

ii) Take y′ = −(Ay + g(y)), with A a symmetric, positive-definite matrix, and
g(y) of components (

g(y)
)
i
= φ(yi) , 1 ≤ i ≤ n ,

where φ : R→ R is continuous, φ(0) = 0 and sφ(s) ≥ 0, ∀s ∈ R (e.g., φ(s) = s3

an in the initial discussion). Recalling (4.18), we have

y · f(y) = − (y ·Ay + y · g(y)) ≤ −y ·Ay ≤ −λ∗‖y‖2 ≤ 0 , ∀y ∈ Rn ,

with λ∗ > 0. Setting as above E(y) = 1
2‖y‖2, one has

d

dt
E(y(t)) ≤ −λ∗‖y(t)‖2 , ∀t > t0 ,

from which we deduce

E(y(t)) ≤ e−2λ∗(t−t0)E(y0) , ∀t > t0 ;

therefore E(y(t)) decays exponentially at t increases. Equivalently,

‖y(t)‖ ≤ e−λ∗(t−t0)‖y0‖ , t > t0 ,

and all solutions converge exponentially to 0 as t→ +∞. In Sect. 10.8 we shall
express this by saying the constant solution y = 0 is asymptotically uniformly
stable, and speak of a dissipative system.
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Assuming furthermore φ convex, one could prove that two solutions y, z starting
at y0, z0 satisfy

‖y(t)− z(t)‖ ≤ e−λ∗(t−t0)‖y0 − z0‖ , t > t0 ,

a more accurate inequality than (10.36) for t > t0.

The map y �→ E(y) is an example of a Lyapunov function for the differential
system, relative to the origin. The name denotes any regular map V : B(0)→ R,
where B(0) is a neighbourhood of the origin, satisfying

• V (0) = 0 , V (y) > 0 on B(0) \ {0} ,
• d

dt
V (y(t)) ≤ 0 for any solution y of the ODE on B(0). �

10.4.5 First integrals

Take an autonomous equation y′ = f(y), with Lipschitz f : D ⊆ Rn → Rn.

Definition 10.23 A scalar map Φ : D → R is a first integral of the
equation if Φ is constant along every orbit of the differential equation, i.e.,

Φ(y(t)) = constant for every solution y(t) of the ODE .

A first integral is naturally defined up to an additive constant.
If the equation has a first integral Φ, each orbit will be contained in a level set of

Φ. The study of level sets can then provide useful informations about the solution’s
global existence. For instance, if the orbit of a particular solution belongs to a level
set that does not touch the boundary of D, we can be sure the solution will exist
at any time.

Likewise, the study of the solutions’ asymptotic stability (see Sect. 10.8) could
profit from what the level sets of a first integral can tell.

To start with, consider the autonomous equation of order two

y′′ + g(y) = 0 , (10.42)

where g : R→ R is C1. Such kind of equations play a paramount role in Mechanics
(read, Newton’s law of motion). Another incarnation is equation (10.11) regulating
a simple pendulum.

Let Π be an arbitrary primitive of g on R, so that dΠ
dy (y) = g(y) , ∀y ∈ R. If

y = y(t) is a solution for t ∈ J then, we can multiply (10.42) by y′, to get

d

dt

(
dy

dt

)
dy

dt
+
dΠ

dy

dy

dt
= 0 ,

i.e.,
d

dt

(
1

2
(y′(t))2 +Π(y(t))

)
= 0 , ∀t ∈ J .
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Thus

E(y, y′) =
1

2
(y′)2 +Π(y)

is constant for any solution. One calls Π(y) the potential energy of the mechan-
ical system described by the equation, and K(y′) = 1

2 (y
′)2 is the kinetic energy.

The total energy E(y, y′) = K(y′) +Π(y) is therefore preserved during motion
(the work done equals the gain of kinetic energy).

The function E turns out to be a first integral, in the sense of Definition 10.23,
for the autonomous vector equation y′ = f(y) given by{

y′1 = y2

y′2 = −g(y1) ,
(10.43)

equivalent to (10.42) by putting y1 = y, y2 = y′. In other words Φ(y) = E(y1, y2) =
1
2y

2
2 + Π(y1), and we may study the level curves of Φ in phase space y1y2 to

understand the solutions’ behaviour. At the end of the section we will see an
example, the undamped pendulum.

Generalising this picture we may say that an autonomous equation y′ = f(y)
over a connected open set D of the plane admits infinitely many first integrals if
f is the curl of a scalar field Φ on D, i.e., f(y) = curlΦ(y).

Property 10.24 Let Φ be a C1 field on D ⊆ R2. The equation

y′ = curlΦ (10.44)

admits Φ as first integral.

Proof. If y = y(t) is a solution defined for t ∈ J , by the chain rule

d

dt
Φ(y) = (gradΦ) · dy

dt
= (gradΦ) · (curlΦ) = 0 ,

because gradient and curl are orthogonal in dimension two. �

Bearing in mind Sect. 7.2.1 with regard to level cuves, equation (10.44) forces y
to move along a level curve of Φ.

By Sect. 9.6, a sufficient condition to have f = curlΦ is that f is divergence-
free on a simply connected, open set D. In the case treated at the beginning,
f(y) = (y2,−g(y1)) = curlE(y1, y2), and div f = 0 over all D = R2.

To conclude, equation (10.44) extends to dimension 2n, if y = (y1,y2) ∈
Rn × Rn = R2n is defined by a system of 2n equations
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⎧⎪⎪⎨⎪⎪⎩
y′
1 =

∂Φ

∂y2

y′
2 = − ∂Φ

∂y1
,

(10.45)

where Φ is a map in 2n variables and each partial derivative symbol denotes the n
components of the gradient of Φ with respect to the indicated vectorial variable.
Such a system is called a Hamiltonian system, and the first integral Φ is known
as aHamiltonian (function) of the system. An example, that generalises (10.42),
is provided by the equation of motion of n bodies

z′′ + gradΠ(z) = 0 , z ∈ Rn , (10.46)

with Π a function of n variables. Proceeding as for n = 1 we can transform the
second-order equation into a system of order one like (10.45). The Hamiltonian Φ
is the total energy Φ(y1,y2) = E(z, z′) = 1

2‖z′‖2 +Π(z) of the system.
When D = Rn, it can be proved that the ODE’s solutions are defined at all

times if the potential energy is bounded from below.

Application: the simple pendulum (III). The example continues from p. 448.
The simple pendulum (α = 0) is governed by

dθ2

dt2
+ k sin θ = 0 .

The equation is of type (10.42), with g(θ) = k sin θ; therefore the potential energy
is Π(θ) = c−k cos θ, with arbitrary constant c. It is certainly bounded from below,
confirming the solutions’ existence at any instant of time t ∈ R. The customary
choice c = k makes the potential energy vanish when θ = 2π�, � ∈ Z, in corres-
pondence with the lowest point S of the bob, and maximises Π(θ) = 2k > 0 for
θ = (2� + 1)π, � ∈ Z, when the highest point I is reached. With that choice the
total energy is

E(θ,θ ′) =
1

2
(θ′)2 + k(1− cos θ) ,

or

E(y1, y2) =
1

2
y22 + k(1− cos y1) (10.47)

in the phase space of coordinates y1 = θ, y2 = θ′. Let us examine this map on R2:
it is always ≥ 0 and vanishes at (2π�,0), � ∈ Z, which are thus absolute minima:
the pendulum is still in the position S. The gradient ∇E(y1, y2) = (k sin y1, y2) is
zero at (π�,0), � ∈ Z, so we have additional stationary points

(
(2�+1)π, 0

)
, � ∈ Z,

easily seen to be saddle points. The level curves E(y1, y2) = c ≥ 0, defined by

y2 = ±
√
2(c− k) + 2k cos y1 ,

have the following structure (see Fig. 10.8):
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y1

y2

π−π
0

c > 2k

c = 2k
c < 2k

Figure 10.8. The orbits of a simple pendulum coincide with the level curves of the
energy E(y1, y2)

• When c < 2k, they are closed curves encircling the minima of E; they cor-
respond to periodic oscillations between θ = −θ0 and θ0 (plus multiples of
2π), where θ0 is determined by requiring that all energy c be potential, that is
k(1− cos θ0) = c.

• When c = 2k, the curve’s branches connect two saddle points of E, and corres-
pond to the limit situation in which the bob reaches the top equilibrium point
I with zero velocity (in an infinite time).

• When c > 2k, the curves are neither closed nor bounded; they correspond to
a minimum non-zero velocity, due to which the pendulum moves past the top
point and then continues to rotate around O, without stopping.

(Continues on p. 486.) �)

10.5 Linear systems of first order

The next two sections concentrate on vectorial linear equations of order one

y′ = A(t)y + b(t) , (10.48)

where A is a map from an interval I of the real line to the vector space Rn×n of
square matrices of order n, while b is a function from I to Rn. We shall assume A
and b are continuous in t. Equation (10.48) is shorthand writing for a system of
n differential equations in n unknown functions
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y′1 = a11(t)y1 + a12(t)y2 + . . .+ a1n(t)yn + b1(t)

y′2 = a21(t)y1 + a22(t)y2 + . . .+ a2n(t)yn + b2(t)

...

y′n = an1(t)y1 + an2(t)y2 + . . .+ ann(t)yn + bn(t) .

Remark 10.25 The concern with linear equations can be ascribed to the fact
that many mathematical models are regulated by such equations. Models based
on non-linear equations are often approximated by simpler and more practicable
linear versions, by the process of linearisation. The latter essentially consists in
arresting the Taylor expansion of a non-linear map to order one, and disregarding
the remaining part.

More concretely, suppose f is a C1 map on Ω in the variable y and that ȳ(t),
t ∈ J ⊆ I, is a known solution of the ODE y′ = f(t,y) (e.g., a constant solution
ȳ(t) = ȳ0). Then the solutions y(t) that are ‘close to ȳ(t)’ can be approximated
as follows: for any given t ∈ J , the expansion of y �→ f(t,y) around the point ȳ(t)
reads

f(t,y) = f
(
t, ȳ(t)

)
+ Jyf

(
t, ȳ(t)

)(
y − ȳ(t)

)
+ g(t,y) (10.49)

with g(t,y) = o
(
y − ȳ(t)

)
for y → ȳ(t); Jyf denotes the Jacobian matrix of f

with respect to y only. Set

A(t) = Jyf
(
t, ȳ(t)

)
and note that f

(
t, ȳ(t)

)
= ȳ′(t), ȳ being a solution. Substituting (10.49) in y′ =

f(t,y) gives
(y − ȳ)′ = A(t)(y − ȳ) + g(t,y) ;

ignoring the infinitesimal part g then, we can approximate the solution y by setting
z ∼ y − ȳ and solving the linear equation

z′ = A(t)z ;

if y0 is defined by the initial condition y(t0) = y0 at t0 ∈ J , z will be determined
by the datum z(t0) = y0 − ȳ(t0). Once z is known, the approximation of y(t) is
ỹ(t) = ȳ(t) + z(t).

In the special case of autonomous systems with a constant solution ȳ0, the
matrix A is not time-dependent. �

We will show in the sequel that equation (10.48) admits exactly n linearly
independent solutions; as claimed in Sect. 10.2, therefore, the general integral
depends on n arbitrary constants that may be determined by assigning a Cauchy
condition at a point t0 ∈ I. Furthermore, ifA does not depend on t, so that the aij
are constants, the general integral can be recovered from the (possibly generalised)
eigenvalues and eigenvectors of A.

We begin by tackling the homogeneous case, in other words b = 0.
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10.5.1 Homogeneous systems

Consider the homogeneous equation associated to (10.48), namely

y′ = A(t)y , t ∈ I , (10.50)

and let us prove a key fact.

Proposition 10.26 The set S0 of solutions to (10.50) is a vector space of
dimension n.

Proof. Since the equation is linear, any linear combination of solutions is still a
solution, making S0 a vector space.
To compute its dimension, we shall exhibit an explicit basis. To that end,
fix an arbitrary point t0 ∈ I and consider the n Cauchy problems{

y′ = A(t)y , t ∈ I ,

y(t0) = ei ,

where {ei}i=1,...,n is the canonical basis of Rn. Recalling Corollary 10.20,
each system admits a unique solution y = ui(t) of class C1 on I. The maps

ui, i = 1, . . . , n, are linearly independent: in fact, if y =

n∑
i=1

αiui is the

zero map on I, then

n∑
i=1

αiui(t) = 0 for any t ∈ I, so also for t = t0

n∑
i=1

αiui(t0) =
n∑

i=1

αiei = 0 ,

whence αi = 0, ∀i, proving the linear independence of the ui.
Eventually, if y = y(t) is an element in S0, we write the vector y0 = y(t0)

as y0 =

n∑
i=1

y0iei; then

y(t) =

n∑
i=1

y0iui(t) ,

because both sides solve the equation and agree on t0, and the solution is
unique. �

The set {ui}i=1,...,n of maps satisfying{
u′
i = A(t)ui , t ∈ I ,

ui(t0) = ei ,
(10.51)
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is an example of a fundamental system of solutions.

Definition 10.27 Any basis of S0 is called a fundamental system of solu-
tions of the ODE (10.50).

There is a useful way to check whether a set of n solutions to (10.50) is a
fundamental system.

Proposition 10.28 Let w1, . . . ,wn ∈ S0.

a) If at a point t0 ∈ I the vectors w1(t0), . . . ,wn(t0) are linearly independent,
w1, . . . ,wn constitute a fundamental system of solutions.

b) If w1, . . . ,wn form a fundamental system of solutions, at each point t0 ∈ I
the vectors w1(t0), . . . ,wn(t0) are linearly independent.

Proof. a) It suffices to show that w1, . . . ,wn are linearly independent. Suppose
then there exist coefficients ci such that

n∑
i=1

ciwi(t) = 0 , ∀t ∈ I .

Choosing t = t0, the hypothesis forces every ci to vanish.
b) Suppose there exist c1, . . . , cn with

n∑
i=1

ciwi(t0) = 0 .

Define the map z(t) =
n∑

i=1

ciwi(t); since it solves the Cauchy problem

{
z′ = Az

z(t0) = 0 ,

by uniqueness we have z(t) = 0 for any t ∈ I. Therefore all ci must be
zero. �

Owing to the proposition, the linear dependence of n vector-valued maps on I
reduces to the (much easier to verify) linear dependence of n vectors in Rn.

We explain now how a fundamental system permits to find all solutions
of (10.50) and also to solve the corresponding initial value problem. Given then
a fundamental system {w1, . . . ,wn}, for any t ∈ I we associate to it the n × n
matrix
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W (t) =
(
w1(t), . . . ,wn(t)

)
whose columns are the vectors wi(t); by part b) above, the matrix W (t) is
non-singular since its columns are linearly independent. This matrix is called
the fundamental matrix, and using it we may write the n vectorial equations
w′

i = A(t)wi, i = 1, . . . , n, in the compact form

W ′ = A(t)W . (10.52)

Every solution y = y(t) of (10.50) is represented as

y(t) =

n∑
i=1

ciwi(t)

for suitable constants ci ∈ R. Equivalently, setting c = (c1, . . . , cn)
T , we have

y(t) = W(t) c . (10.53)

The solution to the generic Cauchy problem{
y′ = Ay on I ,

y(t0) = y0 ,
(10.54)

is found by solving the linear system

W(t0) c = y0 . (10.55)

Therefore we may write the solution, formally, as

y(t) = W(t)W−1(t0)y0 .

We can simplify this by choosing the fundamental matrix U(t) associated with the
special basis {ui} defined by (10.51); it arises as solution of the Cauchy problem
in matrix form {

U ′ = A(t)U on I ,

U(t0) = I ,
(10.56)

and allows us to write the solution to (10.54) as

y(t) = U(t)y0 .

We put on hold, for the time being, the study of equation (10.50) to discuss
non-homogeneous systems. We will resume it in Sect. 10.6 under the hypothesis
that A be constant.
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10.5.2 Non-homogeneous systems

Indicate by Sb the set of all solutions to (10.48). This set can be characterised
starting from a particular solution, also known as particular integral.

Proposition 10.29 Given a solution yp of equation (10.48), Sb is the affine
space Sb = yp + S0.

Proof. If y ∈ Sb, by linearity y − yp solves the homogeneous equation (10.50),
hence y − yp ∈ S0. �

The proposition says that for any given fundamental system w1, . . . ,wn of solu-
tions to the homogeneous equation, each solution of (10.48) has the form

y(t) = W(t) c + yp(t) =

n∑
i=1

ciwi(t) + yp(t)

for some c = (c1, . . . , cn)
T ∈ Rn.

An alternative route to arrive at the general integral of (10.48) is the method of
variation of constants, already seen in Sect. 10.3.3 for scalar equations. By (10.53)
we look for a solution of the form

y(t) = W(t) c(t)

with c(t) differentiable to be determined. Substituting, we obtain

W ′(t) c(t) +W(t) c′(t) = A(t)W(t) c(t) + b(t) .

By (10.52) we arrive at

W(t) c′(t) = b(t) , from which c′(t) = W−1(t) b(t) ,

i.e.,

c(t) =

∫
W−1(t) b(t) dt , (10.57)

where the indefinite integral denotes the primitive of the vector W−1(t) b(t), com-
ponent by component. The general integral of (10.48) is then

y(t) = W(t)

∫
W−1(t) b(t) dt . (10.58)
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Example 10.30 Consider the equation

y′ =

(
2 −2
−2 2

)
y +

⎛⎜⎜⎝
1√

1− t2
− e4t

1 + t2

1√
1− t2

− e4t

1 + t2

⎞⎟⎟⎠ . (10.59)

A fundamental system of solutions of the homogeneous equation is

w1(t) =

(
1
1

)
, w2(t) = e4t

(
1
−1
)

(as we shall explain in the next section). The fundamental matrix and its inverse
are, thus,

W (t) =

(
1 e4t

1 −e4t
)

, W−1(t) =
1

2

(
1 1

e−4t −e−4t

)
.

Consequently

W−1(t)b(t) =

⎛⎜⎝
1√

1− t2
1

1 + t2

⎞⎟⎠ ,

so ∫
W−1(t)b(t) dt =

(
arcsin t+ c1

arctan t+ c2

)
.

Due to (10.58), the general integral is

y(t) =

(
arcsin t+ c1 + e4t(arctan t+ c2)

arcsin t+ c1 − e4t(arctan t+ c2)

)
. �

Whenever we have to solve the Cauchy problem{
y′ = A(t)y + b(t) on I ,

y(t0) = y0 ,
(10.60)

it is convenient to write (10.57) as

c(t) = c+

∫ t

t0

W−1(s) b(s) ds .

with arbitrary c ∈ Rn. Equation (10.58) then becomes

y(t) = W(t)c+

∫ t

t0

W(t)W−1(s) b(s) ds ;

putting t = t0 gives y(t0) = W(t0)c, so c is still determined by solving (10.55).
Altogether, the solution to the Cauchy problem is

y(t) = yhom(t) + yp(t) ,
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where yhom(t) = W(t)W−1(t0)y0 solves the homogeneous system (10.54), while

yp(t) =

∫ t

t0

W(t)W−1(s) b(s) ds (10.61)

solves the non-homogeneous problem with null datum at t = t0.

Example 10.31 Let us solve the Cauchy problem (10.60) for the same equation
of the previous example, and with y(0) = (4, 2)T . The general integral found
earlier is

y(t) =

(
c1 + e4tc2

c1 − e4tc2

)
+

(
arcsin t+ e4t arctan t

arcsin t− e4t arctan t

)
;

the first bracket represents the solution yhom of the associated homogeneous
equation, and the second is the particular solution yp vanishing at t = 0. The
constants c1, c2 are found by setting t = 0 and solving the linear system(

1 1
1 −1

)(
c1
c2

)
=

(
4
2

)
,

whence c1 = 3 and c2 = 1. �

10.6 Linear systems with constant matrix A

We are ready to resume equation (10.48), under the additional assumption that A
is independent of time. We wish to explain a procedure for finding a fundamental
system of solutions for

y′ = Ay on I = R . (10.62)

The method relies on the computation of the eigenvalues of A, the roots of the
so-called characteristic polynomial of the equation, defined by

χ(λ) = det(A− λI) ,

and the corresponding eigenvectors (perhaps generalised, and defined in the se-
quel).

At the heart of the whole matter lies an essential property:

if λ is an eigenvalue of A with eigenvector v, the map

w(t) = eλtv

solves equation (10.62) (in C, if λ is complex).
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Indeed, using (10.28) and Av = λv, we have

w′(t) =
d

dt

(
eλtv
)
=

deλt

dt
v = λeλt v = eλtAv = A

(
eλtv
)
= Aw(t) .

At this point the treatise needs to split in three parts: first, we describe the
explicit steps leading to a fundamental system, then explain the procedure by
means of examples, and at last provide the theoretical backgrounds.

To simplify the account, the case where A is diagonalisable is kept separate.
Diagonalisable matrices include prominent cases, like symmetric matrices (whose
eigenvalues and eigenvectors are real) and more generally normal matrices (see
Sect. 4.2). Only afterwards we examine the more involved situation of a matrix
that cannot be diagonalised.

In the end we illustrate a solving method for non-homogeneous equations, with
emphasis on special choices of the source term b(t).

10.6.1 Homogeneous systems with diagonalisable A

Suppose A has � real eigenvalues λ1, . . . , λ� and n− � complex eigenvalues which,
being A real, come in m complex-conjugate pairs λ�+1, λ�+1, . . . , λ�+m, λ�+m; ei-
genvalues are repeated according to their algebraic multiplicity, hence �+2m = n.
Each real λk, 1 ≤ k ≤ �, is associated to a real eigenvector vk, while to each pair
(λ�+k, λ�+k), 1 ≤ k ≤ m, corresponds a pair (v�+k,v�+k) of complex-conjugate
eigenvectors. As A is diagonalisable, we can assume the eigenvectors are linearly
independent (over C).

• For each real eigenvalue λk, 1 ≤ k ≤ �, define the map

wk(t) = eλktvk .

• For each pair (λ�+k, λ�+k), 1 ≤ k ≤ m, we decompose eigenvalues and eigen-

vectors into real and imaginary parts: λ�+k = σk + iωk, v�+k = v
(1)
k + iv

(2)
k .

Define maps

w
(1)
k (t) = Re (eλ�+ktv�+k

)
= eσkt

(
v
(1)
k cosωkt− v

(2)
k sinωkt

)
,

w
(2)
k (t) = Im (eλ�+ktv�+k

)
= eσkt

(
v
(1)
k sinωkt+ v

(2)
k cosωkt

)
.

Proposition 10.32 With the above conventions, the set of functions

{w1, . . . ,w�,w
(1)
1 ,w

(2)
1 , . . . ,w

(1)
m ,w

(2)
m } is a fundamental system of solutions

to (10.62).
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The general integral is then of the form

y(t) =

�∑
k=1

ckwk(t) +

m∑
k=1

(
c
(1)
k w

(1)
k (t) + c

(2)
k w

(2)
k (t)

)
, (10.63)

with c1, . . . , c�, c
(1)
1 , c

(2)
1 , . . . , c

(1)
m , c

(2)
m ∈ R.

The above is nothing but the general formula (10.53) adapted to the present situ-
ation; W (t) is the fundamental matrix associated to the system.

Examples 10.33

i) The matrix

A =

(−1 2
2 −1

)
admits eigenvalues λ1 = 1, λ2 = −3 and corresponding eigenvectors

v1 =

(
1
1

)
and v2 =

(
1
−1
)

.

As a consequence, (10.63) furnishes the general integral of (10.62):

y(t) = c1e
t

(
1
1

)
+ c2e

−3t

(
1
−1
)
=

(
c1e

t + c2e
−3t

c1e
t − c2e

−3t

)
.

For a particular solution we can consider the Cauchy problem with initial datum

y(0) = y0 =

(
2
1

)
for example, corresponding to the linear system{

c1 + c2 = 2

c1 − c2 = 1 .

Therefore c1 = 3/2, c2 = 1/2 and the solution reads

y(t) =
1

2

(
3et + e−3t

3et − e−3t

)
.

ii) The matrix

A =

⎛⎝ 1 1 0
0 −1 1
0 −10 5

⎞⎠
has eigenvalues λ1 = 1, λ2 = 2+ i and its conjugate λ2 = 2− i. The eigenvectors
are easy to find:

v1 =

⎛⎝ 1
0
0

⎞⎠ , v2 =

⎛⎝ 1
1 + i
2 + 4i

⎞⎠ =

⎛⎝ 1
1
2

⎞⎠+ i

⎛⎝ 0
1
4

⎞⎠ , v2 =

⎛⎝ 1
1
2

⎞⎠− i

⎛⎝ 0
1
4

⎞⎠ .
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Therefore (10.63) (we write c2 = c
(1)
2 and c3 = c

(2)
2 for simplicity), tells us that

the general integral of (10.62) is

y(t) = c1e
t

⎛⎝ 1
0
0

⎞⎠+ c2e
2t

⎡⎣⎛⎝ 1
1
2

⎞⎠ cos t−
⎛⎝ 0
1
4

⎞⎠ sin t

⎤⎦+
+ c3e

2t

⎡⎣⎛⎝ 1
1
2

⎞⎠ sin t+

⎛⎝ 0
1
4

⎞⎠ cos t

⎤⎦

= c1

⎛⎝ 1
0
0

⎞⎠ et +

⎡⎣c2
⎛⎝ 1
1
2

⎞⎠− c3

⎛⎝ 0
1
4

⎞⎠⎤⎦ e2t cos t+
+

⎡⎣−c2
⎛⎝ 0
1
4

⎞⎠+ c3

⎛⎝ 1
1
2

⎞⎠⎤⎦ e2t sin t

=

⎛⎜⎝
c1e

t + c2e
2t cos t+ c3e

2t sin t

(c2 − c3)e
2t cos t+ (c3 − c2)e

2t sin t

(c2 − 4c3)e
2t cos t+ (2c3 − 4c2)e

2t sin t

⎞⎟⎠ .

�

Explanation. Since eigenvalues and eigenvectors of A may not be real, it is
convenient to think (10.62) within the complex field. Thus we view y = y(t) as a
map from R to Cn; the real part yr(t) and the imaginary part yi(t) solve the real
systems

y′
r = Ayr and y′

i = Ayi on I = R .

All subsequent operations are intended over C (clearly, complex arithmetic is
not necessary when A is diagonalisable over R, when all eigenvalues–hence all
eigenvectors–are real). Call Λ = diag(λ1, . . . , λn) the diagonal matrix with the ei-
genvalues as entries, and P = (v1, . . . ,vn) the square matrix with the eigenvectors
as columns. Thus A becomes

A = PΛP−1 . (10.64)

Let y be an arbitrary complex solution of (10.62); substituting (10.64) in equa-
tion (10.62), and multiplying by P−1 on the left, gives(

P−1y
)′
= Λ
(
P−1y

)
,

by associativity. Now setting

z = P−1y , i.e., y = Pz , (10.65)
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equation (10.62) becomes diagonal

z′ = Λz . (10.66)

In other words we obtain n equations

z′k = λkzk , 1 ≤ k ≤ n .

By Remark 10.5 these have solutions

zk(t) = dke
λkt , 1 ≤ k ≤ n ,

with dk ∈ C arbitrary constants. Using the diagonal matrix

eΛt = diag
(
eλ1t, . . . , eλnt

)
(10.67)

and the constant vector d = (d1, . . . , dn)
T ∈ Cn, we can write the solutions as

z(t) = eΛtd .

Writing in terms of the unknown y, by the second equation in (10.65), we have

y(t) = P eΛtd ; (10.68)

it is of the general form (10.53) with W (t) = P eΛt. Making the columns of this
matrix explicit, we have

y(t) = d1e
λ1tv1 + · · ·+ dne

λntvn = d1w1(t) + · · ·+ dnwn(t) , (10.69)

where
wk(t) = eλktvk , 1 ≤ k ≤ n .

The upshot is that every complex solution of equation (10.62) is a linear com-
bination (with coefficients in C) of the n solutions wk, which therefore are a
fundamental system in C.

To represent the real solutions, consider the generic eigenvalue λ with eigen-
vector v. Note that if λ ∈ R (so v ∈ Rn), the function w(t) = eλtv is a real solution
of (10.62). Instead, if λ = σ + iω ∈ C, so v = v(1) + iv(2) ∈ Cn, the functions

w(1)(t) = Re (eλtv) = eσt
(
v(1) cosωt− v(2) sinωt

)
,

w(2)(t) = Im (eλtv) = eσt
(
v(1) sinωt+ v(2) cosωt

)
,

are real solutions of (10.62); this is clear by taking real and imaginary parts of the
equation and remembering A is real.

In such a way, retaining the notation of Proposition 10.32, we obtain n real
solutions

w1(t), . . . ,w�(t) and w
(1)
1 (t),w

(2)
1 (t), . . . ,w(1)

m (t),w(2)
m (t) .
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There remains to verify they are linearly independent (over R). With the help of

Proposition 10.28 with t0 = 0, it suffices to show v1, . . . ,v�,v
(1)
1 ,v

(2)
1 , . . . ,v

(1)
m ,v

(2)
m

are linearly independent over R. An easy Linear Algebra exercise will show that
this fact is a consequence of the linear independence of the eigenvectors v1, . . . ,vn

over C (actually, it is equivalent).

Remark 10.34 Imposing the datum y(0) = y0 for t0 = 0 in (10.68), solution of
y′ = Ay, we find Pd = y0, so d = P−1y0. The solution of the Cauchy problem{

y′ = Ay on I = R ,

y(0) = y0

can therefore be represented as

y(t) = eAty0 , (10.70)

where we have used the exponential matrix

eAt = P eΛtP−1

The above formula generalises the expression y(t) = eaty0 for the solution to the
Cauchy problem y′ = ay, y(0) = y0 .

The representation (10.70) is valid also when A is not diagonalisable. In that
case though, the exponential matrix is defined otherwise

eAt =

∞∑
k=0

1

k!
(tA)

k
.

This formula is suggested by the power series (2.24) of the exponential function
ex; the series converges for any matrix A and for any t ∈ R. �

10.6.2 Homogeneous systems with non-diagonalisable A

By λ1, . . . , λp we number the distinct eigenvalues ofA, while μk denotes the algeb-
raic multiplicity of λk, i.e., the multiplicity as root of the characteristic polynomial
det(A−λI). Then n = μ1+. . .+μp. Callmk ≤ μk the geometric multiplicity of λk,
that is the maximum number of linearly independent eigenvectors vk,1, . . . ,vk,mk

relative to λk. We remind A is diagonalisable if and only if the algebraic and geo-
metric multiplicities of every eigenvalue coincide; from now on we supposemk < μk

for at least one λk. Then it is possible to prove there are dk = μk −mk vectors
rk,1, . . . , rk,dk

, called generalised eigenvectors associated to λk, such that the
μk vectors vk,1, . . . ,vk,mk

, rk,1, . . . , rk,dk
are linearly independent. Moreover, the

collection of eigenvectors and generalised eigenvectors, for k = 1, . . . , p, builds a
basis of Cn.
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Let us see how to construct generalised eigenvectors associated to λk. For every

eigenvector vk,�, 1 ≤ � ≤ mk, define r
(0)
k,� = vk,� and seek whether a solution of

(A− λkI)r = r
(0)
k,� (10.71)

exists. The matrix A − λkI is singular, by definition of eigenvalue. The system
may not have solutions, in which case the eigenvector vk,� will not furnish gener-

alised eigenvectors. If however the system is consistent, a solution r
(1)
k,� will be a

generalised eigenvector associated to λk. Now we substitute r
(1)
k,� to r

(0)
k,� in (10.71),

and repeat the argument. This will produce a cascade of linear systems

(A− λkI)r
(1)
k,� = r

(0)
k,� ,

(A− λkI)r
(2)
k,� = r

(1)
k,� ,

...

(10.72)

that stops once the system (A−λkI)r = r
(h)
k,� , h ≥ 0, has no solutions. As a result,

we obtain qk,� = h − 1 generalised eigenvectors. Varying � = 1, . . . ,mk will yield
all the dk = qk,1 + . . .+ qk,mk

generalised eigenvectors relative to λk.
Let us now move to fundamental systems of solutions for (10.62).

• For every eigenvalue λk (1 ≤ k ≤ p) and associated eigenvector vk,� (1 ≤ � ≤
mk), define

w
(0)
k,�(t) = eλktvk,� .

• If qk,� > 0, so if there are generalised eigenvectors r
(h)
k,� (1 ≤ h ≤ qk,�), build

maps

w
(1)
k,�(t) = eλkt

(
t r

(0)
k,� + r

(1)
k,�

)
= eλkt

(
tvk,� + r

(1)
k,�

)
,

w
(2)
k,�(t) = eλkt

(1
2
t2r

(0)
k,� + t r

(1)
k,� + r

(2)
k,�

)
,

and so on; in general, we set

w
(h)
k,� (t) = eλkt

h∑
j=0

1

(h− j)!
th−jr

(j)
k,� , 1 ≤ h ≤ qk,� .

Proposition 10.35 With the above notations, the set of functions {w(h)
k,� :

1 ≤ k ≤ p, 1 ≤ � ≤ mk, 0 ≤ h ≤ qk,�} is a fundamental system of solutions
over C of (10.62).
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Hence the general integral reads

y(t) =

p∑
k=1

mk∑
�=1

qk,�∑
h=0

c
(h)
k� w

(h)
k,� (t) , (10.73)

with c
(h)
k� ∈ C.

If we wish to represent real solutions only, observe that λk ∈ R implies all

eigenvectors (proper and generalised) are real, hence also the maps w
(h)
k,� (t), built

from them, are real. In presence of a complex-conjugate pair λk, λk′ = λk of
eigenvalues, the corresponding eigenvectors (generalised or not) will crop up in
conjugate pairs. For that reason it is enough to replace each pair of complex-
conjugate functions, defined by those vectors, with their real and imaginary parts.
The construction of a real fundamental system for (10.62) is thus complete.

Remark 10.36 We have assumed A not diagonalisable. But actually the above
recipe works even when the matrix can be diagonalised (when the algebraic mul-
tiplicity is greater than 1, one cannot know a priori whether a matrix is diagon-
alisable or not, except in a few cases, e.g., symmetric matrices). If the matrix is
diagonalisable, systems (10.71) will be inconsistent, rendering (10.73) equivalent
to the solution of Sect. 10.6.1. �

Examples 10.37

i) The matrix

A =

⎛⎝ 4 0 −1
1 5 1
1 0 2

⎞⎠
has eigenvalues λ1 = 5, λ2 = 3. The first has algebraic multiplicity μ1 = 1, and

v11 = (0, 1, 0)T is the associated eigenvector. The second eigenvalue has algebraic

multiplicity μ2 = 2 and geometric m2 = 1. The vector v21 = (1,−1, 1)T is

associated to λ2. By solving (A−3I)r = v21 we obtain a generalised eigenvector

r
(1)
21 = (1,−1, 0)T which, together with v11, v21, gives a basis of R

3. Therefore,

the general integral of (10.62) is

y(t) = c1e
5t

⎛⎝ 0
1
0

⎞⎠+ c2e
3t

⎛⎝ 1
−1
1

⎞⎠+ c3e
3t

⎡⎣t
⎛⎝ 1
−1
1

⎞⎠+

⎛⎝ 1
−1
0

⎞⎠⎤⎦ .

ii) The matrix

A =

⎛⎝ 3 0 0
0 3 0
1 0 3

⎞⎠
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has a unique eigenvalue λ = 3 with geometric multiplicity m = 2, in fact v11 =
(0, 1, 0)T and v12 = (0, 0, 1)T are linearly independent eigenvectors associated to
it. The system

(A− 3I)r = v11

has no solutions, whereas

(A− 3I)r = v12

gives, for instance, r
(1)
12 = (1, 0, 0)T .

Hence, the general integral of (10.62) is

y(t) = c1e
3t

⎛⎝ 0
1
0

⎞⎠+ c2e
3t

⎛⎝ 0
0
1

⎞⎠+ c3e
3t

⎡⎣t
⎛⎝ 0
0
1

⎞⎠+

⎛⎝ 1
0
0

⎞⎠⎤⎦ .

iii) Consider

A =

⎛⎝ 1 5 0
0 1 0
4 0 1

⎞⎠
with one eigenvalue λ = 1 and one eigenvector v11 = (0, 0, 1)T (geometric mul-
tiplicity m = 1). As the set of all eigenvectors is a basis of R3, equations (10.72)
will spawn two generalised eigenvectors. In fact

(A− I)r
(1)
11 = v11

(A− I)r
(2)
11 = r

(1)
11

are solved by r
(1)
11 = (1/4, 0, 0)T and r

(2)
11 = (0, 1/20, 0)T . The general integral

reads

y(t) = c1e
t

⎛⎝ 0
0
1

⎞⎠+ c2e
t

⎡⎣t
⎛⎝ 0
0
1

⎞⎠+

⎛⎝ 1/4
0
0

⎞⎠⎤⎦+

+c3e
t

⎡⎣1
2
t2

⎛⎝ 0
0
1

⎞⎠+ t

⎛⎝ 1/4
0
0

⎞⎠+

⎛⎝ 0
1/20
0

⎞⎠⎤⎦ .

�

Explanation. All the results about eigenvectors, both proper and generalised,
can be proved starting from the so-called Jordan canonical form of a matrix,
whose study goes beyond the reach of the course.

What we can easily do is account for the linear independence of the maps

w
(h)
k,� (t) of Proposition 10.35. Taking t0 = 0 in Proposition 10.28 gives

w
(h)
k,� (0) = r

(h)
k,�

for any k, �, h, so the result follows from the analogue property for A.
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10.6.3 Non-homogeneous systems

In the light of Proposition 10.29, a non-homogeneous equation

y′ = Ay + b(t) (10.74)

can be solved by simply finding a particular integral yp.
The method of variation of parameters, and especially formula (10.61), provides

us with a general means. However, in many situations the source term b(t) can be
broken into elementary functions like exponentials, polynomials or trigonometric
maps. Then a particular integral of the same elementary type is usually easy to
find.

Henceforth we shall call a polynomial any function p(t), q(t), . . . from R to Rn

whose components are real algebraic polynomials; a polynomial has degree m if
the maximum degree of the components is m, in which case it can be written as

q(t) = c0t
m + c1t

m−1 + . . .+ cm−1t+ cm ,

with cj ∈ Rn and c0 �= 0.
Let us suppose that

b(t) = eαtp(t) (10.75)

with α ∈ R and p(t) a degree-m polynomial. Then there exists a particular integral

yp(t) = eαtq(t) , (10.76)

where q(t) is a polynomial of degree

• m if α is not an eigenvalue of A,
• m+ μ if α is an eigenvalue of algebraic multiplicity μ ≥ 1.

Borrowing from Physics, one refers to the latter situation as resonance.
The undetermined coefficients of q(t) are found by substituting (10.76) in equa-

tion (10.74), simplifying the exponential terms and matching the coefficients of the
corresponding powers of t. This produces a series of linear systems with matrix
A−αI that allow to determine solutions c0, c1, . . . , cm+μ starting from the highest
power of t. In case of resonance, A−αI is singular; then the first system just says
that c0 is an eigenvector of A, and the other systems require compatibility condi-
tions to be solved. Example 10.38 ii) illustrates a situation of this type, detailing
the computation to be performed.

If the source term looks like

b(t) = eαtp(t) cosωt or b(t) = eαtp(t) sinωt , (10.77)
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with α ∈ R, p(t) a polynomial of degree m, ω �= 0, then a particular integral will
be

yp(t) = eαt
(
q1(t) cosωt+ q2(t) sinωt

)
(10.78)

with q1(t), q2(t) polynomials of degree

• m if α+ iω is not eigenvalue of A,
• m+ μ if α+ iω is an eigenvalue of algebraic multiplicity μ ≥ 1.

The latter case is once again called of resonance. The polynomials’ undetermined
coefficients are found as before, preliminarly separating terms with cosωt from
those with sinωt.

Examples 10.38

i) Find a particular integral of (10.74), where

A =

⎛⎝ 0 −1 0
1 0 0
1 0 2

⎞⎠ and b(t) =

⎛⎝ 0
t
t2

⎞⎠ .

Referring to (10.75), α = 0, p(t) = b0t
2+b1t with b0 = (0, 0, 1)T , b1 = (0, 1, 0)T

(and b2 = 0). Since α is not a root of the characteristic polynomial χ(λ) =
(2− λ)(λ2 + 1), we look for a particular integral

yp(y) = q(t) = c0t
2 + c1t+ c2 .

Substituting in (10.74), we have

2c0t+ c1 = Ac0t
2 +Ac1t+Ac2 + b0t

2 + b1t ,

so comparing terms yields the cascade of systems⎧⎨⎩
Ac0 = −b0
Ac1 = 2c0 − b1

Ac2 = c1 .

These give c0 = (0, 0,−1/2)T , c1 = (−1, 0, 0)T and c2 = (0, 1, 0)T , and a partic-
ular integral is then

yp(t) =

⎛⎝ 0
0

−1/2

⎞⎠ t2 +

⎛⎝−10
0

⎞⎠ t+

⎛⎝ 0
1
0

⎞⎠ =

⎛⎝ −t
1

− 1
2 t

2

⎞⎠ .

ii) Consider equation (10.74) with

A =

(
9 −4
8 −3

)
and b(t) = et

(
1
0

)
.

As α = 1 is a root of the characteristic polynomial χ(λ) = (λ− 5)(λ− 1), we are
in presence of resonance, so we must try to find a particular integral of the form

yp(t) = et(c0t+ c1) .

Substituting and simplifying, we have

c0 + c0t+ c1 = Ac0t+Ac1 + b0
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where b0 = (1, 0)T , and so {
(A− I)c0 = 0

(A− I)c1 = c0 − b0 .

The first system yields an eigenvector c0 = (γ, 2γ)T associated to λ = 1, for some
γ ∈ R. This constant γ is fixed requiring the second system to be consistent,
meaning c0 − b0 is a linear combination of the columns of A − I. But that
matrix has rank 1 since the columns are linearly dependent, so the condition is
that c0−b0 is a multiple of another column, (γ−1, 2γ)T = k(1, 1)T ; this implies
γ − 1 = 2γ, so γ = −1. Substituting gives c0 = (−1,−2)T and c1 = (1, 5/2)T ,
for example. In conclusion, a particular integral has the form

yp(t) = et
[(−1

−2
)
t+

(
1
5/2

)]
= et

( −t+ 1
−2t+ 5/2

)
.

iii) Find a particular integral of (10.74) with

A =

⎛⎝ 0 −1 0
1 0 0
0 1 −1

⎞⎠ and b(t) =

⎛⎝ 1
0
0

⎞⎠ sin 2t .

Referring to (10.77), now α = 0, p(t) = (1, 0, 0)T = p0 and ω = 2. The complex
number α+ iω = 2i is no eigenvalue of A (these are −1, ±i), so (10.78) will be

yp(t) = q1 cos 2t+ q2 sin 2t

with q1, q2 ∈ R3. Let us substitute in (10.74) to get

−2q1 sin 2t+ 2q2 cos 2t = Aq1 cos 2t+Aq2 sin 2t+ p0 sin 2t ;

comparing the corresponding terms we obtain the two linear systems{−2q1 = Aq2 + p0

2q2 = Aq1 ,

solved by q1 = (−2/3, 0, 1/6)T , q2 = (0,−1/3,−1/12)T . We conclude that a
particular integral is given by

yp(t) =

⎛⎝−2/30
1/6

⎞⎠ cos 2t−
⎛⎝ 0

1/3
1/12

⎞⎠ sin 2t = − 1

12

⎛⎝ 8 cos 2t
4 sin 2t

sin 2t− 2 cos 2t

⎞⎠ .

�

The superposition principle

Ultimately, suppose b(t) is the sum of terms like (10.75) or (10.77). By virtue of
linearity, a particular solution yp will be the sum of particular solutions of the
single summands:

if b = b1 + b2 + . . .+ bK , and ypk solves y′ = Ay + bk for k = 1, . . . ,K,

then yp = yp1 + . . .+ ypK solves y′ = Ay + b.
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In fact,

y′
p = y′

p1 + . . .+ y′
pK = (Ayp1 + b1) + . . .+ (AypK + bK)

= A(yp1 + . . .+ ypK) + (b1 + . . .+ bK) = Ayp + b .

The property is known as superposition (or linearity) principle. Example 10.42 ii)
will provide us with a tangible application.

10.7 Linear scalar equations of order n

In this section we tackle linear scalar equations

y(n) + a1y
(n−1) + . . .+ an−1y

′ + any = b(t) , (10.79)

where n is an integer ≥ 2, the coefficients a1, . . . , an are real constants and b is a
real-valued continuous map defined on the real interval I. We abbreviate by Ly
the left-hand side; the operator L : y �→L y is linear because differentiation is a
linear operation. Then

Ly = y(n) + a1y
(n−1) + . . .+ an−1y

′ + any = 0 (10.80)

is called the homogeneous equation associated to (10.79).
The background theory can be deduced from the results on linear systems

of first-order equations, settled in the previous section. In fact, we remarked in
Sect. 10.2 that any ODE of order n is equivalent to a system of n differential
equations of order one. In the case at hand, we set yi(t) = y(i−1)(t), 1 ≤ i ≤ n, so
that (10.79) is equivalent to the linear system⎧⎪⎪⎪⎨⎪⎪⎪⎩

y′1 = y2

y′2 = y3
...

y′n = −a1yn − . . .− an−1y2 − any1 + b(t) ;

the latter may be written as (10.48), and precisely

y′ = Ay + b(t) , (10.81)

by putting

y =

⎛⎜⎜⎝
y1
y2
...
yn

⎞⎟⎟⎠ , A =

⎛⎜⎜⎜⎜⎝
0 1 0 . . . . . .
0 0 1 0 . . .

...
. . . . . . 0 0 1
−an −an−1 . . . . . . −a1

⎞⎟⎟⎟⎟⎠ , b(t) =

⎛⎜⎜⎝
0
...
0

b(t)

⎞⎟⎟⎠ .

The first component of y is the solution of (10.79).
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The homogeneous equation
Equation (10.80) corresponds to the homogeneous system relative to (10.81). From
this we recover the following central result.

Proposition 10.39 i) The set S0 of solutions to the homogeneous equa-
tion (10.80) is an n-dimensional vector space.
ii) The set Sb of solutions to (10.79) is the affine space Sb = yp + S0, where
yp is any solution.

Proof. i) S0 is a vector space because (10.80) is a linear constraint. With Propos-
ition 10.26 in mind, let w1, . . . ,wn be a fundamental system of solutions
for y′ = Ay. Denote by zi = wi · e1 the first components of the vectors,
which clearly solve (10.80).
If y ∈ S0, the associated vector-valued map y is a linear combination
of the wi; in particular its first component is a combination of the zi.
Thus S0 is spanned by those solutions. The claim follows provided we
show that the functions z1, . . . , zn are linearly independent. By successively
differentiating

n∑
i=1

cizi(t) = 0 , ∀t ∈ R ,

we get, for all 1 ≤ k ≤ n− 1,

n∑
i=1

ciz
(k)
i (t) = 0 , ∀t ∈ R .

But z
(k)
i is the (k+1)th component of wi, so we obtain the vector equation

n∑
i=1

ciwi(t) = 0 , ∀t ∈ R ,

whence c1 = . . . = cn = 0 by linear independence of the wi.

ii) The argument is similar to the one used in Proposition 10.29. �

In order to find a basis for S0, the linear system associated to (10.80) is not
necessary, because one can act directly on the equation: we are looking for solu-
tions y(t) = eλt, with λ constant, possibly complex. Substituting into (10.80), and
recalling (10.28), gives

L(eλt) = (λn + a1λ
n−1 + . . .+ an−1λ+ an) e

λt = 0 ,

i.e.,
L(eλt) = χ(λ)eλt = 0 ,
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where χ(λ) = λn+a1λ
n−1+ . . .+an−1λ+an is the characteristic polynomial of

the ODE (10.79). Since eλt is always non-zero, y(t) = eλt solves the homogeneous
equation if and only if λ is a root of the characteristic polynomial, that is if and
only if λ satisfies the characteristic equation

λn + a1λ
n−1 + . . .+ an−1λ+ an = 0 . (10.82)

Hence, the differential problem is reduced to a purely algebraic question, that the
Fundamental Theorem of Algebra can handle. We know that (10.82) has p distinct
solutions λ1, . . . , λp, 1 ≤ p ≤ n; each root λk, 1 ≤ k ≤ p, has multiplicity μk ≥ 1,
so that overall μ1 + . . .+ μp = n. The characteristic equation’s zeroes are nothing
but the eigenvalues of A in (10.81), because one could prove

det(A− λI) = (−1)nχ(λ) .
This gives directly p distinct solutions

eλ1t, . . . , eλpt

to (10.80). If p < n, any root λk of multiplicity μk > 1 gives μk−1 further solutions

t eλkt, t2 eλkt, . . . , tμk−1 eλkt .

The n solutions thus found can be proven to be linearly independent. In summary,
the result reads as follows.

Proposition 10.40 The functions

zk,�(t) = t�eλkt , 1 ≤ k ≤ p, 0 ≤ � ≤ μk − 1 ,

form a basis for the space S0 of solutions to (10.80). Equivalently, every solu-
tion of the equation has the form

y(t) =

p∑
k=1

qk(t) e
λkt ,

with qk a polynomial of degree ≤ μk − 1.

In presence of complex(-conjugate) roots of equation (10.82), the corresponding
basis functions are complex-valued. But we can find a real basis if we replace the

pair t�eλkt, t�eλkt with the real and imaginary parts of either of them, for any pair
of complex-conjugate eigenvalues λk = σk + iωk, λk = σk − iωk. That is to say,

t�eσkt cosωkt and t�eσkt sinωkt

are n linearly independent, real solutions.
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Examples 10.41

i) Let us make the previous construction truly explicit for an equation of order
two,

y′′ + a1y
′ + a2y = 0 . (10.83)

Let Δ = a21 − 4a2 be the discriminant of λ
2 + a1λ+ a2 = 0.

When Δ > 0, there are two distinct real roots λ1,2 = (−a1 ±
√
Δ)/2, so the

generic solution to (10.83) is

y(t) = c1 e
λ1t + c2 e

λ2t . (10.84)

When Δ = 0, the real root λ1 = −a1/2 is double, μ1 = 2; so, the generic solution
reads

y(t) = (c1 + c2t) e
λ1t . (10.85)

Eventually, when Δ < 0 we have complex-conjugate roots λ1 = σ+ iω = −a/2+
i
√|Δ| and λ2 = σ − iω = −a/2− i

√|Δ|, and the solution to (10.83) is

y(t) = eσt(c1 cosωt+ c2 sinωt) . (10.86)

ii) Solve the homogeneous equation of fourth order

y(4) + y = 0 .

The characteristic zeroes, solving λ4 + 1 = 0, are fourth roots of −1, λ1,2,3,4 =√
2
2 (±1± i). Therefore y takes the form

y(t) = e(
√
2/2) t

(
c1 cos

√
2

2
t+ c2 sin

√
2

2
t
)
+ e−(

√
2/2) t

(
c3 cos

√
2

2
t+ c4 sin

√
2

2
t
)
.
�

The non-homogeneous equation
Just as for systems of order one, a particular integral is easy to find when b(t) has
a special form. For instance, for

b(t) = eαtp(t) (10.87)

with α ∈ R, p(t) an algebraic polynomial of degree m with real coefficients, there
is a particular integral

yp(t) = eαttμq(t) , (10.88)

where μ ≥ 0 is the multiplicity of α as a zero of χ(λ) = 0 (with μ = 0 if α is not
a root, while μ ≥ 1 gives resonance), and q(t) is a polynomial of degree m with
unknown coefficients. These coefficients are determined by substituting (10.88)
in (10.79), simplifying the common factor eαt and comparing the polynomial func-
tions in t.

Take another example, like

b(t) = eαtp(t) cosωt or b(t) = eαtp(t) sinωt , (10.89)
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with α ∈ R, p(t) a real algebraic polynomial of degree m, ω �= 0. This gives a
particular integral

yp(t) = eαttμ
(
q1(t) cosωt+ q2(t) sinωt

)
, (10.90)

where μ ≥ 0 is the multiplicity of α + iω, and q1, q2 are unknown polynomials of
degree m to be found as above, i.e., separating the terms in cosωt and sinωt.

The superposition principle is still valid if b(t) is a sum of terms bk(t) like (10.87)
or (10.89): a particular integral for (10.79) will be a sum of particular integrals for
the bk(t).

Examples 10.42

i) Determine the general integral of

y′′ − y′ − 6y = te−2t .

The characteristic equation λ2 − λ − 6 = 0 has roots λ1 = −2, λ2 = 3, so the
general homogeneous integral is

yhom(t) = c1e
−2t + c2e

3t .

In a situation of resonance between the source term and a component of yhom,
the particular integral has to be of type

yp(t) = t(at+ b)e−2t .

We differentiate and substitute back in the ODE to obtain

−10at+ 2a− 5b = t

(the coefficient of t2 on the left is zero, as a consequence of resonance), from
which −10a = 1 and 2a− 5b = 0, so a = −1/10, b = −1/25. In conclusion,

y(t) =
(
− 1

10
t2 − 1

25
t+ c1

)
e−2t + c2e

3t .

ii) Let us find the general integral of

y′′′ + y′ = cos t− 2e3t .

By superposition

y(t) = yhom(t) + yp1(t)− 2yp2(t) ,

where yhom is the general homogeneous integral, yp1 and yp2 are particular in-
tegrals relative to sources cos t and e3t.
The characteristic equation λ3 + λ = 0 has roots λ1 = 0, λ2,3 = ±i, hence

yhom(t) = c1 + c2 cos t+ c3 sin t .

Taking resonance into account, we want yp1 of the form yp1(t) = t(a cos t+b sin t).
Computing successive derivatives of yp1 and substituting them into

y′′′p1
+ y′p1

= cos t

gives −2a cos t − 2b sin t = cos t, so a = −1/2 and b = 0. Therefore yp1(t) =
− 1

2 cos t.
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Now we search for yp2 of the form yp2(t) = de3t. By differentiating and substi-
tuting in the equation

y′′′p2
+ y′p2

= e3t ,

we obtain d = 1/30, and then yp2(t) =
1
30e

3t. All-in-all,

y(t) = c1 +
(
c2 − 1

2
t
)
cos t+ c3 sin t− 1

15
e3t

is the general integral of the given equation. �

10.8 Stability

The long-time behaviour of solutions of an ODE is a problem of great theoretical
and applicative importance. A large class of dynamical systems, i.e., of systems
whose state depends upon time and that are modelled by one or more differential
equations, admit solutions at any time t after a given instant t0. The behaviour
of a particular solution can be very diversified: for instance, after a starting trans-
ition where it depends strongly on the initial data, it could subsequently converge
asymptotically to a limit solution, independent of time; it could, instead, present
a periodic, or quasi-periodic, course, or approach such a configuration; a solution
could even have an absolutely unpredictable, or chaotic, behaviour in time.

Perhaps more interesting than the single solution is though the behaviour of
a family of solutions that differ by slight perturbations either of the initial data,
or of the ODE. In fact, the far future of one solution might not be representative
of other solutions that kick off nearby. Often the mathematical model described
by an ODE is just an approximation of a physically-more-complex system; to
establish the model’s reliability it is thus fundamental to determine how ‘robust’
the information that can be extracted from it is, with respect to the possible errors
of the model. In the majority of cases moreover, the ODE is solved numerically, and
the discretised problem will introduce extra perturbations. These and other reasons
lead us to ask ourselves whether solutions that are initially very close stay close at
all times, even converge to a limit solution, rather than moving eventually apart
from one another. These kinds of issues are generically referred to as concerning
(asymptotic) stability. The results on continuous dependency upon initial data,
discussed in Sect. 10.4.1 (especially Proposition 10.15), do not answer the question
satisfactorily. They merely provide information about bounded time intervals: the
constant eL|t−t0| showing up in (10.36) grows exponentially from the instant t0. A
more specific and detailed analysis is needed to properly understand the matter.

We shall discuss stability exclusively in relationship with stationary solutions;
the generalisation to periodic orbits and chaotic behaviours is incredibly fascinat-
ing but cannot be dealt with at present.

Let us begin with the Cauchy problem{
y′ = f(t,y) , t > t0 ,

y(t0) = y0 ,
(10.91)
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Figure 10.9. Lyapunov stability

and suppose there is a ȳ0, belonging to D, such that f(t, ȳ0) = 0 for any t ≥ t0.
Then y(t) = ȳ0, ∀t ≥ t0, is a constant solution that we shall call stationary solu-
tion. The point ȳ0 is said critical point, stationary point, or equilibrium
point for the equation. A further hypothesis will be that the solutions to (10.91)
are defined at all times t > t0, whichever the initial datum y0 in a suitable neigh-
bourhood B̄ of ȳ0; from now on y(t,y0) will denote such a solution. Therefore, it
makes sense to compare these solutions to ȳ0 over the interval [t0,+∞). To this
end, the notions of (Lyapunov) stability and attractive solution are paramount.

Definition 10.43 The stationary solution ȳ0 = y(t, ȳ0) to problem (10.91)
is stable if, for any neighbourhood Bε(ȳ0) of ȳ0, there exists a neighbourhood
Bδ(ȳ0) such that

y0 ∈ B̄ ∩Bε(ȳ0) =⇒ y(t,y0) ∈ Bδ(ȳ0) ∀t ≥ t0 .

This is exemplified in Fig. 10.9.

Definition 10.44 The stationary solution ȳ0 is called attractive (or an
attractor) if there exists a neighbourhood B(ȳ0) ⊆ B̄ such that

y0 ∈ B(ȳ0) =⇒ lim
t→+∞

y(t,y0) = ȳ0 ,
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and uniformly attractive (a uniform attractor) if the above limit is uni-
form with respect to y0, i.e.,

lim
t→+∞

sup
y0∈B(ȳ0)

‖y(t,y0)− ȳ0)‖ = 0 .

The two properties of stability and attractiveness are unrelated. The point ȳ0 is
uniformly asymptotically stable if it is both stable and uniformly attractive.

Example 10.45

The simplest (yet rather meaningful, as we will see) case is the autonomous
linear problem {

y′ = λy , t > 0 , λ ∈ R ,

y(t0) = y0 ,

whose only stationary solution is ȳ0 = 0. The solutions y(t, y0) = eλty0 confirm
that 0 is stable if and only if λ ≤ 0 (in this case we may choose δ = ε in the
definition). Moreover, for λ = 0 the point 0 is not an attractor (all solutions are
clearly constant), whereas for λ < 0, the point 0 is uniformly attractive (hence
uniformly asymptotically stable): for example setting B(0) = B1(0) = (−1, 1),
we have

sup
y0∈B(0)

|y(t, y0)| = eλt → 0 as t→ +∞ .

As far as stability is concerned, we obtain similar results when λ ∈ C (complex-
valued solutions) provided we replace λ with Re λ. �

This example generalises directly to autonomous linear systems, now examined.

10.8.1 Autonomous linear systems

Suppose f(t,y) = f(y) = Ay + b has A ∈ Rn,n and b ∈ Rn independent of time.
A stationary solution of (10.91) corresponds to a solution of the linear system
Ay = −b (unique if A is non-singular). If ȳ0 is one such solution the variable
change z = y − ȳ0 allows us to study the stability of the zero solution of the
homogeneous equation z′ = Az. There is so no loss of generality in considering,
henceforth, the stability of the solution y(t,0) = 0 of the homogeneous problem{

y′ = Ay , t > 0 ,

y(t0) = y0 .
(10.92)

From Sect. 10.6, in particular Proposition 10.35, we know every solution y(t,y0)
is a linear combination of

w(t) = eλtp(t) ,
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where λ ∈ C is an eigenvalue of A, and p(t) is a vector-valued polynomial in t
depending on the eigenvector (or one of the eigenvectors) associated to λ. In case
the algebraic and geometric multiplicities of λ coincide, every p(t) associated to
it has degree 0, and so is constant; otherwise, there exist polynomials of positive
degree, which therefore tend to ∞ as t→ +∞.

Consequences:

• if every eigenvalue of A has negative real part, then all basis elements w(t)
tend to 0 as t → +∞ (recall eσttβ → 0 for t → +∞ if σ = Re λ < 0, for any
β);

• if all eigenvalues of A have negative or zero real part, and the latter ones
have coinciding algebraic and geometric multiplicities, all w(t) are bounded on
[0,+∞);

• if there are eigenvalues of A with positive real part, or zero real part and
algebraic multiplicity greater than the geometric multiplicity, then some w(t)
tends to ∞ as t→ +∞.

How this translates in the language of stability is easily said.

Proposition 10.46 a) The origin y(t,0) = 0 is a stable solution of (10.92)
if and only if all eigenvalues λ of A satisfy Reλ ≤ 0, and those with Reλ = 0
have the same algebraic and geometric multiplicity.
b) The origin is a uniformly attractive solution (hence, uniformly asymptot-
ically stable) if and only if all eigenvalues of A satisfy Re λ < 0.

We shall investigate now all the scenarios for systems of two equations.

10.8.2 Two-dimensional systems

The generic 2× 2 matrix

A =

(
a b
c d

)
has determinant detA = ad− bc and trace trA = a+ d. Its eigenvalues are roots
of the characteristic polynomial χ(λ) = λ2 − trAλ+ detA, so

λ =
trA±√(trA)2 − 4 detA

2
.

If (trA)2 �= 4detA, then the eigenvalues are distinct, necessarily simple, and the
matrix is diagonalisable. If, instead, (trA)2 = 4detA, the double eigenvalue λ =
trA/2 has geometric multiplicity 2 if and only if b = c = 0, i.e., A is diagonal; if
the multiplicity is one, A is not diagonalisable.

Let us assume first A is diagonalisable. Then Proposition 10.32 tells us each
solution of (10.92) can be written as

y(t,y0) = z1(t)v1 + z2(t)v2 , (10.93)
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where v1, v2 are linearly independent vectors (in fact, they are precisely the ei-
genvectors if the eigenvalues are real, or two vectors manufactured from a complex
eigenvector’s real and imaginary parts if the eigenvalues are complex-conjugate);
z1(t) and z2(t) denote real maps satisfying, in particular, z1(0)v1 + z2(0)v2 = y0.

To understand properly the possible asymptotic situations, it proves useful to
draw a phase portrait, i.e., a representation of the orbits

Γ (y) = {y(t,y0) = (y1(t), y2(t)) : t ≥ 0}

on the phase plane R2 of coordinates y1, y2. We will see straight away that it is
possible to eliminate t and obtain an explicit functional relationship between y1
and y2. Actually, it will be better to perform such operation on the variables z1
and z2 first, represent the orbit Γ (z) = {(z1(t), z2(t)) : t ≥ 0} in the phase plane
z1z2, and then pass to the plane y1y2 using the linear transformation (10.93).

We have to distinguish six cases.

i) Two real non-zero eigenvalues with equal sign: λ2 ≤ λ1 < 0 or 0 < λ1 ≤ λ2.

Then
z1(t) = d1e

λ1t , z2(t) = d2e
λ2t ,

with d1, d2 dependent on y0. If d1 = 0 or d2 = 0, the orbits lie on the coordinate
axes z1 = 0 or z2 = 0. If neither is zero,

z2(t) = d2
(
eλ1t
)λ2

λ1 = d2

(
z1(t)

d1

)λ2
λ1

,

so the orbits are graphs of

z2 = dzα1 , with α ≥ 1

z1

z2

y1

y2

Figure 10.10. Phase portrait for y′ = Ay in the z1z2-plane (left) and in the y1y2-plane
(right): the case λ2 < λ1 < 0 (node)
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z1

z2

y1

y2

Figure 10.11. Phase portrait for y′ = Ay in the z1z2-plane (left) and in the y1y2-plane
(right): the case λ2 < λ1 = 0

(which are half-lines if λ1 = λ2.) Points on the orbits move in time towards the
origin, which is thus uniformly asymptotically stable, if the eigenvalues are negative
(Fig. 10.10, left); the orbits leave the origin if the eigenvalues are positive. On the
plane y1y2 the corresponding orbits are shown by Fig. 10.10, right, where we took
v1 = (3, 1), v2 = (−1, 1).

The origin is called a node, and is stable or unstable according to the eigen-
values’ signs.

ii) Two real eigenvalues, at least one of which is zero:

λ2 ≤ λ1 = 0 or 0 = λ1 ≤ λ2.

The function z1(t) = d1 is constant. Therefore if λ2 �= 0, the orbits are vertical
half-lines, oriented towards the axis z2 = 0 if λ2 < 0, the other way if λ2 > 0
(Fig. 10.11). If λ2 = 0, the matrix A is null (being diagonalisable), hence all orbits
are constant. Either way, the origin is a stable equilibrium point, but not attractive.

iii) Two real eigenvalues with opposite signs: λ2 < 0 < λ1.

The z1z2-orbits are the four semi-axes, together with the curves

z2 = dzα1 , with α < 0

(hyperbolas, if α = −1), oriented as in Fig. 10.12.
The origin, called a saddle point, is neither stable nor attractive.

iv) Two purely-imaginary eigenvalues: λ = ±iω , ω �= 0.

As
z1(t) = d1 cos(ωt+ d2) and z2(t) = d1 sin(ωt+ d2) ,

the orbits are concentric circles on the phase plane z1z2, and concentric ellipses on
y1y2 (Fig. 10.13).

The origin is called a centre, and is stable but not attractive.
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z1

z2

y1

y2

Figure 10.12. Phase portrait for y′ = Ay in the z1z2-plane (left) and in the y1y2-plane
(right): the case λ2 < 0 < λ1 (saddle point)

v) Complex-conjugate eigenvalues, with non-zero real part: λ = σ ± iω, with

ω �= 0 and σ < 0 or σ > 0.

From

z1(t) = d1e
σt cos(ωt+ d2) and z2(t) = d1e

σt sin(ωt+ d2) ,

we see the orbits spiralling towards the origin if σ < 0, and moving outward if
σ > 0 (Fig. 10.14). In the former case the origin is uniformly asymptotically stable.

The origin is a focus, stable or unstable according to the sign of σ.

The last case occurs for non-diagonalisableA, in other words if there is a double
eigenvalue with geometric multiplicity equal 1. Then v1 is the unique eigenvector
in (10.93), and v2 is the associated generalised eigenvector, see (10.71).

z1

z2

y1

y2

Figure 10.13. Phase portrait for y′ = Ay in the z1z2-plane (left) and in the y1y2-plane
(right): the case λ = ±ω (centre)
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z1

z2

y1

y2

Figure 10.14. Phase portrait for y′ = Ay in the z1z2-plane (left) and in the y1y2-plane
(right): the case λ = σ ± ω (focus)

vi) One real double eigenvalue λ, of geometric multiplicity 1.

We have
z1(t) = d1e

λ1t , z2(t) = eλ2t(d2 + d1t) .

When λ = 0, and d1 �= 0, the orbits are vertical straight lines as shown in Fig. 10.15;
for d1 = 0 the orbits are fixed points on z1 = 0. Therefore, the origin is neither
stable, nor attractive.

When λ �= 0 instead, t can be written as t = 1
|λ| log

∣∣∣ z1d1

∣∣∣, whence
z2 =

(
d1
d2

+
1

|λ| log
∣∣∣∣ z1d1
∣∣∣∣) z1 .

z1

z2

y1

y2

Figure 10.15. Phase portrait for y′ = Ay in the z1z2-plane (left) and in the y1y2-plane
(right): the case λ1 = λ2 = 0, bc 
= 0
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z1

z2

y1

y2

Figure 10.16. Phase portrait for y′ = Ay in the z1z2-plane (left) and in the y1y2-plane
(right): the case λ1 = λ2 
= 0, bc 
= 0 (improper node)

Figure 10.16 shows the orbits oriented to, or from, the origin according to whether
λ < 0, λ > 0. The origin is uniformly asymptotically stable, and still called (de-
generate, or improper) node; again, it is stable or unstable depending on the
eigenvalue sign.

Application: the simple pendulum (IV). The example continues from p. 454.
The dynamical system y′ = f(y) has an infinity of equilibrium points ȳ0, because

f(ȳ0) = 0 if and only if ȳ2 = 0 and ȳ1 = �π with � ∈ Z .

The solutions θ(t) = �π, with � an even number, correspond to a vertical rod, with
P in the lowest point S (Fig. 10.3); when � is odd the bob is in the highest position
I. It is physically self-evident that moving P from S a little will make the bob
swing back to S; on the contrary, the smallest nudge to the bob placed in I will
make it move away and never return, at any future moment. This is precisely the
meaning of a stable point S and an unstable point I.

The discussion of Sect. 10.8.2 renders this intuitive idea precise. Consider a
simplified model for the pendulum, obtained by linearising equation (10.12) around
an equilibrium position.

On a neighbourhood of the point θ̄ = 0 we have sin θ ∼ θ, so equation (10.12)
can be replaced by

d2θ

dt2
+ α

dθ

dt
+ kθ = 0 , (10.94)

which describes small oscillations around the equilibrium S; the value α = 0
gives the equation of harmonic motion. The corresponding solution to the Cauchy
problem (10.13) is easy to find by referring to Example 10.4. Equivalently, the
initial value problem assumes the form (10.92) with

A =

(
0 1
−k −α

)
= Jf(0, 0) ,
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whose eigenvalues are λ =
−α±√

α2 − 4k

2
. Owing to Sect. 10.8.2, we have that

• if α2 ≥ 4k, the origin ȳ0 = (0, 0) is a uniformly asymptotically stable node
[cases i) or vi)] ;

• if 0 < α2 < 4k, the origin is a uniformly asymptotically stable focus [case
v)] ;

• if α = 0, the origin is a centre [case iv)] .

Whatever the case, the bottom position S is always stable.
Linearising (10.12) around the equilibrium θ̄ = π, and changing variables ϕ =

θ − π (so that sin θ = − sinϕ) produces a problem of the form (10.92), with

A =

(
0 1
k −α

)
= Jf(π, 0) .

The eigenvalues λ =
−α±√

α2 + 4k

2
are always non-zero and of distinct sign. The

point ȳ0 = (π, 0) is thus a saddle [case iii)], and so unstable. This substantiates
the claim that I is an unstable equilibrium.
The discussion will end on p. 488. �

10.8.3 Non-linear stability: an overview

Certain stability features of linear systems are inherited by non-linear systems,
thought of as deformations of linear ones. Suppose the function f(t,y) appearing
in (10.91) has the form

f(t,y) = Ay + g(t,y) , (10.95)

with g continuous and such that

g(t,y) = o(‖y‖) as y → 0 uniformly in t ; (10.96)

this means there exists a continuous map φ : R+ → R+ such that φ(s) → 0,
s→ 0+, and

‖g(t,y)‖ ≤ φ(‖y‖)‖y‖ , ∀y ∈ B(0) , ∀t > t0 ,

on a neighbourhood B(0) of the origin. Then, the origin is an equilibrium for
equation (10.91). What can we say about its asymptotic stability? One answer is
given by the following fact.

Theorem 10.47 Let f be defined by (10.95), with g as in (10.96).
a) If all eigenvalues of A have strictly negative real part, the origin is a
uniformly asymptotically stable equilibrium for (10.91).
b) If there is an eigenvalue of A with strictly positive real part, the origin is
unstable.
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Under the given hypotheses the properties of the non-linear system y′ = Ay +
g(t,y) are the same of the corresponding linear one y′ = Ay; the latter is nothing
but the linearisation, around the origin, of the former (compare Remark 10.25).
We cannot say much more if all eigenvalues have non-positive real parts and some
are purely imaginary: stability in this case depends upon other properties of g.

Yet, the theorem has an important consequence for autonomous systems
around an equilibrium ȳ0. The criterion is known as Principle of linearised
stability.

Corollary 10.48 Let f : D ⊆ Rn → Rn be a C1 map, ȳ0 ∈ D such that
f(ȳ0) = 0, and A = Jf(ȳ0) the Jacobian of f at ȳ0. Then the autonomous
system y′ = f(y) has the following stability properties.
a) If all eigenvalues of A have negative real part, ȳ0 is a uniformly asymp-
totically stable equilibrium for (10.91).
b) If there is an eigenvalue of A with positive real part, ȳ0 is unstable.

Proof. Using the Taylor expansion (5.16) at ȳ0,

f(y) = f(ȳ0) + Jf(ȳ0)(y − ȳ0) + g(y) = A(y − ȳ0) + g(y) ,

with g(y) = o(‖y − ȳ0‖) as y → ȳ0. The variable change z = y − ȳ0

puts us in the hypotheses of the previous theorem, thus concluding the
proof. �

These two results are local in nature. Global information concerning the stabil-
ity of a stationary point can be obtained, for autonomous systems, from the know-
ledge of a first integral (Sect. 10.4.5), or a Lyapunov function (Example 10.22 ii)).

A conservative system corresponding to an equation like (10.42) or (10.46)
admits a first integral, namely the total energy E; therefore, by a theorem due
to Lagrange, we can say that if the origin is a strict minimum for the potential
energy Π, it must be a stable equilibrium for the system.

The same conclusion follows if the origin is stationary for a system admitting a
Lyapunov function V . Furthermore, if the derivative of V along any trajectory is
strictly negative (with the exception of the origin), then the origin is an attractor.

Application: the simple pendulum (V). The results about the linearised equa-
tion (10.94) determine the stability of the stationary points of (10.12) in presence
of damping. As a consequence of linearised stability (Corollary 10.48), if α > 0 the
matrix Jf(ȳ0) = A has two eigenvalues with negative real part for ȳ0 = (0, 0), and
one eigenvalue with positive real part for ȳ0 = (π, 0). As in the linearised problem,
the bottom equilibrium point S is uniformly asymptotically stable, whereas the
top point I is unstable. Figure 10.17 zooms on the phase portrait. Multiplying
equation (10.12) by dθ

dt gives

d

dt
E(θ,θ ′) = −α

(
dθ

dt

)2

≤ 0 ,
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y1

y2

π−π

Figure 10.17. Trajectories in the phase plane for the dampled pendulum (restricted to
|y1| ≤ π). The shaded region is the basin of attraction to the origin. The points lying
immediately above (resp. below) it, between two orbits, are attracted to the stationary
point (2π, 0) ((−2π, 0)), and so on.

making the energy a Lyapunov function, which thus decreases along the orbits
(compare with Fig. 10.8).

For a free undamped motion, equilibria behave in the same way in the linear and
non-linear problems; this, though, can be proved by other methods. In particular,
the origin’s stability follows from the the fact that it minimises the potential energy,
by Lagrange’s Theorem. �

10.9 Exercises

1. Determine the general integral of the following separable ODEs:

a) y′ =
(t+ 2)y

t(t+ 1)
b) y′ =

y2

t log t
− 1

t log t

2. Tell what the general integral of the following homogeneous equations is:

a) 4t2y′ = y2 + 6ty − 3t2 b) t2y′ − y2et/y = ty

3. Integrate the following linear differential equations:

a) y′ =
1

t
y − 3t+ 2

t3
b) ty′ = y +

2t2

1 + t2
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4. Find the general integral of the Bernoulli equations:

a) y′ =
1

t
y − y2 b) y′ =

1

t
y +

t

y
log t

5. Determine the particular integral of the ODE

y′ =
1− e−y

2t+ 1

subject to the condition y(0) = 1.

6. Establish if there are solutions to

y′ = −2y + e−2t

with null derivative at the origin.

7. Solve, on [ 4
√
e,+∞), the Cauchy problem{

eyy′ = 4t3 log t(1 + ey)

y( 4
√
e) = 0.

8. Solve on the interval (−2, 2) the initial value problem⎧⎨⎩ y′ =
3t

t2 − 4
|y|

y(0) = −1.

9. Given the ODE

y′ sin 2t− 2(y + cos t) = 0, t ∈
(
0,

π

2

)
,

determine the general integral and write a solution that stays bounded as
t→ π

2
−.

10. Solve the Cauchy problem ⎧⎨⎩
d

dt
(y2) = y2 +

t

y

y(0) = 1 .
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11. Solve the Cauchy problem⎧⎪⎨⎪⎩
y′′(

1 + (y′)
)3/2 =

8t3

(t4 + 1)2

y(1) = 0 , y′(1) = 0 .

12. Find the solutions of the initial value problem⎧⎨⎩ y′′ =
4

y3

y(0) = 2 , y′(0) = −√3 .

13. Determine the particular integral of the differential equation

yy′′ − (y′)2 = y2 log y

such that y(0) = y′(0) = 1.

14. As α varies in R, solve the differential equation

y′ = (2 + α)y − 2eαt

with initial datum y(0) = 3.

15. Let a, b be real numbers. Solve{
y′ = a

y

t
+ 3tb

y(2) = 1

on the interval [2,+∞).

16. Given the ODE
y′(t) = −3ty(t) + kt

depending on the real number k, find the solution vanishing at the origin.

17. Given

y′ =
y2 − 2y − 3

2(1 + 4t)
,

a) determine its general integral;
b) find the particular integral y0(t) satisfying y0(0) = 1;

18. Given the ODE y′ = f(t, y) =
√
t+ y, determine open sets Ω = I × D =

(α,β ) × (γ,δ ) inside the domain of f , for which Theorem 10.14 is valid.
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19. Find the maximal interval of existence for the autonomous equation

y′ = f(y)

with:

a) f(y) =
√
1 + y21 + y22 i+ arctan(y1 + y2) j on R2

b) f(y) =
sin ‖y‖2

log3(2 + ‖y‖2) y on Rn

20. Verify that the autonomous equation y′ = f(y), with

a) f(y) =
y2

1 + 3y21 + 5y42
i− y1

1 + 3y21 + 5y42
j

b) f(y) = (4y21y
3
2 + 2y1y2)i− (2y1y

4
2 + y22)j

admits on R2 a first integral, then compute it.

21. Determine the general integral of the system y′ = Ay, where:

a) A =

(
9 −4
8 −3

)
b) A =

(
3 −4
4 3

)

c) A =

⎛⎝ 13 0 −4
15 2 −5
30 0 −9

⎞⎠ d) A =

⎛⎝ 4 3 −2
3 2 −6
1 3 1

⎞⎠
e) A =

⎛⎝ 0 1 0
0 0 1
0 −10 −6

⎞⎠ f) A =

⎛⎝ 4 0 0
0 −2 9
0 4 −2

⎞⎠
g) A =

⎛⎝ 3 0 0
0 3 0
1 0 3

⎞⎠ h) A =

⎛⎝ 1 5 0
0 1 0
4 0 1

⎞⎠
22. Determine a particular integral of the systems:

a) y′ =

⎛⎝ 0 −1 0
1 0 0
1 0 2

⎞⎠y +

⎛⎝ 0
t
t2

⎞⎠
b) y′ =

⎛⎝ −1 −1 0
1/8 0 −1
0 1/8 −1

⎞⎠y +

⎛⎝ 1
1
0

⎞⎠ e−2t

c) y′ =

⎛⎝ 0 −1 0
1 0 0
0 1 −1

⎞⎠y +

⎛⎝ 1
0
0

⎞⎠ sin 2t
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23. Solve ⎧⎨⎩
y′1 = 2y1 + y3

y′2 = y3

y′3 = 8y1

with constraints y1(0) = y2(0) = 1 and y3(0) = 0.

24. Find the solutions of {
y′1 + y′2 = 5y2

3y′1 − 2y′2 = 5y1

with initial data y1(0) = 2, y2(0) = −1.

25. Determine, in function of the real number b, the solutions of

y′ =
(−1 b

b −1
)
y

with y(0) = (1, 1)T .

26. As the real parameter a varies, find the general integral of

y′ =

⎛⎝ 1 + a 0 1
a− 2 3a− 1 1− a
0 0 a

⎞⎠y .

27. Solve the system {
x′ = 2x− y

y′′ = −10x+ 5y − 2y′ .

28. Write the general integral for the following linear equations of order two:

a) y′′ + 3y′ + 2y = t2 + 1 b) y′′ − 4y′ + 4y = e2t

c) y′′ + y = 3 cos t d) y′′ − 3y′ + 2y = et

e) y′′ − 9y = e−3t f) y′′ − 2y′ − 3y = sin t

29. Solve the Cauchy problems:

a)

⎧⎪⎨⎪⎩
y′′ + 2y′ + 5y = 0

y(0) = 0

y′(0) = 2

b)

⎧⎪⎨⎪⎩
y′′ − 5y′ + 4y = 2t+ 1

y(0) = 7
8

y′(0) = 0
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30. Integrate the following linear ODEs of order n:

a) y′′′ + y′′ − 2y = 0 b) y′′′ − 2y′′ + y′ = 0

c) y(4) − 5y′′′ + 7y′′ − 5y′ + 6y = sin t

31. Determine the general integral of y′′ + y′ − 6y = ekt in function of the real k.

32. Determine the general integral of the differential equation y′′−2y′+(1+k)y =
0, as k varies in R.

33. Determine the general integral of

y′′′ − 2y′′ + 49y′ − 98y = 48 sin t+ (β2 + 49)eβt

for every β in R.

34. Determine the general integral of the ODE y′′′ + 9ay′ = cos 3t in function of
a ∈ R.

35. Discuss the stability of the origin in R3 for the equation

y′ = Ay with A =

⎛⎝−3 0 −5
0 −1 0
5 0 −2

⎞⎠ .

36. Study the stability of y0 = (−3, 1) for the following equation in R2:

y′ = f(y) where f(y) = (3y1y2 − 2y22 + 11)i+ (y1 + 3y2)j .

10.9.1 Solutions

1. ODEs with separable variables:

a) The map h(y) = y has a zero at y = 0, which is thus a singular integral.
Suppose y �= 0 and separate variables, so that∫

1

y
dy =

∫
t+ 2

t(t+ 1)
dt = log

ct2

|t+ 1| , c > 0 .

Passing to exponentials,

y = y(t) = c
t2

t+ 1
, c �= 0 .

The singular integral y = 0 is obtained by putting c = 0 in the general formula.
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c) y = y(t) =
1 + c log2 t

1− c log2 t
, c ∈ R .

2. Homogeneous ODEs:

a) Supposing t �= 0 and dividing by 4t2 gives

y′ =
1

4

y2

t2
+
3

2

y

t
− 3

4
.

Substitute z = y
t , so that y

′ = z + tz′ and then

z + tz′ =
1

4
z2 +

3

2
z − 3

4
,

4tz′ = (z − 1)(z + 3) .

Since ϕ(z) = (z − 1)(z + 3) vanishes at z = 1 and z = −3, we get y = t and
y = −3t as singular integrals. For the general integral we separate the variables,∫

4

(z − 1)(z + 3)
dz =

∫
1

t
dt .

Then exponentiating

log

∣∣∣∣z − 1

z + 3

∣∣∣∣ = log c|t| , c > 0

and solving for z, we have

z =
1 + 3ct

1− ct
, c ∈ R ,

in which the singular integral z = 1 is included. Altogether, the general integral
of the equation is

y =
t+ 3ct2

1− ct
, c ∈ R .

b) y = y(t) = − t

log log c|t| , c > 0 .

3. Linear equations:

a) Formula (10.24), with a(t) = 1
t and b(t) = − 3t+2

t3 , gives

y = e
∫

1
t
dt

∫
e−

∫
1
t
dt

(
−3t+ 2

t3

)
dt =

3

2t
+

2

3t2
+ ct , c ∈ R .

b) y = 2t arctan t+ ct , c ∈ R .
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4. Bernoulli equations:

a) In the notation of Sect. 10.3.4,

p(t) = −1 , q(t) =
1

t
, α = 2 .

As α = 2 > 0, y(t) = 0 is a solution. Now divide by y2,

1

y2
y′ =

1

ty
− 1 ,

and set z = z(t) = y1−2 = 1
y ; then z′ = − 1

y2 y
′ and the equation reads z′ =

1− 1
t z. Solving for z,

z = z(t) =
t2 + c

2t
, c ∈ R .

Therefore,

y = y(t) =
1

z(t)
=

2t

t2 + c
, c ∈ R

to which we have to add y(t) = 0.

b) We have

p(t) = t log t , q(t) =
1

t
, α = −1 .

Set z = y2, so z′ = 2yy′ and the equation reads

z′ =
2

t
z + 2t log t .

Integrating the linear equation in z thus obtained, we have

z = z(t) = t2(log2 t+ c) , c ∈ R .

Therefore,

y = y(t) = ±t
√
log2 t+ c , c ∈ R .

5. The ODE is separable. The constant solution y = 0 is not valid because it fails
the initial condition y(0) = 1. By separating variables we get∫

1

1− e−y
dy =

∫
1

2t+ 1
dx ;

Then

log |1− ey| = 1

2
log |2t+ 1|+ c , c ∈ R .

Solving for y, and noticing that y = 0 corresponds to c = 0, we obtain the general
integral:

y = log
(
1− c

√
|2t+ 1|

)
, c ∈ R.
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The datum y(0) = 1 forces c = 1− e, so

y = log
(
1 + (e− 1)

√
|2t+ 1|

)
.

6. The equation’s general integral reads

y = e−
∫
2 dt

∫
e
∫
2 dte−2t dt = e−2t(t+ c) , c ∈ R .

The condition is y′(0) = 0. Setting x = 0 in y′(t) = −2y(t) + e−2t gives the new
condition y(0) = 1

2 , from which c = 1
2 . Thus,

y = e−2t

(
t+

1

2

)
.

7. y = log
(
2et

4(log t− 1
4 ) − 1

)
. 8. y = − 8

(4− t2)3/2
. 9. y =

sin t− 1

cos t
.

10. The equation is

2yy′ = y2 +
t

y
i.e., y′ =

1

2
y +

t

2y2
.

It can be made into a Bernoulli equation by taking

p(t) =
t

2
, q(t) =

1

2
, α = −2 .

Set z = z(t) = y3, so that z′ = 3y2y′ and z′ = 3
2z +

3
2 t. Solving for z,

z = z(t) = ce(3/2)t − t− 2

3
.

Therefore

y = y(t) =
3

√
ce(3/2)t − t− 2

3
.

The initial condition y(0) = 1 finally gives c = 5/3, so

y = y(t) =
3

√
5

3
e(3/2)t − t− 2

3
.

11. y = y(t) =
1

6
t3 +

1

2t
− 2

3
.

12. This second-order equation can be reduced to first order by y′ = z(y), and

observing z′ =
1

z

4

y3
. Then z = z(y) satisfies z2 = − 4

y2 + c1. Using the initial

conditions plus y′ = z(y) must give

(−
√
3)2 = −1 + c1 i.e., c1 = 4 .
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Therefore

z2 =
4

y2
(y2 − 1) hence z = −2

y

√
y2 − 1

(the minus sign is due to y′(0) = −√3). Now the equation is separable:

y′ = −2

y

√
y2 − 1 .

Solving √
y2 − 1 = −2t+ c2

with y(0) = 2 produces c2 =
√
3, and then

y = y(t) =

√
1 + (

√
3− 2t)2 .

13. y = y(t) = esinh t.

14. The ODE is linear, and the general integral is straightforward

y = e
∫
(2+α) dt

∫
e−

∫
(2+α) dt(−2eαt) dt = eαt(1 + c e2t) , c ∈ R.

From y(0) = 3 we find 3 = 1 + c, so c = 2. The solution is thus

y = eαt(1 + 2e2t).

15. Directly from the formula for linear ODEs,

y = ea
∫

1
t
dt

(
3

∫
e−a

∫
1
t
dttb dt

)
= ta

(
3

∫
tb−a dt

)

=

⎧⎨⎩ ta
(

3

b− a+ 1
tb−a+1 + c

)
if b− a �= −1,

ta (3 log t+ c) if b− a = −1 ,

=

⎧⎨⎩
3

b− a+ 1
tb+1 + c ta if b− a �= −1,

3ta log t+ cta if b− a = −1.
Now, y(2) = 1 imposes⎧⎨⎩

3

b− a+ 1
2b+1 + c 2a = 1 if b− a �= −1,

3 · 2a log 2 + c 2a = 1 if b− a = −1 ,
so ⎧⎨⎩ c = 2−a

(
1− 3

b− a+ 1
2b+1

)
if b− a �= −1,

c = 2−a − 3 log 2 if b− a = −1.
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The solution is

y =

⎧⎪⎨⎪⎩
3

b− a+ 1
tb+1 + 2−a

(
1− 3

b− a+ 1
2b+1

)
ta if b− a �= −1,

3ta log t+
(
2−a − 3 log 2

)
ta if b− a = −1.

16. The integral of this linear equation is

y = e−3
∫
t dt

∫
e3

∫
tdt kt dt =

k

3
+ c e−

3
2
t2 , c ∈ R.

Condition y(0) = 0 implies c = −k
3 . Therefore

y =
k

3

(
1− e−

3
2 t

2
)
.

17. Solving the ODE y′ = y2−2y−3
2(1+4t) :

a) y(t) =
3 + c

√|1 + 4t|
1− c

√|1 + 4t| , c ∈ R, plus the constant solution y(t) = −1.

b) y0(t) =
3−√|1 + 4t|
1 +
√|1 + 4t| ;

18. We have dom f = {(t, y) ∈ R2 : t+ y ≥ 0}. As

∇f =

(
1

2
√
t+ y

,
1

2
√
t+ y

)
,

f is Lipschitz in y on every Ω where 1
2
√
t+y

is bounded. Since

sup
t∈(α,β), y∈(γ,δ)

1

2
√
t+ y

=
1

2
√
α+ γ

,

the condition holds for any real α, γ such that α+ γ > 0. The end-points β, δ are
completely free, and may also be +∞.

19. Global solutions:

a) We have

∂f1
∂yj

=
yj

1 + y21 + y22
,

∂f2
∂yj

=
1

1 + (y1 + y2)2
, 1 ≤ j ≤ 2 ,

so
∣∣ ∂fi
∂yj

∣∣ ≤ 1 on R2. Hence f is Lipschitz on D = R2, and every solution exists

on the whole I = R.
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b) The map f is certainly differentiable on Rn, with continuous partial derivatives
(as composites of C1 elementary functions; besides, the denominator is never
zero). Partial derivatives are thus bounded by Weierstrass’ Theorem, making
f locally Lipschitz on Rn. Moreover,

‖f(y)‖ ≤ 1

(log 2)3
‖y‖ , ∀y ∈ Rn .

Therefore Theorem 10.19 holds, and any solution exists on I = R.

20. Existence of first integrals:

a) As y ·f(y) = 0 the equation is conservative, so Φ(y) = 1
2‖y‖2 is a first integral

(Example 10.22 i)).

b) Since div f(y) = 8y1y
3
2 + 2y2 − (8y1y

3
2 + 2y2) = 0 on R2, f is a curl, and the

equation admits a first integral Φ such that curlΦ = f . Then

∂Φ

∂y2
= 4y21y

3
2 + 2y1y2 , − ∂Φ

∂y1
= −(2y1y42 + y22) ;

integrating the first gives

Φ(y) = y21y
4
2 + y1y

2
2 + c(y1) ,

and using the second we find c(y1) = constant. Hence a family of first integrals
is

Φ(y) = y21y
4
2 + y1y

2
2 + c .

21. General integrals:

a) y(t) = c1e
t

(
1
2

)
+ c2e

5t

(
1
1

)
.

b) y(t) = c1e
3t

(
cos 4t
sin 4t

)
+ c2e

3t

(− sin 4t
cos 4t

)
.

c) The matrix A has eigenvalues λ1 = 1, λ2 = 2, λ3 = 3 corresponding to
eigenvectors

v1 = (1, 0, 3)T , v2 = (0, 1, 0)T , v1 = (2, 5, 5)T .

The general integral is thus of type

y(t) = c1e
t

⎛⎝ 1
0
3

⎞⎠+ c2e
2t

⎛⎝ 0
1
0

⎞⎠+ c3e
3t

⎛⎝ 2
5
5

⎞⎠ .
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d) A has eigenvalues λ1 = 3, λ2,3 = 2± 3i with eigenvectors

v1 = (2, 0, 1)T , v2,3 = (1,±i, 1)T .

Thus

y(t) = c1e
3t

⎛⎝ 2
0
1

⎞⎠+ c2e
2t

⎛⎝ cos 3t
− sin 3t
cos 3t

⎞⎠+ c3e
2t

⎛⎝ sin 3t
cos 3t
sin 3t

⎞⎠
is the general integral.

e) y(t) = c1

⎛⎝ 1
0
0

⎞⎠+ c2e
−3t

⎛⎝ cos t
−3 cos t− sin t
8 cos t+ 6 sin t

⎞⎠+ c3e
−3t

⎛⎝ − sin t
− cos t+ 3 sin t
6 cos t− 8 sin t

⎞⎠ .

f) A has eigenvalues λ1 = 4 with multiplicity 2, and λ2 = −8. The eigenvectors
of λ1 are v

(1)
1 = (1, 0, 0)T and v

(2)
1 = (0, 3, 2)T , while the eigenvector corres-

ponding to λ2 is v2 = (0, 3,−2)T . Therefore

y(t) = c1e
−8t

⎛⎝ 0
3
−2

⎞⎠+ c2e
4t

⎛⎝ 1
0
0

⎞⎠+ c3e
4t

⎛⎝ 0
3
2

⎞⎠ .

g) The matrix A has one eigenvalue λ = 3 of multiplicity 3. There are two

linearly independent eigenvectors v
(1)
1 = (0, 1, 0)T , v

(2)
1 = (0, 0, 1)T . Moreover,

the latter gives a generalised eigenvector r1 = (1, 0, 0)T . Therefore

y(t) = c1e
3t

⎛⎝ 0
1
0

⎞⎠+ c2e
3t

⎛⎝ 0
0
1

⎞⎠+ c3e
3t

⎛⎝t
⎛⎝ 0
0
1

⎞⎠+

⎛⎝ 1
0
0

⎞⎠⎞⎠ .

h) The matrix A has a unique eigenvalue λ = 1 with multiplicity 3, and one
eigenvector v1 = (0, 0, 1)T . This produces two generalised eigenvectors r1 =
(1/4, 0, 0)T , r2 = (0, 1/20, 0)T . Hence

y(t) = c1e
t

⎛⎝ 0
0
1

⎞⎠+ c2e
t

⎛⎝t
⎛⎝ 0
0
1

⎞⎠+

⎛⎝ 1/4
0
0

⎞⎠⎞⎠
+c3e

t

⎛⎝ t2

2

⎛⎝ 0
0
1

⎞⎠+ t

⎛⎝ 1/4
0
0

⎞⎠+

⎛⎝ 0
1/20
0

⎞⎠⎞⎠
is the general integral.

22. Particular integrals:

a) We have

y(t) =

⎛⎝ 0
0

−1/2

⎞⎠ t2 +

⎛⎝−10
0

⎞⎠ t+

⎛⎝ 0
1
0

⎞⎠ .
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b) We have

y(t) =

⎛⎝−25/18−7/18
7/144

⎞⎠ e−2t .

c) A particular integral is

y(t) =

⎛⎝−2/30
1/6

⎞⎠ cos 2t+

⎛⎝ 0
−1/3
−1/12

⎞⎠ sin 2t .

23. We have

y1(t) =
1

3
e−2t +

2

3
e4t , y2(t) =

2

3
e−2t +

1

3
e4t , y3(t) = −4

3
e−2t +

4

3
e4t .

24. The system reads, in normal form,

y′ = Ay with A =

(
1 2
−1 3

)
.

The eigenvalues of A are λ1,2 = 2 ± i corresponding to v1,2 = (2, 1 ± i)T . The
general integral is

y(t) = e2t
(
c1

(
2 cos t

cos t− sin t

)
+ c2

(
2 sin t

cos t+ sin t

))
.

Imposing the constraints gives c1 = 1, c2 = −2.

25. The eigenvalues of A =

(−1 b
b −1

)
are λ1,2 = −1± b.

If b �= 0, they are distinct, with corresponding eigenvectors v1 = (1, 1)T , v2 =
(1,−1)T , and the general integral is

y(t) = c1e
(b−1)t

(
1
1

)
+ c2e

−(1+b)t

(
1
−1
)

.

If b = 0 the eigenvectors stay the same, but the integral reads

y(t) = c1e
−t

(
1
1

)
+ c2e

−t

(
1
−1
)

.

In either case the initial datum gives c1 = 1 and c2 = 0. The required solution is,
for any b,

y(t) = e(b−1)t

(
1
1

)
.
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26. For a �= 1
2 , a �= 1,

y(t) = c1e
at

⎛⎝ 2a− 1
3− 2a
1− 2a

⎞⎠+ c2e
(1+a)t

⎛⎝ 2a− 2
2− a
0

⎞⎠+ c3e
(3a−1)t

⎛⎝ 0
1
0

⎞⎠ ;

for a = 1,

y(t) = c1e
t

⎛⎝ 1
1
−1

⎞⎠+ c2e
2t

⎛⎝ 0
1
0

⎞⎠+ c3e
2t

⎛⎝t
⎛⎝ 0
1
0

⎞⎠+

⎛⎝−10
0

⎞⎠⎞⎠ ;

for a = 1/2,

y(t) = c1e
(3/2)t

⎛⎝ −1
3/2
0

⎞⎠+ c2e
(1/2)t

⎛⎝ 0
1
0

⎞⎠+ c3e
(1/2)t

⎛⎝t

⎛⎝ 0
1
0

⎞⎠+

⎛⎝−1/20
1/2

⎞⎠⎞⎠ ;

27. Calling y1 = x, y2 = y, y3 = y′ we may write y′ = Ay where

A =

⎛⎝ 2 −1 0
0 0 1
−10 5 −2

⎞⎠ .

The matrix A has eigenvalues λ1 = 0, λ2 = 3, λ3 = −3 and, correspondingly,
v1 = (1, 2, 0)T , v2 = (1,−1,−3)T , v3 = (1, 5,−15)T .

Consequently, the general integral is

y(t) = c1

⎛⎝ 1
2
0

⎞⎠+ c2e
3t

⎛⎝ 1
−1
−3

⎞⎠+ c3e
−3t

⎛⎝ 1
5
−15

⎞⎠
i.e.,

x(t) = c1 + c2e
3t + c3e

−3t , y(t) = 2c1 − c2e
3t + 5c3e

−3t .

28. Second-order linear equations:

a) y(t; c1, c2) = c1e
−t + c2e

−2t + 1
2 t

2 − 3
2 t+

9
4 , c1, c2 ∈ R .

b) We solve first the homogeneous equation. The characteristic equation λ2−4λ+
4λ = 0 has one double solution λ = 2, so the general homogeneous integral will
be

y0(t; c1, c2) = (c1 + c2t)e
2t , c1, c2 ∈ R .

Since μ = λ = 2, we look for a particular integral yp(t) = αt2e2t. This gives

2αe2t = e2t

by substitution, hence α = 1
2 . Therefore yp(t) =

1
2 t

2e2t and the general integral
is

y(t; c1, c2) = (c1 + c2t)e
2t +

1

2
t2e2t , c1, c2 ∈ R .
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c) The characteristic equation λ2+1 = 0 has discriminant Δ = −4, so σ = 0 and
ω = 1. The general integral of the homogeneous equation is

y0(t; c1, c2) = c1 cos t+ c2 sin t , c1, c2 ∈ R .

As μ = σ = 0, we need to find a particular integral yp(t) = t(α cos t+ β sin t).
By substitution,

−2α sin t+ 2β cos t = 3 cos t ,

so α = 0 and β = 3
2 . Therefore yp(t) =

3
2 t cos t and the general integral is

y(t; c1, c2) = c1 cos t+ c2 sin t+
3

2
t cos t , c1, c2 ∈ R .

d) y(t; c1, c2) = c1e
t + c2e

2t − tet , c1, c2 ∈ R .

e) The characteristic equation λ2 − 9 = 0 is solved by λ = ±3. Hence the general
integral of the homogeneous ODE is

y0(t; c1, c2) = c1e
−3t + c2e

3t , c1, c2 ∈ R .

The particular integral must have form yp(t) = αte−3t, so substituting,

−6αe−3t = e−3t ,

hence α = − 1
6 . Therefore yp(t) = − 1

6 te
−3t and the general integral of the

equation is

y(t; c1, c2) = c1e
−3t + c2e

3t − 1

6
te−3t , c1, c2 ∈ R .

f) y(t; c1, c2) = c1e
−t + c2e

3t + 1
10 cos t− 1

5 sin t , c1, c2 ∈ R .

29. Cauchy problems:

a) y(t) = e−t sin 2t .

b) Let us treat the homogeneous equation first. The characteristic equation λ2 −
5λ+ 4 = 0 gives λ = 1, λ = 4. Thus the homogeneous general integral is

y0(t; c1, c2) = c1e
t + c2e

4t , c1, c2 ∈ R .

Substituting the particular integral yp(t) = αt+ β in the equation we find

−5α+ 4αt+ 4β = 2t+ 1 ,

so α = 1
2 and β = 7

8 . Therefore yp(t) =
1
2 t+

7
8 and the general solution is

y(t; c1, c2) = c1e
t + c2e

4t +
1

2
t+

7

8
, c1, c2 ∈ R .
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Imposing the initial conditions gives the system{
c1 + c2 = 0

c1 + 4c2 +
1

2
= 0

,

so c1 =
1
6 and c2 = − 1

6 . Therefore

y =
1

6
et − 1

6
e4t +

1

2
t+

7

8
.

30. Linear ODEs of order n:

a) The characteristic polynomial χ(λ) = λ3 + λ2 − 2 has a real root λ1 = 1 and
two complex-conjugate zeroes λ2,3 = −1± i. Then the general integral, in real
form, is

y(t) = c1e
t + c2e

−t cos t+ c3e
−t sin t , c1, c2, c3 ∈ R .

b) y(t) = c1e
t + c2te

t + c3 , c1, c2, c3 ∈ R .

c) The characteristic polynomial χ(λ) = λ4−5λ3+7λ2−5λ+6 has roots λ1 = 2,
λ2 = 3, λ3,4 = ±i. The homogeneous general integral is thus

y0(t) = c1e
2t + c2te

3t + c3 cos t+ c4 sin t , c1, c2, c3, c4 ∈ R .

Because of resonance, we search for a particular integral of type

yp(t) = t(α sin t+ β cos t) .

Differentiating, substituting in the ODE and comparing terms produces the
system {

α+ β = 0 ,

10α− 10β = 1 ,
whence

{
α = 1/20 ,

β = −1/20 .
In conclusion,

y = y(t) = y0(t) +
1

20
t(sin t− cos t)

is the general integral.

31. The associated homogeneous equation has general integral

y0(t) = c1e
2t + c2e

−3t ,

as one easily sees. The particular integral of the equation depends on k. In fact,

yp(t) =

{
αekt if k �= 2, k �= −3 ,
αtekt if k = 2, or k = −3
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with the constant α to be determined. Differentiating this expression and substi-
tuting,

α =

⎧⎪⎪⎨⎪⎪⎩
1

(k − 2)(k + 3)
if k �= 2, k �= −3 ,

1

2k + 1
if k = 2, or k = −3 .

Therefore,

y(t) =

⎧⎪⎪⎨⎪⎪⎩
c1e

2t + c2e
−3t +

1

(k − 2)(k + 3)
ekt if k �= 2, k �= −3 ,

c1e
2t + c2e

−3t +
1

2k + 1
tekt if k = 2, or k = −3 .

32. We have

y(t) =

⎧⎪⎨⎪⎩
et
(
c1 cos

√
k t+ c2 sin

√
k t
)

if k > 0 ,

et(c1 + tc2) if k = 0 ,

c1e
(1+

√−k)t + c2e
(1−√−k)t if k < 0 ,

with c1, c2 ∈ R.

33. The characteristic polynomial

χ(λ) = λ3 − 2λ2 + 49λ− 98 = (λ− 2)(λ2 + 49)

has roots λ1 = 2, λ2,3 = ±7i. The homogeneous integral reads
y0(t) = c1e

2t + c2 cos 7t+ c3 sin 7t , c1, c2, c3 ∈ R .

Putting b1(t) = 48 sin t and b2(t) = (β2 + 49)eβt, by the principle of superposition
we begin with a particular integral of the equation with source b1 of the form
yp1(t) = a cos t+ b sin t. This will give a = −1/5 and b = −2/5.

The other term b2 depends on the parameter β. When β �= 2, we want a
particular integral yp2(t) = aeβt. Proceeding as usual, we obtain a = 1/(β − 2).
When β = 2, the particular integral will be yp2(t) = ate2t and in this case we find
a = 1. So altogether, the general integral is

y(t) =

{
y0(t) +

1
β−2e

βt − 1
5 cos t− 2

5 sin t if β �= 2 ,

y0(t) + te2t − 1
5 cos t− 2

5 sin t if β = 2 .

34. We have

y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 + c2e
3
√−a t + c3e

−3
√−a t +

1

27(a− 1)
sin 3t if a < 0 ,

c1 + c2t+ c3t
2 − 1

27
sin 3t if a = 0 ,

c1 + c2 cos 3
√
a t+ c3 sin 3

√
a t+

1

27(a− 1)
sin 3t if a > 0, a �= 1 ,

c1 + c2 cos 3t+ c3 sin 3t− t

18
cos 3t if a = 1 .
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35. The eigenvalues of A are λ1 = −1, λ2,3 = − 5±√
163

2 , so Re λ < 0 for both. The
origin is thus uniformly asymptotically stable (see Proposition 10.46).

36. We have

Jf(y) =

(
3y2 3y1 − 4y2
1 3

)
.

The matrix

Jf(−3, 1) =
(−9 −11

1 3

)
has eigenvalues λ1 = −8, λ2 = 2, so the origin is unstable (Corollary 10.48).
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A.1

Complements on differential calculus

In this appendix, the reader may find the proofs of various results presented in
Chapters 5, 6, and 7. In particular, we prove Schwarz’s Theorem and we justify
the Taylor formulas with Lagrange’s and Peano’s remainders, as well as the rules
for differentiating integrals. At last, we prove Dini’s implicit function Theorem in
the two dimensional case.

A.1.1 Differentiability and Schwarz’s Theorem

� Proof of Proposition 5.8, p. 163

Proposition 5.8 Assume f admits continuous partial derivatives in a neigh-
bourhood of x0. Then f is differentiable at x0.

Proof. For simplicity we consider only the case n = 2.
Let then x = (x, y) be a point in the neighbourhood of x0 = (x0, y0) where the
hypotheses hold. Call (h, k) = (x − x0, y − y0); we must prove that for (h, k) →
(0, 0),

f(x0 + h, y0 + k) = f(x0, y0) +
∂f

∂x
(x0, y0)h+

∂f

∂y
(x0, y0)k + o(

√
h2 + k2) .

Using the first formula of the finite increment for the map x �→ f(x, y0) gives

f(x0 + h, y0) = f(x0, y0) +
∂f

∂x
(x0, y0)h+ o(h) , h→ 0 .

At the same time, Lagrange’s Mean Value Theorem tells us that y �→ f(x0 + h, y)
satisfies

f(x0 + h, y0 + k) = f(x0 + h, y0) +
∂f

∂y
(x0 + h, y)k

C. Canuto, A. Tabacco:Mathematical Analysis II, 2nd Ed.,
UNITEXT – La Matematica per il 3+2 85, DOI 10.1007/978-3-319-12757-6_A1,
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for some y = y(h, k) between y0 and y0 + k. Since
∂f

∂y
is continuous on the neigh-

bourhood of (x0, y0), we have

∂f

∂y
(x, y) =

∂f

∂y
(x0, y0) + o(1) , (x, y)→ (x0, y0) ,

and because (x0 + h, y)→ (x0, y0) for (h, k)→ (0, 0), we may write

∂f

∂y
(x0 + h, y) =

∂f

∂y
(x0, y0) + o(1) , (h, k)→ (0, 0) .

In conclusion, when (h, k)→ (0, 0),

f(x0 + h, y0 + k) = f(x0, y0) +
∂f

∂x
(x0, y0)h+

∂f

∂y
(x0, y0)k + o(h) + o(1)k .

But o(h) + o(1)k = o(
√
h2 + k2) , (h, k) → (0, 0). In fact, |h|, |k| ≤ √

h2 + k2

implies
|o(h)|√
h2 + k2

≤ |o(h)|
|h| =

∣∣∣∣o(h)h

∣∣∣∣→ 0 , (h, k)→ (0, 0)

and |o(1)k|√
h2 + k2

≤ |o(1)k|
|k| = |o(1)| → 0 , (h, k)→ (0, 0) .

The claim now follows. �

� Proof of Schwarz’s Theorem, p. 168

Theorem 5.17 (Schwarz) If the mixed partial derivatives
∂2f

∂xj∂xi
and

∂2f

∂xi∂xj
(j �= i) exist on a neighbourhood of x0 and are continuous at x0,

they coincide at x0.

Proof. For simplicity let us only consider n = 2. We have to prove

∂2f

∂y∂x
(x0, y0) =

∂2f

∂x∂y
(x0, y0) ,

under the assumption that the derivatives exist on a neighbourhood Br(x0, y0) of
x0 = (x0, y0) and are continuous at x0.

Let x = (x, y) ∈ Br(x0, y0) and set (h, k) = (x − x0, y − y0). Consider the
function

g(h, k) = f(x0 + h, y0 + k)− f(x0 + h, y0)− f(x0, y0 + k) + f(x0, y0) .
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Putting ϕ(x) = f(x, y0 + k)− f(x, y0) we see that

g(h, k) = ϕ(x0 + h)− ϕ(x0) .

The second formula of the finite increment for the function x �→ ϕ(x) gives a point
ξ = ξ(h, k), between x0 and x0 + h, for which

g(h, k) = hϕ′(ξ) = h
(∂f
∂x

(ξ, y0 + k)− ∂f

∂x
(ξ, y0)

)
.

Let us use the same formula again, this time to ψ(y) = ∂f
∂x (ξ, y), to obtain a point

η = η(h, k) between y0 and y0 + k such that

∂f

∂x
(ξ, y0 + k)− ∂f

∂x
(ξ, y0) = k

∂2f

∂y∂x
(ξ,η )

and so

g(h, k) = hk
∂2f

∂y∂x
(ξ,η ) .

Now letting (h, k) → (0, 0) we have (ξ,η ) → (x0, y0); therefore, since
∂2f
∂y∂x is

continuous at (x0, y0), we will have

lim
(h,k)→(0,0)

g(h, k)

hk
= lim

(ξ,η)→(x0,y0)

∂2f

∂y∂x
(ξ,η ) =

∂2f

∂y∂x
(x0, y0) . (A.1.1)

But we can write g as

g(h, k) = f(x0+h, y0+k)−f(x0, y0+k)−f(x0+h, y0)+f(x0, y0) = ψ̃(y0+k)−ψ̃(y0) ,
having put ψ̃(y) = f(x0 + h, y)− f(x0, y). Swapping the variables and proceeding
as before gives

lim
(h,k)→(0,0)

g(h, k)

hk
=

∂2f

∂x∂y
(x0, y0) . (A.1.2)

Since the limit on the left in (A.1.1) and (A.1.2) is the same, the equality follows.
�

A.1.2 Taylor’s expansions

� Proof of Theorem 5.20, p. 172

Theorem 5.20 A function f of class C2 around x0 admits at x0 the Taylor
expansion of order one with Lagrange’s remainder:

f(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
(x− x0) ·Hf(x)(x− x0) ,

where x is interior to the segment S[x,x0].
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Proof. Set Δx = x − x0 = (Δxi)1≤i≤n for simplicity. We consider the function
of one real variable ϕ(t) = f(x0 + tΔx), defined around t0 = 0, and show it
is differentiable twice around 0. In that case we will find its Taylor expansion of
second order. Property 5.11 ensures that ϕ is differentiable on some neighbourhood
of the origin, with

ϕ′(t) = ∇f(x0 + tΔx) ·Δx =

n∑
i=1

Δxi
∂f

∂xi
(x0 + tΔx) .

Now set ψi(t) =
∂f
∂xi

(x0 + tΔx) and use Property 5.11 on them, to obtain

ψ′
i(t) = ∇( ∂f

∂xi

)
(x0 + tΔx) ·Δx =

n∑
j=1

∂2f

∂xj∂xi
(x0 + tΔx)Δxj .

This implies ϕ can be differentiated twice, and also that

ϕ′′(t) =
n∑

i=1

Δxi

n∑
j=1

∂2f

∂xj∂xi
(x0 + tΔx)Δxj

= Δx ·Hf(x0 + tΔx)Δx ,

as Hf is symmetric.
The Taylor expansion of ϕ of order two, centred at t0 = 0, and computed at t = 1
reads

ϕ(1) = ϕ(0) + ϕ′(0) +
1

2
ϕ′′(t) con 0 < t < 1 ;

substituting the expressions of ϕ′(0) and ϕ′′(t) found earlier, and putting x =
x0 + tΔx, proves the claim. �

� Proof of Theorem 5.21, p. 172

Theorem 5.21 A function f of class C2 around x0 admits at x0 the following
Taylor expansion of order two with Peano’s remainder:

f(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
(x− x0) ·Hf(x0)(x− x0)

+o(‖x− x0‖2) , x→ x0 .

Proof. Consider the generic summand

1

2

∂2f

∂xj∂xi
(x)ΔxiΔxj
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in the quadratic part on the right-hand side of (5.15). As the second derivative of
f is continuous at x0 and x belongs to the segment S[x,x0], we have

∂2f

∂xj∂xi
(x) =

∂2f

∂xj∂xi
(x0) + ηij(x) ,

where lim
x→x0

ηij(x) = 0. Hence

∂2f

∂xj∂xi
(x)ΔxiΔxj =

∂2f

∂xj∂xi
(x0)ΔxiΔxj + ηij(x)ΔxiΔxj .

We will prove the last term is in fact o(‖Δx‖2); for this, we recall that 0 ≤
(a− b)2 = a2 + b2 − 2ab for any pair of real numbers a, b, so that ab ≤ 1

2 (a
2 + b2).

Now note that the following inequalities hold

|Δxi| |Δxj | ≤ 1

2
(|Δxi|2 + |Δxj |2) ≤ 1

2
‖Δx‖2 ,

so

0 ≤ |ηij(x)ΔxiΔxj |
‖Δx‖2 ≤ 1

2
|ηij(x)|

and then

lim
x→x0

ηij(x)ΔxiΔxj

‖Δx‖2 = 0 .

In summary,

1

2
(x− x0) ·Hf (x)(x− x0) =

1

2
(x− x0) ·Hf (x0)(x− x0)

+o(‖x− x0‖2) , x→ x0 ,

whence the result. �

A.1.3 Differentiating functions defined by integrals

First, we state the following result, of great importance per se, that will be used
below.

Theorem A.1.1 (Heine-Cantor) Let f : domf ⊆ Rn → Rm be a continu-
ous map on a compact set Ω ⊆ domf . Then f is uniformly continuous on
Ω.

Proof. The proof is similar to what we saw in the one dimensional case, using
the multidimensional version of the Bolzano-Weierstrass Theorem (see Vol. I, Ap-
pendix A.3). �
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� Proof of Theorem 6.17, p. 215

Proposition 6.17 The function f defined by (6.14) is continuous on I.

Moreover, if g admits continuous partial derivative
∂g

∂x
on R, then f is of

class C1 on I and

f ′(x) =
∫ b

a

∂g

∂x
(x, y) dy .

Proof. Suppose x0 is an interior point of I (the proof can be easily adapted to the
case where x0 is an end-point). Then there is a σ > 0 such that [x0−σ, x0+σ] ⊂ I;
the rectangle E = [x0 − σ, x0 + σ]× J isa compact set in R2.

Let us begin by proving the continuity of f at x0. As we assumed g continu-
ous on R, hence on the compact subset E, Heine-Cantor’s Theorem implies g
is uniformly continuous on E. Hence, for any ε > 0 there is a δ > 0 such that
|g(x1) − g(x2)| < ε for any pair of points x1 = (x1, y1), x2 = (x2, y2) in E with
‖x1 − x2‖ < δ. We may assume δ < σ. Let now x ∈ [x0 − σ, x0 + σ] be such that
|x− x0| < δ; for any given y in [a, b], then,

‖(x, y)− (x0, y)‖ = |x− x0| < δ ,

so |g(x, y)− g(x0, y)| < ε. Therefore

|f(x)−f(x0)| =
∣∣∣ ∫ b

a

(
g(x, y)−g(x0, y)

)
dy
∣∣∣ ≤ ∫ b

a

∣∣g(x, y)−g(x0, y)
∣∣dy < ε(b−a) ,

proving continuity.

As for differentiability at x0, in case
∂g

∂x
exists and is continuous on I × J , we

observe

f(x)− f(x0)

x− x0
=

1

x− x0

∫ b

a

(
g(x, y)− g(x0, y)

)
dy =

∫ b

a

g(x, y)− g(x0, y)

x− x0
dy .

Given y ∈ [a, b], we can use The Mean Value Theorem (in dimension 1) on x �→
g(x, y). This gives a point ξ between x and x0 for which

g(x, y)− g(x0, y)

x− x0
=

∂g

∂x
(ξ, y) .

By assumption,
∂g

∂x
is uniformly continuous on E (again by Heine-Cantor’s The-

orem). Consequently, for any ε > 0 there is a δ > 0 (δ < σ) such that, if x1,x2 ∈ E

with ‖x1−x2‖ < δ, we have
∣∣∣∂g
∂x

(x1)− ∂g

∂x
(x2)
∣∣∣ < ε. In particular, when x1 = (ξ, y)

and x2 = (x0, y) with ‖x1 − x2‖ = |ξ − x0| < δ, we have
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∂x

(ξ, y)− ∂g

∂x
(x0, y)

∣∣∣ < ε .

Therefore ∣∣∣∣∣f(x)− f(x0)

x− x0
−
∫ b

a

∂g

∂x
(x0, y) dy

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

(
g(x, y)− g(x0, y)

x− x0
− ∂g

∂x
(x0, y)

)
dy

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

(
∂g

∂x
(ξ, y)− ∂g

∂x
(x0, y)

)
dy

∣∣∣∣∣ < ε(b− a)

which proves differentiability at x0 and also the formula

f ′(x0) =

∫ b

a

∂g

∂x
(x0, y) dy . �

� Proof of Theorem 6.18, p. 215

Proposition 6.18 If α and β are continuous on I, the map f defined by (6.15)

is continuous on I. If moreover g admits continuous partial derivative
∂g

∂x
on

R and α, β are C1 on I, then f is C1 on I, and

f ′(x) =
∫ β(x)

α(x)

∂g

∂x
(x, y) dy + β′(x)g

(
x,β (x)

) − α′(x)g
(
x,α (x)

)
.

Proof. The only thing to prove is the continuity of f , because the rest is shown
on p. 215.

As in the previous argument, we may fix x0 ∈ I and assume it is an interior
point. Call E = [x0−σ, x0+σ]×J ⊂ R, the set on which g is uniformly continuous.
Let now ε > 0; since g is uniformly continuous on E and by the continuity of the
maps α and β on I, there is a number δ > 0 (with δ < σ) such that |x − x0| < δ
implies

|g(x, y)− g(x0, y)| < ε , for all y ∈ J ,

and
|α(x)− α(x0)| < ε , |β(x) − β(x0)| < ε .

Then, setting M = max
(x,y)∈E

|g(x, y)| gives

|f(x)− f(x0)| =
∫ β(x)

α(x)

g(x, y) dy −
∫ β(x0)

α(x0)

g(x0, y) dy
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=

∫ α(x0)

α(x)

g(x, y) dy +

∫ β(x0)

α(x0)

g(x, y) dy +

+

∫ β(x)

β(x0)

g(x, y) dy −
∫ β(x0)

α(x0)

g(x0, y) dy

=

∫ α(x0)

α(x)

g(x, y) dy +

∫ β(x)

β(x0)

g(x, y) dy +

−
∫ β(x0)

α(x0)

(
g(x, y)− g(x0, y)

)
dy

≤ M |α(x) − α(x0)|+M |β(x)− β(x0)|+ ε|β(x0)− α(x0)|
≤ (2M + |β(x0)− α(x0)|

)
ε

and f ’s continuity at x0 follows immediately. �

A.1.4 The Implicit Function Theorem

� Proof of Theorem 7.1, p. 263

Teorema 7.1 Let Ω be a non-empty open set in R2 and f : Ω → R a C1 map.

Assume at the point (x0, y0) ∈ Ω we have f(x0, y0) = 0. If
∂f

∂y
(x0, y0) �= 0,

there exists a neighbourhood I of x0 and a function ϕ : I → R such that:

i)
(
x,ϕ (x)

) ∈ Ω for any x ∈ I;

ii) y0 = ϕ(x0);

iii) f
(
x,ϕ (x)

)
= 0 for any x ∈ I;

iv) ϕ is a C1 map on I with derivative

ϕ′(x) = −
∂f

∂x

(
x,ϕ (x)

)
∂f

∂y

(
x,ϕ (x)

) . (A.1.3)

On a neighbourhood of (x0, y0) moreover, the zero set of f coincides with the
graph of ϕ.

Proof. Since the map fy = ∂f
∂y is continuous and non-zero at (x0, y0), the local

invariance of the function’s sign (§ 4.5.1) guarantees there exists a neighbourhood
A ⊆ Ω of (x0, y0) where fy �= 0 has constant sign. On a such neighbourhood the
auxiliary map g(x, y) = −fx(x, y)/fy(x, y) is well defined and continuous.
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Consider then the Cauchy problem (Section 10.4)

{ y ′
= g(x, y)y(x0) = y0 .

This admits, by Peano’s Theorem 10.10, a solution y = ϕ(x) defined and of class
C1 on a neighbourhood I of x0 such that

(
x,ϕ (x)

) ∈ A for any x ∈ I. Thus
conditions i) and ii) hold; but then also iv) is satisfied, by definition of solution
to the differential equation. As for iii), we define the map h(x) = f

(
x,ϕ (x)

)
: it

satisfies, on I,

h′(x) = fx
(
x,ϕ (x)

)
+ fy
(
x,ϕ (x)

)
ϕ′(x)

= fx
(
x,ϕ (x)

)
+ fy
(
x,ϕ (x)

)
g
(
x,ϕ (x)

)
= fx

(
x,ϕ (x)

)
+ fy
(
x,ϕ (x)

) (−fx
(
x,ϕ (x)

)
fy
(
x,ϕ (x)

)) = 0 ,

so it is constant; but as h(x0) = f(x0, y0) = 0, h is necessarily the zero map,
wherefore iii).

Concerning the last statement, note that if (x, y) ∈ A with x ∈ I, then

f(x, y) = f
(
x,ϕ (x)

)
+

∫ y

ϕ(x)

∂f

∂y
(x, s) ds =

∫ y

ϕ(x)

∂f

∂y
(x, s) ds

as a consequence of the Fundamental Theorem of Calculus (Vol. I, Cor. 9.42)
applied to y �→ f(x, y). The integral vanishes if and only if y = ϕ(x), because
the integrand is always different from 0 (recall the property stated in Vol. I,
Thm. 9.33 iii)). Therefore on the neighbourhood of (x0, y0) where x ∈ I we have
f(x, y) = 0 precisely when y = ϕ(x). �



A.2

Complements on integral calculus

In this appendix, we first introduce the notion of norm of a function, illustrated by
several examples including norms of integral type. Next, we justify the Theorems
of Gauss, Green and Stokes; for the sake of clarity, we confine our discussion to
the case of specific, yet representative, geometries. The proof of the equivalence
between conservative fields and irrotational fields in simply connected domains
is the subsequent result. In the last section, we briefly outline the language of
differential forms, and we express various properties of vector fields, discussed in
the text, using the corresponding terminology.

A.2.1 Norms of functions

The norm of a function is a non-negative real number that somehow provides
a measure of the “size” of the function. For instance, if f is a function and f̃
is another function approximating it, the norm of the difference f − f̃ gives a
quantitative indication of the quality of the approximation: a small value of the
norm corresponds, in a suitable sense, to a good approximation of f by means
of f̃ .

Definition A.2.1 Given a family F of real functions defined on a set Ω ⊆
Rn, that forms a vector space, we call norm a map from F to R, denoted by
f �→ ‖f‖, that fulfills the following properties: for all f, g ∈ F and all α ∈ R

one has

i) ‖f‖ ≥ 0 and ‖f‖ = 0 if and only if f = 0 (positivity);

ii) ‖αf‖ = |α|‖f‖ (homogeneity);

iii) ‖f + g‖ ≤ ‖f‖+ ‖g‖ (triangle inequality).

Note the analogy with the properties that define a norm over vectors in Rn.
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Remarkable examples of norms of functions are as follows. If F denotes the
vector space of the bounded functions on the set Ω, it is easily checked that

‖f‖∞,Ω = sup
x∈Ω

|f(x)|

is a norm, called the supremum norm or infinity norm. It has been introduced
in Sect. 2.1 for Ω = A ⊆ R. If in addition Ω is a compact subset of Rn and we
restrict ourselves to consider the continuous functions on Ω, namely f ∈ C0(Ω),
then the supremum in the previous definition is actually a maximum, as the func-
tion |f(x)| is continuous on Ω and Weierstrass’ Theorem 5.24 applies to it. So we
define

‖f‖C0(Ω) = max
x∈Ω

|f(x)| = ‖f‖∞,Ω ,

which is called the maximum norm in the space C0(Ω).
Other commonly used norms are those of integral type, which measure the size

of a function “in the average”. If Ω is a measurable set and F is the vector space
of all Riemann-integrable functions on Ω (recall Theorem 8.20), we may define the
absolute-value norm, or 1-norm, as

‖f‖1,Ω =

∫
Ω

|f(x)| dx

as well as the quadratic norm, or 2-norm, as

‖f‖2,Ω =

(∫
Ω

|f(x)|2 dx
)1/2

.

The latter norm has been introduced in Sect. 3.2 for Ω = [0, 2π] ⊂ R. The two
integral norms defined above are instances in the family of p-norms, with real
1 ≤ p < +∞, defined as

‖f‖p,Ω =

(∫
Ω

|f(x)|p dx
)1/p

.

The quadratic norm is particularly important, since it is associated to a scalar
product between integrable functions; its definition is

(f, g)2,Ω =

∫
Ω

f(x)g(x) dx,

and one has ‖f‖2,Ω =
√
(f, f)2,Ω . In general, the following definition applies.
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Definition A.2.2 A scalar product (or inner product) in F is a map
from F×F to R, denoted by f, g �→ (f, g), that fulfills the following properties:
for all f, g, f1, f2 ∈ F and all α,β ∈ R one has

i) (f, f) ≥ 0 and (f, f) = 0 if and only if f = 0 (positivity);

ii) (f, g) = (g, f) (symmetry);

iii) (αf1 + βf2, g) = α(f1, g) + β(f2, g) (linearity).

It is easily checked that the quantity ‖f‖ = (f, f)1/2 is a norm, called the norm
associated with the scalar product under consideration. It satisfies the Cauchy-
Schwarz inequality

|(f, g)| ≤ ‖f‖ ‖g‖ , ∀f, g ∈ F .

A scalar product allows us to define the concept of orthogonality between
functions: two functions f, g ∈ F are called orthogonal if (f, g) = 0. In a vector
space endowed with a scalar product, the Theorem of Pythagoras holds; it is
expressed by the relation

‖f + g‖2 = ‖f‖2 + ‖g‖2 if and only if (f, g) = 0 .

Indeed, one has

‖f + g‖2 = (f + g, f + g)

= (f, f) + (f, g) + (g, f) + (g, g)

= ‖f‖2 + 2(f, g) + ‖g‖2 ,

whence the equivalence.

Going back to norms, for a differentiable function it may be useful to measure
the size of its derivatives, in addition to that of the function. For instance, if Ω
is a bounded open set in Rn, consider the vector space C1(Ω) of the functions of
class C1 on the compact set Ω (see Sect. 5.4); then, it is natural to define therein
the norm

‖f‖C1(Ω) = ‖f‖C0(Ω) +
n∑

i=1

‖Dxi
f‖C0(Ω) .

If the maximum norms in this definition are replaced by norms of integral type
(such as the quadratic norms of f and its first-order partial derivatives Dxi

f), we
obtain the so-called Sobolev norms.
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A.2.2 The Theorems of Gauss, Green, and Stokes

� Proof of Proposition 9.30, p. 391

Proposition 9.30 Let the open set Ω ⊂ R3 be G-admissible, and assume

f ∈ C0(Ω) with ∂f

∂xi
∈ C0(Ω), i ∈ {1, 2, 3}. Then
∫
Ω

∂f

∂xi
dxdy dz =

∫
∂Ω

fni dσ ,

where ni is the ith component of the outward normal to ∂Ω.

Proof. Without loss of generality take i = 3. As claimed, we shall prove the
statement only for open, piecewise-regular sets that are normal for x3 = z. We
begin by assuming further that Ω is regular and normal for z, and use the notation
introduced in Example 9.27 ii).

Integrating along segments and then by parts we obtain∫
Ω

∂f

∂z
(x, y, z) dxdy dz =

∫
D

∫ β(x,y)

α(x,y)

∂f

∂z
(x, y, z) dz dxdy

=

∫
D

f
(
x, y,β (x, y)

)
dxdy −

∫
D

f
(
x, y,α (x, y)

)
dxdy .

(A.2.1)

As nz|Σβ
= 1/‖νβ‖, recalling (9.12) and (9.11), we have∫

D

f
(
x, y,β (x, y)

)
dxdy =

∫
D

f
(
x, y,β (x, y)

)
nz|Σβ

(x, y)‖νβ(x, y)‖ dxdy

=

∫
Σβ

fnz dσ .

Likewise, nz|Σα
= −1/‖να‖, hence

−
∫
D

f
(
x, y,α (x, y)

)
dxdy =

∫
D

f
(
x, y,α (x, y)

)
nz|Σα

(x, y)‖να(x, y)‖ dxdy

=

∫
Σα

fnz dσ .

Eventually, from nz|Σ�
= 0 follows∫

Σ�

fnz dσ = 0 .
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We conclude that∫
∂Ω

fnz dσ =

∫
Σβ

fnz dσ +

∫
Σα

fnz dσ +

∫
Σ�

fnz dσ

=

∫
D

f
(
x, y,β (x, y)

)
dxdy −

∫
D

f
(
x, y,α (x, y)

)
dxdy

and the assertion follows from (A.2.1).
Now let us suppose the open set is piecewise regular and normal for z, as in

Example 9.27 iii). Call {Ωk}k=1,...,K a partition of Ω into regular, normal sets for
z. Using the above result on each Ωk, we have∫

Ω

∂f

∂z
dxdy dz =

K∑
k=1

∫
∂Ωk

fn(k)
z dσ . (A.2.2)

If Γ = ∂Ωk ∩ ∂Ωh denotes the intersection of two partition elements (intersection

which we assume bigger than a point), then n
(k)
|Γ = −n(h)

|Γ and∫
Γ

fn(k)
z dσ +

∫
Γ

fn(h)
z dσ = 0 .

In other terms, the integrals over the parts of boundary of each Ωk that are
contained in Ω cancel out in pairs; what remains on the right-hand side of (A.2.2)
is

K∑
k=1

∫
∂Ωk∩∂Ω

fn(k)
z dσ =

∫
∂Ω

fnz dσ ,

proving the claim. �

� Proof of Green’s Theorem, p. 394

Theorem 9.35 (Green) Let Ω ⊂ R2 be a G-admissible open set whose bound-

ary ∂Ω is positively oriented. Take a vector field f = f1i + f2j in
(C1(Ω))2.

Then ∫
Ω

(∂f2
∂x

− ∂f1
∂y

)
dxdy =

∮
∂Ω

f · τ .

Proof. From (6.6) we know that curlf = (curlΦ )3,Φ being the three-dimensional
vector field f + 0k (constant in z). Setting Q = Ω × (0, 1) as in the proof of The-
orem 9.32,∫

Ω

(∂f2
∂x

− ∂f1
∂y

)
dxdy =

∫
Ω

curlf dxdy =

∫ 1

0

∫
Ω

(curlΦ )3 dxdy dz

=

∫
Q

(curlΦ )3 dxdy dz .
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Let us then apply Theorem 9.34 to the field Φ ∈ (C1(Ω))3, and consider the third
component of equation (9.21), giving∫

Q

(curlΦ )3 dxdy dz =

∫
∂Q

(N ∧Φ)3 dσ ,

with N being the unit normal outgoing from ∂Q. It is immediate to check (N ∧
Φ)3 = f2n1 − f1n2 = f · t on ∂Ω × (0, 1), whereas (N ∧Φ)3 = 0 on Ω × {0} and
Ω × {1}. Therefore∫

∂Q

(N ∧Φ)3 dσ =

∫ 1

0

∫
∂Ω

(N ∧Φ)3 dxdy dz =

∫
∂Ω

f · tdγ =

∮
∂Ω

f · τ ,

and the result follows. �

� Proof of Stokes’ Theorem, p. 396

Theorem 9.37 (Stokes) Let Σ ⊂ R3 be an S-admissible compact surface
oriented by the unit normal n; correspondingly, let the boundary ∂Σ be oriented
positively. Suppose the vector field f , defined on an open set A ⊆ R3 containing

Σ, is such that f ∈ (C1(A))3. Then∫
Σ

(curl f) · n =

∮
∂Σ

f · τ .

In other words, the flux of the curl of f across the surface equals the path
integral of f along the surface’s (closed) boundary.

Proof. We start with the case in which Σ is the surface (9.15) from Example 9.29,
whose notations we retain; additionally, let us assume the function ϕ belongs to
C2(R). Where possible, partial derivatives will be denoted using subscripts x, y, z,
and likewise for the components of normal and tangent vectors. Recalling (9.13)
and the expression (9.16) for the unit normal of Σ, we have∫

Σ

(curl f) · n =

∫
R
(f2,z − f3,y)ϕx + (f3,x − f1,z)ϕy + (f2,x − f1,y) dxdy

=

∫
R
−(f1,y + f1,zϕy) + (f2,x + f3,zϕx) + (f3,xϕy − f3,yϕx) dxdy ,

where the derivatives of the components of f are taken on
(
x, y,ϕ (x, y)

)
as (x, y)

varies in R. By the chain rule f1,y + f1,zϕy is the partial derivative in y of the
map f1

(
x, y,ϕ (x, y)

)
; similarly, f2,x+ f3,zϕx represents the partial x-derivative of

the map f2
(
x, y,ϕ (x, y)

)
. Moreover, adding and subtracting f3,zϕxϕy+f3,yϕ

2
xy to

formula f3,xϕy − f3,yϕx, we see that this expression equals
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∂

∂x

(
f3
(
x, y,ϕ (x, y)

)
ϕy(x, y)

)
− ∂

∂y

(
f3
(
x, y,ϕ (x, y)

)
ϕx(x, y)

)
.

Therefore we can use the two-dimensinal analogue of Proposition 9.30 to obtain∫
Σ

(curl f) · n =

∫
∂R

(− f1ny + f2nx + f3(ϕynx − ϕxny)
)
dγ , (A.2.3)

where nx, ny are the components of the outgoing unit normal of ∂R.
If γ : I → R2 denotes a positive parametrisation of the boundary of R, then

ny = −γ′
1/‖γ′‖ and nx = γ′

2/‖γ′‖. Furthermore the arc η : I → R3 given by η(t) =(
γ1(t), γ2(t), ϕ(γ1(t), γ2(t))

)
is a positive parametrisation of ∂Σ with respect to

the chosen orientation of Σ. The corresponding tangen vector is given by (9.17).
Overall then, recalling the definitions of integral along a curve and line integral,∫

∂R

(− f1ny + f2nx + f3(ϕynx − ϕxny)
)
dγ =

∫
I

(f1η
′
1 + f2η

′
2 + f3η

′
3) dt

=

∮
∂Σ

f · τ .

Equation (9.24) in the present case follows from (A.2.3).
Let us now suppose Σ is made by K faces Σ1, . . . , ΣK , each as above. Using

the result just found on every Σk, and summing over k, we find∫
Σ

(curl f) · n =

K∑
k=1

∮
∂Σk

f · τ (k) . (A.2.4)

If Γ = ∂Σh ∩ ∂Σk is the intersection of two faces (suppose not a point), the unit

tangents to ∂Σh and ∂Σk satisfy t
(h)
|Γ = −t(k)|Γ , hence∫

Γ

f · τ (h) +

∫
Γ

f · τ (k) = 0 .

That is, the integrals over the boundary parts common to two faces cancel out;
the right-hand side of (A.2.2) thus reduces to

K∑
k=1

∫
∂Σk∩∂Σ

f · τ (k) =

∮
∂Σ

f · τ ,

proving the assertion. �

� Proof of Theorem 9.45, p. 403

Theorem 9.45 Let Ω ⊆ Rn, with n = 2 or 3, be open and simply connected.
A vector field f of class C1 on Ω is conservative if and only if it is curl-free.
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Proof. We have shown, in Proposition 9.43, the arrow f conservative ⇒ f curl-
free. Let us deal with the opposite implication.

First, though, we handle the two-dimensional case, and prove condition iii) of
Theorem 9.42. Suppose γ is a simple closed (i.e., Jordan) arc, (piecewise) regular
and with trace Γ contained in Ω; its interior Σ is all contained Ω. Hence we can
use Green’s Theorem 9.35 and conclude∫

γ

f · τ = ±
∫
Σ

curl f dxdy = 0

(the sign on the second integral is determined by the orientation of Γ ). Should the
arc be not simple, we can decompose it in closed simple arcs to which the result
applies.

Now let us consider the three-dimensional picture, for which we discuss only
the case of star-shaped sets; build explicitly the potential f , in analogy to–and
using the notation of–the proof of Theorem 9.42. Precisely, if P0 is the point for
which Ω is star-shaped, we define the potential at P of coordinates x by setting

ϕ(x) =

∫
Γ[P0,P ]

f · τ

where Γ[P0,P ] is the segment joining P0 and P . We claim gradϕ = f , and will
prove it for the first component only. So let P + ΔP = x + Δx1 e1 ∈ Ω be a
nearby point to P , Γ[P0,P+ΔP ] the segment joining P0 to P +ΔP , and Γ[P,P+ΔP ]

the (horizontal) segment from P to P +ΔP . We wish to prove∫
Γ[P0,P+ΔP ]

f · τ −
∫
Γ[P0,P ]

f · τ =

∫
Γ[P,P+ΔP ]

f · τ . (A.2.5)

But this is straightforward if P0, P and P +ΔP are collinear. If not, they form a
triangleΣ, which is entirely contained in Ω, the latter being star-shaped. Calling Γ
the boundary of Σ oriented from P0 to P along Γ[P0,P ], we invoke Stokes’ Theorem
and have ∫

Γ

f · τ =

∫
Γ

curl f ∧ n = 0 ,

i.e., ∫
Γ[P0,P ]

f · τ +

∫
Γ[P0,P+ΔP ]

f · τ −
∫
Γ[P,P+ΔP ]

f · τ = 0 ,

whence (A.2.5). Therefore

ϕ(x+Δx1e1)− ϕ(x)

Δx1
=

1

Δx1

∫
Γ[P,P+ΔP ]

f · τ

=
1

Δx1

∫ Δx1

0

f1(x+ te1) dt ,

and we conclude as in Theorem 9.42. �



A.2.3 Differential forms 529

A.2.3 Differential forms

In this section, we introduce a few essential notions about differential forms;
through them, it is possible to reformulate various definitions and relevant prop-
erties of vector fields, that we encountered in previous chapters. The forthcoming
exposition is deliberately informal and far from being complete; our goal indeed is
just to establish a relation between certain notations adopted in this textbook and
the language of differential forms, which is commonly used in various applications.

Let us assume to be in dimension 3; as usual, the reduction to dimension
2 is straightforward, while several concepts may actually be formulated in any
dimension n. So, in the sequel Ω will be an open set in R3.

A differential 0-form F is, in our notation, a real-valued function (also called
a scalar field) ϕ = ϕ(x, y, z) defined in Ω, i.e.,

F = ϕ .

A differential 1-form ω is an expression like

ω = P dx+Q dy +R dz ,

where P = P (x, y, z), Q = Q(x, y, z) and R = R(x, y, z) are scalar fields defined
in Ω. In our notation, it corresponds to the vector field

f = P i +Q j +Rk .

Thus, the symbols dx, dy and dz denote particular 1-forms, that span all the oth-
ers by linear combinations. They correspond to the vectors i, j and k, respectively,
of the canonical basis in R3.

An expression like ∫
Γ

ω =

∫
Γ

(P dx+Q dy +R dz) ,

where Γ is an arc contained in Ω, corresponds in our notation to the path integral∫
Γ

f · τ .

Formally, the relationship may be motivated by multiplying and dividing by dt
under the integral sign,∫

Γ

ω =

∫
Γ

(
P

dx

dt
+Q

dy

dt
+R

dz

dt

)
dt

and thinking of γ(t) = (x(t), y(t), z(t)) as the parametrization of the arc Γ (re-
call (9.8) and (9.10)).
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The derivative of a 0-form F is defined as the 1-form

dF =
∂ϕ

∂x
dx +

∂ϕ

∂y
dy +

∂ϕ

∂z
dz ,

obviously assuming the scalar field ϕ differentiable in Ω. In our notation, this
relation is expressed as

f = gradϕ .

A differential 1-form ω is called exact if there exists a 0-form F such that

ω = dF .

In our notation, this is equivalent to the property that the vector field f associated
with the form ω is conservative.

It is possible to define the derivative of a 1-form ω = P dx+Q dy+R dz as
the 2-form

dω =

(
∂R

∂y
− ∂Q

∂z

)
dy∧dz +

(
∂P

∂z
− ∂R

∂x

)
dz∧dx +

(
∂Q

∂x
− ∂P

∂y

)
dx∧dy .

If we identify the symbols dx, dy and dz with the vectors of the canonical basis in
R3 and we formally interpret the symbol ∧ as the external product of two vectors
(recall (4.5)), then we have dy ∧ dz = dx, dz ∧ dx = dy and dx ∧ dy = dz; this
shows that, with respect to our notation, the differential form dω is associated
with the vector field

g = curl f

(recall (6.4)). In general, for a differential 2-form

Ψ = S dy∧dz + T dz∧dx + U dx∧dy ,

where S = S(x, y, z), T = T (x, y, z) and U = U(x, y, z) are scalar fields, it is
possible to define the integral ∫

Σ

Ψ

over a surface Σ contained in Ω; it corresponds, in our notation, to the flux integral∫
Σ

g · n

(recall (9.14)), where g = Si + T j + Uk is the vector field associated with the
form Ψ . In particular, we have∫

Σ

dω =

∫
Σ

(curl f) · n .
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Hence, in the language of differential forms, Stokes’ Theorem 9.37 takes the elegant
expression ∫

Σ

dω =

∫
∂Σ

ω .

A differential 1-form ω is called closed if

dω = 0 ;

in our notation, this corresponds to the property that the vector field f associated
with the form is irrotational, i.e., it satisfies

curl f = 0 .

One has the property

d2F = d (dF ) = 0

that in our notation is equivalent to the identity

curl gradϕ = 0

(recall Proposition 6.7). Such a property may be formulated as

an exact differential 1-form is closed

that corresponds to state that a conservative vector field is irrotational (see Prop-
erty 9.43). If the domain Ω is simply connected, then we have the equivalence

a differential 1-form is exact if and only if it is closed

that translates into the language of differential forms our Theorem 9.45, accord-
ing to which in such a domain a vector field is conservative if and only if it is
irrotational.



Basic definitions and formulas

Sequences and series

Geometric sequence (p. 3):

lim
n→∞

qn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if |q| < 1,

1 if q = 1,

+∞ if q > 1,

does not exist if q ≤ −1

.

The number e (p. 3):

e = lim
n→∞

(
1 +

1

n

)n
=

∞∑
k=0

1

n!

Geometric series (p. 6):

∞∑
k=0

qk

⎧⎪⎪⎪⎨⎪⎪⎪⎩
converges to

1

1− q
if |q| < 1 ,

diverges to +∞ if q ≥ 1 ,

is indeterminate if q ≤ −1

Mengoli’s series (p. 7):

∞∑
k=2

1

(k − 1)k
= 1

Generalised harmonic series (p. 15):

∞∑
k=1

1

kα

{
converges if α > 1 ,

diverges if α ≤ 1

C. Canuto, A. Tabacco:Mathematical Analysis II, 2nd Ed.,
UNITEXT – La Matematica per il 3+2 85, DOI 10.1007/978-3-319-12757-6,
© Springer International Publishing Switzerland 2015
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Power series

Convergence radius (p. 48):

R = sup
{
x ∈ R :

∞∑
k=0

akx
k converges

}
Ratio Test (p. 49):

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = � =⇒ R =

⎧⎨⎩
0 if � = +∞ ,

+∞ if � = 0 ,

1/� if 0 < � < +∞
Root Test (p. 50):

lim
k→∞

k
√
|ak| = � =⇒ R =

⎧⎨⎩
0 if � = +∞ ,

+∞ if � = 0 ,

1/� if 0 < � < +∞
.

Power series for analytic functions (p. 56):

f(x) =

∞∑
k=0

f (k)(x0)

k!
(x− x0)

k

Special power series (p. 54 and 58):

1

1− x
=

∞∑
k=0

xk , x ∈ (−1, 1)

1

1 + x2
=

∞∑
k=0

(−1)kx2k , x ∈ (−1, 1)

(1 + x)α =

∞∑
k=0

(
α

k

)
xk , x ∈ (−1, 1)

ex =

∞∑
k=0

xk

k!
, x ∈ R

log(1 + x) =

∞∑
k=0

(−1)k
k + 1

xk+1 =

∞∑
k=1

(−1)k−1

k
xk , x ∈ (−1, 1)

sinx =

∞∑
k=0

(−1)k
(2k + 1)!

x2k+1 , x ∈ R

cosx =

∞∑
k=0

(−1)k
(2k)!

x2k , x ∈ R



Definitions and formulas 535

Fourier series

Fourier coefficients of a map f (p. 82):

a0 =
1

2π

∫ 2π

0

f(x) dx

ak =
1

π

∫ 2π

0

f(x) cos kxdx , k ≥ 1

bk =
1

π

∫ 2π

0

f(x) sin kxdx , k ≥ 1

ck =
1

2π

∫ 2π

0

f(x)e−ikx dx , k ∈ ZZ

Fourier series of a map f ∈ C̃2π (p. 85):

f ≈ a0 +

∞∑
k=1

(ak cos kx+ bk sin kx) ≈
+∞∑

k=−∞
cke

ikx

Parseval’s formula (p. 91):∫ 2π

0

|f(x)|2 dx = 2πa20 + π

+∞∑
k=1

(a2k + b2k) = 2π

+∞∑
k=−∞

|ck|2

Square wave (p. 85):

f(x) =

⎧⎨⎩
−1 if −π < x < 0 ,

0 if x = 0, ±π ,
1 if 0 < x < π ,

f ≈ 4

π

∞∑
m=0

1

2m+ 1
sin(2m+ 1)x

Rectified wave (p. 87):

f(x) = | sinx| , f ≈ 2

π
− 4

π

∞∑
m=1

1

4m2 − 1
cos 2mx

Sawtooth wave (p. 87):

f(x) = x , x ∈ (−π,π ) , f ≈
∞∑
k=1

2

k
(−1)k+1 sin kx
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Real-valued functions

Partial derivative (p. 157):

∂f

∂xi
(x0) = lim

Δx→0

f(x0 +Δxei)− f(x0)

Δx

Gradient (p. 157):

∇f(x0) = grad f(x0) =
( ∂f
∂xi

(x0)
)
1≤i≤n

Differential (p. 162):

dfx0(Δx) = ∇f(x0) ·Δx

Directional derivative (p. 163):

∂f

∂v
(x0) = ∇f(x0) · v =

∂f

∂x1
(x0) v1 + · · ·+ ∂f

∂xn
(x0) vn

Second partial derivative (p. 168):

∂2f

∂xj∂xi
(x0) =

∂

∂xj

(
∂f

∂xi

)
(x0)

Hessian matrix (p. 169):

Hf(x0) = (hij)1≤i,j≤n with hij =
∂2f

∂xj∂xi
(x0)

Taylor expansion with Peano’s remainder (p. 172):

f(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
(x− x0) ·Hf(x0)(x− x0) + o(‖x− x0‖2)

Curl in dimension 2 (p. 206):

curl f =
∂f

∂x2
i− ∂f

∂x1
j

Fundamental identity (p. 209):

curl grad f = ∇ ∧ (∇f) = 0

Laplace operator (p. 211):

Δf = divgrad f = ∇ · ∇f =

n∑
j=1

∂2f

∂x2
j
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Vector-valued functions

Jacobian matrix (p. 202):

Jf(x0) =
( ∂fi
∂xj

(x0)
)

1 ≤ i ≤ m
1 ≤ j≤ n

=

⎛⎜⎝ ∇f1(x0)
...

∇fm(x0)

⎞⎟⎠
Differential (p. 203):

dfx0(Δx) = Jf(x0)Δx

Divergence (p. 205):

div f = ∇ · f =
∂f1
∂x1

+ · · ·+ ∂fn
∂xn

=

n∑
j=1

∂fj
∂xj

Curl in dimension 3 (p. 205):

curl f = ∇∧ f =

(
∂f3
∂x2

− ∂f2
∂x3

)
i+

(
∂f1
∂x3

− ∂f3
∂x1

)
j +

(
∂f2
∂x1

− ∂f1
∂x2

)
k

Curl in dimension 2 (p. 205):

curlf =
∂f2
∂x1

− ∂f1
∂x2

Fundamental identity (p. 209):

div curl f = ∇ · (∇ ∧ f) = 0

Derivative of a composite map – Chain rule (p. 212):

J(g ◦ f)(x0) = Jg(y0)Jf(x0)

Tangent line to a curve (p. 217):

T (t) = γ(t0) + γ′(t0)(t− t0) , t ∈ R

Length of a curve (p. 222):

�(γ) =

∫ b

a

‖γ′(t)‖ dt

Tangent plane to a surface (p. 237):

Π(u, v) = σ(u0, v0) +
∂σ

∂u
(u0, v0) (u− u0) +

∂σ

∂v
(u0, v0) (v − v0)

Normal vector of a surface (p. 238):

ν(u0, v0) =
∂σ

∂u
(u0, v0) ∧ ∂σ

∂v
(u0, v0)
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Polar coordinates

From polar to Cartesian coordinates (p. 230):

Φ : [0,+∞)× R→ R2 , (r,θ ) �→ (x, y) = (r cos θ, r sin θ)

Jacobian matrix and determinant (p. 230):

JΦ(r,θ ) =

(
cos θ −r sin θ
sin θ r cos θ

)
, detJΦ(r,θ ) = r

Partial derivatives in polar coordinates (p. 231):

∂f

∂r
=

∂f

∂x
cos θ +

∂f

∂y
sin θ ,

∂f

∂θ
= −∂f

∂x
r sin θ +

∂f

∂y
r cos θ

∂f

∂x
=

∂f

∂r
cos θ − ∂g

∂θ

sin θ

r
,

∂f

∂y
=

∂g

∂r
sin θ +

∂f

∂θ

cos θ

r

Variable change in double integrals (p. 320):∫
Ω

f(x, y) dxdy =

∫
Ω′

f(r cos θ, r sin θ) r dr dθ

Cylindrical coordinates

From cylindrical to Cartesian coordinates (p. 233):

Φ : [0,+∞)× R2 → R3 , (r, θ, t) �→ (x, y, z) = (r cos θ, r sin θ, t)

Jacobian matrix and determinant (p. 233):

JΦ(r, θ, t) =

⎛⎝ cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

⎞⎠ , detJΦ(r, θ, t) = r

Partial derivatives in cylindrical coordinates (p. 233):

∂f

∂r
=

∂f

∂x
cos θ +

∂f

∂y
sin θ ,

∂f

∂θ
= −∂f

∂x
r sin θ +

∂f

∂y
r cos θ ,

∂f

∂t
=

∂f

∂z

∂f

∂x
=

∂f

∂r
cos θ − ∂f

∂θ

sin θ

r
,

∂f

∂y
=

∂f

∂r
sin θ +

∂f

∂θ

cos θ

r
,

∂f

∂z
=

∂f

∂t

Variable change in triple integrals (p. 328):∫
Ω

f(x, y, z) dxdy dz =

∫
Ω′

f(r cos θ, r sin θ, t) r dr dθ dt
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Spherical coordinates

From spherical to Cartesian coordinates (p. 234):

Φ : [0,+∞)× R2 → R3 ,

(r, ϕ,θ ) �→ (x, y, z) = (r sinϕ cos θ, r sinϕ sin θ, r cosϕ)

Jacobian matrix (p. 234):

JΦ(r, ϕ,θ ) =

⎛⎜⎝ sinϕ cos θ r cosϕ cos θ −r sinϕ sin θ
sinϕ sin θ r cosϕ sin θ r sinϕ cos θ

cosϕ −r sinϕ 0

⎞⎟⎠
Jacobian determinant (p. 234):

detJΦ(r, ϕ,θ ) = r2 sinϕ

Partial derivatives in spherical coordinates (p. 233):

∂f

∂r
=

∂f

∂x
sinϕ cos θ +

∂f

∂y
sinϕ sin θ +

∂f

∂z
cosϕ

∂f

∂ϕ
=

∂f

∂x
r cosϕ cos θ +

∂f

∂y
r cosϕ sin θ − ∂f

∂z
r sinϕ

∂f

∂θ
= −∂f

∂x
r sinϕ sin θ +

∂f

∂y
r sinϕ cos θ

∂f

∂x
=

∂f

∂r
sinϕ cos θ +

∂f

∂ϕ

cosϕ cos θ

r
− ∂f

∂θ

sin θ

r sinϕ
∂f

∂y
=

∂f

∂r
sinϕ sin θ +

∂f

∂ϕ

cosϕ sin θ

r
+

∂f

∂θ

cos θ

r sinϕ
∂f

∂z
=

∂f

∂r
cosϕ− ∂f

∂ϕ

sinϕ

r

Variable change in triple integrals (p. 329):∫
Ω

f(x, y, z) dxdy dz =

∫
Ω′
f(r sinϕ cos θ, r sinϕ sin θ, r cosϕ) r2 sinϕdr dϕdθ



540 Definitions and formulas

Multiple integrals

Vertical integration (p. 309):∫
Ω

f =

∫ b

a

(∫ g2(x)

g1(x)

f(x, y) dy

)
dx

Horizontal integration (p. 309):∫
Ω

f =

∫ d

c

(∫ h2(y)

h1(y)

f(x, y) dx

)
dy

Iterated integral (p. 324):∫
Ω

f =

∫
D

(∫ g2(x,y)

g1(x,y)

f(x, y, z) dz

)
dxdy

Iterated integral (p. 325):∫
Ω

f =

∫ β

α

(∫
Az

f(x, y, z) dxdy

)
dz

Variable change in multiple integrals (p. 328): .∫
Ω

f(x) dΩ =

∫
Ω′

f
(
Φ(u)

)| detJΦ(u)| dΩ′

Pappus’ Centroid Theorem (p. 333):

vol(Ω) = 2πyG area(T )
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Integrals on curves and surfaces

Integral along a curve (p. 368):∫
γ

f =

∫ b

a

f
(
γ(t)
) ‖γ′(t)‖ dt

Path integral (p. 375):∫
γ

f · τ =

∫
γ

fτ =

∫ b

a

f
(
γ(t)
) · γ′(t) dt

Integral on a surface (p. 378):∫
σ

f =

∫
R
f
(
σ(u, v)

)‖ν(u, v)‖ du dv
Flux integral (p. 384):∫
σ

f · n =

∫
σ

fn =

∫
R
f
(
σ(u, v)

) · ν(u, v) du dv .

Divergence Theorem (p. 391):∫
Ω

div f =

∫
∂Ω

f · n

Green’s Theorem (p. 394):∫
Ω

(∂f2
∂x

− ∂f1
∂y

)
dxdy =

∮
∂Ω

f · τ

Stokes’ Theorem (p. 396):∫
Σ

(curl f) · n =

∮
∂Σ

f · τ
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Examples of quadrics

 

 

 

 

 

 

 

 

x

y

Ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1

z

 

 

 

 

 

 

 

 

x

y

Hyperbolic paraboloid

z

c
= −x2

a2
+

y2

b2

z

 

 

 

 

 

 

 

 

x
y

Elliptic paraboloid

z

c
=

x2

a2
+

y2

b2

z



Definitions and formulas 543

 

 

 

 

 

 

 

 

x y

Cone

z2

c2
=

x2

a2
+

y2

b2

z

 

 

 

 

 

 

 

 

x
y

One-sheeted hyperboloid

x2

a2
+

y2

b2
− z2

c2
= 1

z

 

 

 

 

 

 

 

 

x y

Two-sheeted hyperboloid

z2

c2
− x2

a2
− y2

b2
= 1

z



Index

Arc, 139
closed, 139
end points, 139
Jordan, 139
length, 222–224
meridian, 144, 332
simple, 139

Area, 304, 368, 378, 381

Binormal, 226
Boundary, 243, 247

of a set, 120

Canonical basis, 112
Centre

of a power series, 45
of curvature, 226
of gravity, 330
of mass, 330, 374, 383

Centroid, 330, 383
Chain rule, 213
Change

of variable, 227, 317, 319
Closure

of a set, 120
Coefficients

Fourier, 85
of a power series, 45

Component, 247
connected, 125

Constraint, 277
Convergence

absolute, 41

pointwise, 34, 41, 93, 94
quadratic, 90, 91
uniform, 35, 42, 95

Coordinates
curvilinear, 228
cylindrical, 233, 328
polar, 230, 318
spherical, 234, 329

Cross product, 113
Curl, 205, 393
Curvature, 226
Curve, 138

anti-equivalent, 220
congruent, 220
differentiable, 217
equivalent, 220
homotopic, 402
integral, 426
length, 222
level, 268, 269
opposite, 221, 371
piecewise regular, 217
plane, 138
regular, 217, 222
simple, 139, 222

Cylindroid
of a function, 298, 311

Derivative
directional, 159
partial, 156, 159, 168, 171

Determinant, 115
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Differential, 162, 203
Differential equation

autonomous, 427
Bernoulli, 437
homogeneous, 432, 434, 474
linear, 433
non-homogeneous, 434, 476
ordinary, 424
Riccati, 437
solution, 424, 426
with separable variables, 430

Divergence, 205, 391
Dot product, 112

Edge, 247
Eigenvalue, 116
Eigenvector, 116

generalised, 466
Ellipsoid, 144
Error function, 58
Estremum

constrained, 274, 276
unconstrained, 174

Existence
global, 446
local, 440

Exterior
of a set, 120

Face, 247
Field, 128

conservative, 209, 397
curl-free, 209
divergence-free, 209
irrotational, 209, 403, 527
of curl type, 209
radial, 406
vector, 158

Flux, 383, 384
Form

differential, 529
closed, 531
exact, 530

normal, 424
quadratic, 118, 176

Formulas
Frenet, 227
reduction, 309

Frequency, 77

Function
analytic, 56
Bessel, 63
continuous, 130
defined by integral, 214, 516
differentiable, 161, 203
error, 58
expansion in Taylor series, 56
generically continuous, 307
gradient, 158
harmonic, 212
implicit, 261, 263, 265, 266, 518
integrable, 300, 307, 322, 335
Lagrangian, 280
limit, 34
Lipschitz, 166, 203, 441
locally Lipschitz, 447
Lyapunov, 451
of class Ck, 171
of several variables, 126
orthogonal, 523
partial derivative, 158
periodic, 76
piecewise C1, 95
piecewise continuous, 79
piecewise monotone, 93
piecewise regular, 93
rectified wave, 87, 95, 96
regularised, 79
sawtooth wave, 92
scalar, 126
square wave, 85, 95, 96
vector-valued, 128, 201

Gibbs phenomenon, 95
Gradient, 157, 205

Helicoid, 144
Helmholtz decomposition, 211
Hessian of a function, 169
Homotopy, 402

Inequality
Cauchy-Schwarz, 80, 112, 523
triangle, 112

Integral
along a curve, 368, 373
circulation, 376
double, 297, 298, 304
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first, 451
flux, 383, 384
general, 427
improper, 335
iterated, 310, 324, 325
lower, 300
multiple, 297, 322, 335
on a surface, 378, 380
particular, 459, 470
singular, 430
triple, 297, 322
upper, 300

Integration
reduction formula, 303, 310, 324, 325

Interior
of a set, 120

Jacobian, 202

Klein bottle, 247

Lagrange multipliers, 278
Lagrangian, 280
Laplacian, 211
Length, 222
Level set, 127
Limit, 132, 136
Line

coordinate, 228
integral, 375, 377

Linearisation, 455

M-test
Weierstrass, 43

Möbius strip, 242, 247
Mass, 330, 374

centre of, 330
Matrix, 114

definite, 118
determinant, 115
diagonalisable, 116
exponential, 466
Hessian, 169
identity, 115
indefinite, 118
inverse, 116
Jacobian, 202
minor, 115
non-singular, 116

norm, 115
normal, 115
orthogonal, 115
rank, 115
semi-definite, 118
similar, 117
square, 114, 115
symmetric, 115
transpose, 115

Maximum, 174
Measure, 304, 305
Meridian section, 332
Minimum, 174
Minimum square error, 83
Minor, 115
Moment, 374

of inertia, 331, 383
Multiplicity

algebraic, 116
geometric, 116

Neighbourhood, 120
Norm, 521

absolute value, 522
Euclidean, 112, 115
infinity, 35, 522
maximum, 522
quadratic, 80, 522
sup-norm, 35
supremum, 35, 522

Normal, 225
unit, 238

Normal vector
unit, 386

ODE, 424
separable, 430

Operator
differential, 211
Laplace, 211

Orbit, 427
closed, 427

Order, 424
Orientation, 221, 241, 389
Orthogonal functions, 523

Parametrisation, 237, 240
anti-equivalent, 240
equivalent, 240
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Parseval’s formula, 91, 97
Partition, 298
Path integral, 375, 377
Phase space, 427
Plane

osculating, 225
tangent, 161, 238

Point
boundary, 120
centre, 483
critical, 175, 479
equilibrium, 479
exterior, 120
extremum, 174
focus, 484
interior, 120
isolated, 123
limit, 123
maximum, 174
minimum, 174
node, 483
regular, 175
saddle, 179, 483
stationary, 175, 479

Polinomial
trigonometric, 78

Polygonal path, 124
Polynomial

characteristic, 116, 461, 475
Taylor, 171

Positively-oriented triple, 114, 229
Potential, 209, 404
Power series, 45
Problem

Cauchy, 427
initial value, 427

Product
Cauchy, 20
scalar, 80, 523

Pseudo-derivative, 94

Radius
of convergence, 48–50
of curvature, 226
spectral, 117

Rank, 115
Region, 126
Remainder

Lagrange, 172, 513

of a series, 8, 14, 16
Peano, 172, 514

Resonance, 470, 476
Riemann-Lebesgue Lemma, 91

Saddle point, 179, 483
Sawtooth, 92
Sequence

convergent, 1, 34
divergent, 1
geometric, 3
indeterminate, 1
numerical, 1
of functions, 34
of partial sums, 4

Series
absolutely convergent, 17
alternating, 16
binomial, 51, 59
centre, 45
coefficients, 45
conditionally converging, 19
convergent, 5
differentiation, 43, 54
divergent, 5
exponential, 45, 58
Fourier, 75, 85, 96
general term, 4
geometric, 6, 42
harmonic, 10, 15, 17
indeterminate, 5
integration, 42, 54
Maclaurin, 56
Mengoli, 7
numerical, 4
of derivatives, 54
of functions, 41
positive-term, 9
power, 45
product, 20
radius, 48–50
remainder, 14, 16
sum, 41
Taylor, 56
telescopic, 7

Set
G-admissible, 386
bounded, 124
closed, 121
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compact, 124
connected, 124
convergence, 34, 41
convex, 124
level, 127, 268
measurable, 304
normal, 308, 323
open, 121
simply connected, 402
star-shaped, 403

Solution
attractive, 479
global, 427, 444
of a differential equation, 424, 426
stable, 479
stationary, 479
uniformly attractive, 480

Stability, 478
linearised, 488

Sum, 41
lower, 299
of a series, 5
upper, 299

Surface, 142, 236
S-admissible, 389
boundary, 243, 247
closed, 246
compact, 381, 389
exterior region, 247
helicoidal, 144
integral, 384
interior region, 247
level, 268, 273
of revolution, 144, 382
orientable, 241, 247
piecewise regular, 247
regular, 236, 237
simple, 143, 237
spherical, 144
topographic, 144

System
autonomous, 480
conservative, 450
dissipative, 450
fundamental, 457
Hamiltonian, 453
homogeneous, 456, 462, 466
linear, 456
non-homogeneous, 459, 470

orthogonal, 80
orthonormal, 81, 112

Taylor expansion, 172, 513, 514
Test

absolute convergence, 18
asymptotic comparison, 11
comparison, 2, 9
integral, 13
Leibniz, 16
ratio, 3, 12, 49
root, 12, 50
Weierstrass’ M-test, 43

Theorem
Abel, 49
Cauchy-Lipschitz, 442
comparison, 2
Curl, 393
Dini, 266, 518
divergence, 391
Fermat, 175
Gauss, 391, 524
Green, 393, 525
Guldin, 333, 382
Heine-Cantor, 515
Jordan curve, 140
Lagrange, 165
Mean Value, 165, 314
Pappus, 333
Peano’s Existence, 440
Pythagoras, 523
Schwarz, 168, 512
Stokes, 395, 526, 531
substitution, 2
Weierstrass, 174

Torus, 147, 246, 334
Trace, 142

of a curve, 138
of a surface, 142

Trajectory, 427
Triple

positively oriented, 390

Variable change, 328
Vector, 111

binormal, 226
normal, 225, 238, 242
orthogonal, 112
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tangent, 218, 225
torsion, 226
unit, 112, 225

Volume, 311, 332

Wave
rectified, 87, 95, 96
square, 85, 95, 96

Wedge product, 113



Collana Unitext – La Matematica per il 3+2

Series Editors:
A. Quarteroni (Editor-in-Chief)
L. Ambrosio
P. Biscari
C. Ciliberto
M. Ledoux
W.J. Runggaldier

Editor at Springer:
F. Bonadei
francesca.bonadei@springer.com

As of 2004, the books published in the series have been given a volume num-
ber. Titles in grey indicate editions out of print.
As of 2011, the series also publishes books in English.

A. Bernasconi, B. Codenotti
Introduzione alla complessità computazionale
1998, X+260 pp, ISBN 88-470-0020-3

A. Bernasconi, B. Codenotti, G. Resta
Metodi matematici in complessità computazionale
1999, X+364 pp, ISBN 88-470-0060-2

E. Salinelli, F. Tomarelli
Modelli dinamici discreti
2002, XII+354 pp, ISBN 88-470-0187-0

S. Bosch
Algebra
2003, VIII+380 pp, ISBN 88-470-0221-4

S. Graffi, M. Degli Esposti
Fisica matematica discreta
2003, X+248 pp, ISBN 88-470-0212-5

S. Margarita, E. Salinelli
MultiMath – Matematica Multimediale per l’Università
2004, XX+270 pp, ISBN 88-470-0228-1



A. Quarteroni, R. Sacco, F.Saleri
Matematica numerica (2a Ed.)
2000, XIV+448 pp, ISBN 88-470-0077-7
2002, 2004 ristampa riveduta e corretta
(1a edizione 1998, ISBN 88-470-0010-6)

13. A. Quarteroni, F. Saleri
Introduzione al Calcolo Scientifico (2a Ed.)
2004, X+262 pp, ISBN 88-470-0256-7
(1a edizione 2002, ISBN 88-470-0149-8)

14. S. Salsa
Equazioni a derivate parziali - Metodi, modelli e applicazioni
2004, XII+426 pp, ISBN 88-470-0259-1

15. G. Riccardi
Calcolo differenziale ed integrale
2004, XII+314 pp, ISBN 88-470-0285-0

16. M. Impedovo
Matematica generale con il calcolatore
2005, X+526 pp, ISBN 88-470-0258-3

17. L. Formaggia, F. Saleri, A. Veneziani
Applicazioni ed esercizi di modellistica numerica
per problemi differenziali
2005, VIII+396 pp, ISBN 88-470-0257-5

18. S. Salsa, G. Verzini
Equazioni a derivate parziali – Complementi ed esercizi
2005, VIII+406 pp, ISBN 88-470-0260-5
2007, ristampa con modifiche

19. C. Canuto, A. Tabacco
Analisi Matematica I (2a Ed.)
2005, XII+448 pp, ISBN 88-470-0337-7
(1a edizione, 2003, XII+376 pp, ISBN 88-470-0220-6)

20. F. Biagini, M. Campanino
Elementi di Probabilità e Statistica
2006, XII+236 pp, ISBN 88-470-0330-X



21. S. Leonesi, C. Toffalori
Numeri e Crittografia
2006, VIII+178 pp, ISBN 88-470-0331-8

22. A. Quarteroni, F. Saleri
Introduzione al Calcolo Scientifico (3a Ed.)
2006, X+306 pp, ISBN 88-470-0480-2

23. S. Leonesi, C. Toffalori
Un invito all’Algebra
2006, XVII+432 pp, ISBN 88-470-0313-X

24. W.M. Baldoni, C. Ciliberto, G.M. Piacentini Cattaneo
Aritmetica, Crittografia e Codici
2006, XVI+518 pp, ISBN 88-470-0455-1

25. A. Quarteroni
Modellistica numerica per problemi differenziali (3a Ed.)
2006, XIV+452 pp, ISBN 88-470-0493-4
(1a edizione 2000, ISBN 88-470-0108-0)
(2a edizione 2003, ISBN 88-470-0203-6)

26. M. Abate, F. Tovena
Curve e superfici
2006, XIV+394 pp, ISBN 88-470-0535-3

27. L. Giuzzi
Codici correttori
2006, XVI+402 pp, ISBN 88-470-0539-6

28. L. Robbiano
Algebra lineare
2007, XVI+210 pp, ISBN 88-470-0446-2

29. E. Rosazza Gianin, C. Sgarra
Esercizi di finanza matematica
2007, X+184 pp, ISBN 978-88-470-0610-2

30. A. Machì
Gruppi – Una introduzione a idee e metodi della Teoria dei Gruppi
2007, XII+350 pp, ISBN 978-88-470-0622-5
2010, ristampa con modifiche



31 Y. Biollay, A. Chaabouni, J. Stubbe
Matematica si parte!
A cura di A. Quarteroni
2007, XII+196 pp, ISBN 978-88-470-0675-1

32. M. Manetti
Topologia
2008, XII+298 pp, ISBN 978-88-470-0756-7

33. A. Pascucci
Calcolo stocastico per la finanza
2008, XVI+518 pp, ISBN 978-88-470-0600-3

34. A. Quarteroni, R. Sacco, F. Saleri
Matematica numerica (3a Ed.)
2008, XVI+510 pp, ISBN 978-88-470-0782-6

35. P. Cannarsa, T. D’Aprile
Introduzione alla teoria della misura e all’analisi funzionale
2008, XII+268 pp, ISBN 978-88-470-0701-7

36. A. Quarteroni, F. Saleri
Calcolo scientifico (4a Ed.)
2008, XIV+358 pp, ISBN 978-88-470-0837-3

37. C. Canuto, A. Tabacco
Analisi Matematica I (3a Ed.)
2008, XIV+452 pp, ISBN 978-88-470-0871-3

38. S. Gabelli
Teoria delle Equazioni e Teoria di Galois
2008, XVI+410 pp, ISBN 978-88-470-0618-8

39. A. Quarteroni
Modellistica numerica per problemi differenziali (4a Ed.)
2008, XVI+560 pp, ISBN 978-88-470-0841-0

40. C. Canuto, A. Tabacco
Analisi Matematica II
2008, XVI+536 pp, ISBN 978-88-470-0873-1
2010, ristampa con modifiche

41. E. Salinelli, F. Tomarelli
Modelli Dinamici Discreti (2a Ed.)
2009, XIV+382 pp, ISBN 978-88-470-1075-8



42. S. Salsa, F.M.G. Vegni, A. Zaretti, P. Zunino
Invito alle equazioni a derivate parziali
2009, XIV+440 pp, ISBN 978-88-470-1179-3

43. S. Dulli, S. Furini, E. Peron
Data mining
2009, XIV+178 pp, ISBN 978-88-470-1162-5

44. A. Pascucci, W.J. Runggaldier
Finanza Matematica
2009, X+264 pp, ISBN 978-88-470-1441-1

45. S. Salsa
Equazioni a derivate parziali – Metodi, modelli e applicazioni (2a Ed.)
2010, XVI+614 pp, ISBN 978-88-470-1645-3

46. C. D’Angelo, A. Quarteroni
Matematica Numerica – Esercizi, Laboratori e Progetti
2010, VIII+374 pp, ISBN 978-88-470-1639-2

47. V. Moretti
Teoria Spettrale e Meccanica Quantistica – Operatori in spazi di Hilbert
2010, XVI+704 pp, ISBN 978-88-470-1610-1

48. C. Parenti, A. Parmeggiani
Algebra lineare ed equazioni differenziali ordinarie
2010, VIII+208 pp, ISBN 978-88-470-1787-0

49. B. Korte, J. Vygen
Ottimizzazione Combinatoria. Teoria e Algoritmi
2010, XVI+662 pp, ISBN 978-88-470-1522-7

50. D. Mundici
Logica: Metodo Breve
2011, XII+126 pp, ISBN 978-88-470-1883-9

51. E. Fortuna, R. Frigerio, R. Pardini
Geometria proiettiva. Problemi risolti e richiami di teoria
2011, VIII+274 pp, ISBN 978-88-470-1746-7

52. C. Presilla
Elementi di Analisi Complessa. Funzioni di una variabile
2011, XII+324 pp, ISBN 978-88-470-1829-7



53. L. Grippo, M. Sciandrone
Metodi di ottimizzazione non vincolata
2011, XIV+614 pp, ISBN 978-88-470-1793-1

54. M. Abate, F. Tovena
Geometria Differenziale
2011, XIV+466 pp, ISBN 978-88-470-1919-5

55. M. Abate, F. Tovena
Curves and Surfaces
2011, XIV+390 pp, ISBN 978-88-470-1940-9

56. A. Ambrosetti
Appunti sulle equazioni differenziali ordinarie
2011, X+114 pp, ISBN 978-88-470-2393-2

57. L. Formaggia, F. Saleri, A. Veneziani
Solving Numerical PDEs: Problems, Applications, Exercises
2011, X+434 pp, ISBN 978-88-470-2411-3

58. A. Machì
Groups. An Introduction to Ideas and Methods of the Theory of Groups
2011, XIV+372 pp, ISBN 978-88-470-2420-5

59. A. Pascucci, W.J. Runggaldier
Financial Mathematics. Theory and Problems for Multi-period Models
2011, X+288 pp, ISBN 978-88-470-2537-0

60. D. Mundici
Logic: a Brief Course
2012, XII+124 pp, ISBN 978-88-470-2360-4

61. A. Machì
Algebra for Symbolic Computation
2012, VIII+174 pp, ISBN 978-88-470-2396-3

62. A. Quarteroni, F. Saleri, P. Gervasio
Calcolo Scientifico (5a ed.)
2012, XVIII+450 pp, ISBN 978-88-470-2744-2

63. A. Quarteroni
Modellistica Numerica per Problemi Differenziali (5a ed.)
2012, XVIII+628 pp, ISBN 978-88-470-2747-3



64. V. Moretti
Spectral Theory and QuantumMechanics
With an Introduction to the Algebraic Formulation
2013, XVI+728 pp, ISBN 978-88-470-2834-0

65. S. Salsa, F.M.G. Vegni, A. Zaretti, P. Zunino
A Primer on PDEs. Models, Methods, Simulations
2013, XIV+482 pp, ISBN 978-88-470-2861-6

66. V.I. Arnold
Real Algebraic Geometry
2013, X+110 pp, ISBN 978-3-642–36242-2

67. F. Caravenna, P. Dai Pra
Probabilità. Un’introduzione attraverso modelli e applicazioni
2013, X+396 pp, ISBN 978-88-470-2594-3

68. A. de Luca, F. D’Alessandro
Teoria degli Automi Finiti
2013, XII+316 pp, ISBN 978-88-470-5473-8

69. P. Biscari, T. Ruggeri, G. Saccomandi, M. Vianello
Meccanica Razionale
2013, XII+352 pp, ISBN 978-88-470-5696-3

70. E. Rosazza Gianin, C. Sgarra
Mathematical Finance: Theory Review and Exercises. From Binomial
Model to Risk Measures
2013, X+278pp, ISBN 978-3-319-01356-5

71. E. Salinelli, F. Tomarelli
Modelli Dinamici Discreti (3a Ed.)
2014, XVI+394pp, ISBN 978-88-470-5503-2

72. C. Presilla
Elementi di Analisi Complessa. Funzioni di una variabile (2a Ed.)
2014, XII+360pp, ISBN 978-88-470-5500-1

73. S. Ahmad, A. Ambrosetti
A Textbook on Ordinary Differential Equations
2014, XIV+324pp, ISBN 978-3-319-02128-7



74. A. Bermúdez, D. Gómez, P. Salgado
Mathematical Models and Numerical Simulation in Electromagnetism
2014, XVIII+430pp, ISBN 978-3-319-02948-1

75. A. Quarteroni
Matematica Numerica. Esercizi, Laboratori e Progetti (2a Ed.)
2013, XVIII+406pp, ISBN 978-88-470-5540-7

76. E. Salinelli, F. Tomarelli
Discrete Dynamical Models
2014, XVI+386pp, ISBN 978-3-319-02290-1

77. A. Quarteroni, R. Sacco, F. Saleri, P. Gervasio
Matematica Numerica (4a Ed.)
2014, XVIII+532pp, ISBN 978-88-470-5643-5

78. M. Manetti
Topologia (2a Ed.)
2014, XII+334pp, ISBN 978-88-470-5661-9

79. M. Iannelli, A. Pugliese
An Introduction to Mathematical Population Dynamics. Along the trail
of Volterra and Lotka
2014, XIV+338pp, ISBN 978-3-319-03025-8

80. V.M. Abrusci, L. Tortora de Falco
Logica. Volume 1
2014, X+180pp, ISBN 978-88-470-5537-7

81. P. Biscari, T. Ruggeri, G. Saccomandi, M. Vianello
Meccanica Razionale (2a Ed.)
2014, XII+390pp, ISBN 978-88-470-5725-8

82. C. Canuto, A. Tabacco
Analisi Matematica I (4a Ed.)
2014, XIV+508pp, ISBN 978-88-470-5722-7

83. C. Canuto, A. Tabacco
Analisi Matematica II (2a Ed.)
2014, XII+576pp, ISBN 978-88-470-5728-9

84. C. Canuto, A. Tabacco
Mathematical Analysis I (2nd Ed.)
2015, XIV+484pp, ISBN 978-3-319-12771-2



85. C. Canuto, A. Tabacco
Mathematical Analysis II (2nd Ed.)
2015, XII+550pp, ISBN 978-3-319-12756-9

The online version of the books published in this series is available at
SpringerLink.
For further information, please visit the following link:
http://www.springer.com/series/5418


	Cover
	Title Page
	Copyright Page
	Dedication Page
	Preface
	Table of Contents
	1 Numerical series
	1.1 Round-up on sequences
	1.2 Numerical series
	1.3 Series with positive terms
	1.4 Alternating series
	1.5 The algebra of series
	1.6 Exercises
	1.6.1 Solutions


	2 Series of functions and power series
	2.1 Sequences of functions
	2.2 Properties of uniformly convergent sequences
	2.2.1 Interchanging limits and integrals
	2.2.2 Interchanging limits and derivatives

	2.3 Series of functions
	2.4 Power series
	2.4.1 Algebraic operations
	2.4.2 Differentiation and integration

	2.5 Analytic functions
	2.6 Power series in C
	2.7 Exercises
	2.7.1 Solutions


	3 Fourier series
	3.1 Trigonometric polynomials
	3.2 Fourier Coefficients and Fourier series
	3.3 Exponential form
	3.4 Differentiation
	3.5 Convergence of Fourier series
	3.5.1 Quadratic convergence
	3.5.2 Pointwise convergence
	3.5.3 Uniform convergence
	3.5.4 Decay of Fourier coefficients

	3.6 Periodic functions with period T > 0
	3.7 Exercises
	3.7.1 Solutions


	4 Functions between Euclidean spaces
	4.1 Vectors in Rn
	4.2 Matrices
	4.3 Sets in Rn and their properties
	4.4 Functions: definitions and first examples
	4.5 Continuity and limits
	4.5.1 Properties of limits and continuity

	4.6 Curves in Rm
	4.7 Surfaces in R3
	4.8 Exercises
	4.8.1 Solutions


	5 Differential calculus for scalar functions
	5.1 First partial derivatives and gradient
	5.2 Differentiability and differentials
	5.2.1 Mean Value Theorem and Lipschitz functions

	5.3 Second partial derivatives and Hessian matrix
	5.4 Higher-order partial derivatives
	5.5 Taylor expansions; convexity
	5.5.1 Convexity

	5.6 Extremal points of a function; stationary points
	5.6.1 Saddle points

	5.7 Exercises
	5.7.1 Solutions


	6 Differential calculus for vector-valued functions
	6.1 Partial derivatives and Jacobian matrix
	6.2 Differentiability and Lipschitz functions
	6.3 Basic differential operators
	6.3.1 First-order operators
	6.3.2 Second-order operators

	6.4 Differentiating composite functions
	6.4.1 Functions defined by integrals

	6.5 Regular curves
	6.5.1 Congruence of curves; orientation
	6.5.2 Length and arc length
	6.5.3 Elements of differential geometry for curves

	6.6 Variable changes
	6.6.1 Special frame systems

	6.7 Regular surfaces
	6.7.1 Changing parametrisation
	6.7.2 Orientable surfaces
	6.7.3 Boundary of a surface; closed surfaces
	6.7.4 Piecewise-regular surfaces

	6.8 Exercises
	6.8.1 Solutions


	7 Applying differential calculus
	7.1 Implicit Function Theorem
	7.1.1 Local invertibility of a function

	7.2 Level curves and level surfaces
	7.2.1 Level curves
	7.2.2 Level surfaces

	7.3 Constrained extrema
	7.3.1 The method of parameters
	7.3.2 Lagrange multipliers

	7.4 Exercises
	7.4.1 Solutions


	8 Integral calculus in several variables
	8.1 Double integral over rectangles
	8.2 Double integrals over measurable sets
	8.2.1 Properties of double integrals

	8.3 Changing variables in double integrals
	8.4 Multiple integrals
	8.4.1 Changing variables in triple integrals

	8.5 Applications and generalisations
	8.5.1 Mass, centre of mass and moments of a solid body
	8.5.2 Volume of solids of revolution
	8.5.3 Integrals of vector-valued functions
	8.5.4 Improper multiple integrals

	8.6 Exercises
	8.6.1 Solutions


	9 Integral calculus on curves and surfaces
	9.1 Integrating along curves
	9.1.1 Centre of mass and moments of a curve

	9.2 Path integrals
	9.3 Integrals over surfaces
	9.3.1 Area of a surface
	9.3.2 Centre of mass and moments of a surface

	9.4 Flux integrals
	9.5 The Theorems of Gauss, Green, and Stokes
	9.5.1 Open sets, admissible surfaces and boundaries
	9.5.2 Divergence Theorem
	9.5.3 Green’s Theorem
	9.5.4 Stokes’ Theorem

	9.6 Conservative fields and potentials
	9.6.1 Computing potentials explicitly

	9.7 Exercises
	9.7.1 Solutions


	10 Ordinary differential equations
	10.1 Introductory examples
	10.2 General definitions
	10.3 Equations of first order
	10.3.1 Equations with separable variables
	10.3.2 Homogeneous equations
	10.3.3 Linear equations
	10.3.4 Bernoulli equations
	10.3.5 Riccati equations
	10.3.6 Second-order equations reducible to first order

	10.4 The Cauchy problem
	10.4.1 Local existence and uniqueness
	10.4.2 Maximal solutions
	10.4.3 Global existence
	10.4.4 Global existence in the future
	10.4.5 First integrals

	10.5 Linear systems of first order
	10.5.1 Homogeneous systems
	10.5.2 Non-homogeneous systems

	10.6 Linear systems with constant matrix A
	10.6.1 Homogeneous systems with diagonalisable A
	10.6.2 Homogeneous systems with non-diagonalisable A
	10.6.3 Non-homogeneous systems

	10.7 Linear scalar equations of order n
	10.8 Stability
	10.8.1 Autonomous linear systems
	10.8.2 Two-dimensional systems
	10.8.3 Non-linear stability: an overview

	10.9 Exercises
	10.9.1 Solutions


	Appendices
	A.1 Complements on differential calculus
	A.1.1 Differentiability and Schwarz’s Theorem
	A.1.2 Taylor’s expansions
	A.1.3 Differentiating functions defined by integrals
	A.1.4 The Implicit Function Theorem

	A.2 Complements on integral calculus
	A.2.1 Norms of functions
	A.2.2 The Theorems of Gauss, Green, and Stokes
	A.2.3 Differential forms


	Basic definitions and formulas
	Sequences and series
	Power series
	Fourier series
	Real-valued functions
	Vector-valued functions
	Polar coordinates
	Cylindrical coordinates
	Spherical coordinates
	Multiple integrals
	Integrals on curves and surfaces
	Examples of quadrics

	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




