

КАК ПОЛУЧИТЬ МАКСИМАЛЬНЫЙ БАЛЛ НА ЕГЭ

MATEMATUKA

РЕШЕНИЕ ЗАДАНИЙ ПОВЫШЕННОГО И ВЫСОКОГО УРОВНЯ СЛОЖНОСТИ

ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПЕДАГОГИЧЕСКИХ ИЗМЕРЕНИЙ

А. В. Семенов, И. В. Ященко, И. Р. Высоцкий, А. С. Трепалин, Е. А. Кукса

КАК ПОЛУЧИТЬ МАКСИМАЛЬНЫЙ БАЛЛ НА ЕГЭ

МАТЕМАТИКА

Решение заданий повышенного и высокого уровня сложности

УДК 373.167.1:51(075.3) ББК 22.1я721 М34

Для создания пособия Федеральным институтом педагогических измерений авторам предоставлено право использования ресурсов открытого банка заданий

Семенов, А. В.

М34 Математика. Решение заданий повышенного и высокого уровня сложности. Как получить максимальный балл на ЕГЭ. Учебное пособие. / А. В. Семенов, И. В. Ященко, И. Р. Высоцкий, А. С. Трепалин, Е. А. Кукса. — Москва: Интеллект-Центр, 2015. — 128 с. ISBN 978-5-00026-164-4

В предлагаемом пособии дана характеристика основных типов заданий повышенного и высокого уровня сложности, используемых на ЕГЭ по математике. Особое внимание уделяется разбору заданий, вызвавших наибольшие затруднения. Для тренировки и самоподготовки к ЕГЭ предлагаются задания с развёрнутым ответом различного уровня сложности по всем содержательным блокам.

Пособие адресовано старшеклассникам, преподавателям и родителям. Оно поможет школьникам проверить свои знания и умения по предмету, а учителям — оценить степень достижения требований образовательных стандартов отдельными учащимися и обеспечить их целенаправленную подготовку к экзамену.

Издание прошло экспертизу Федерального института педагогических измерений.

УДК 373.167.1:51(075.3) ББК 22.1я721

Ответственный за выпуск исполнительный директор О. С. Ильясов Редактор Д. П. Локтионов Художественный редактор Е. Ю. Воробьёва Компьютерная верстка и макет: Ю. А. Погодина

Подписано в печать 15.01.2015 г. Формат 60х84 1/8. Бумага типографская. Печать офсетная. Усл. печ. л. 16,0. Тираж 10 000 экз. Заказ № 1413920.

Издательство «Интеллект-Центр» 125445, Москва, ул. Смольная, д. 24, оф. 712

arvato BERTELSMANN Отпечатано в полном соответствии с качеством предоставленного электронного оригинал-макета в ОАО «Ярославский полиграфический комбинат» 150049, Ярославль, ул. Свободы, 97

ISBN 978-5-00026-164-4

© «Интеллект-Центр», 2015

© А. В. Семенов, И. В. Ященко, И. Р. Высоцкий, А. С. Трепалин, Е. А. Кукса, 2014

СОДЕРЖАНИЕ

Введение	4
1. Уравнения	5
1.1. Тригонометрические уравнения	5
1.2. Показательные уравнения	11
1.3. Логарифмические уравнения	15
1.4. Комбинированные уравнения	20
2. Неравенства и их системы	30
2.1. Рациональные неравенства	30
2.2. Логарифмические неравенства	36
2.3. Показательные неравенства	42
2.4. Системы неравенств	47
3. Задания с параметром	52
4. Стереометрия	67
4.1. Параллелепипеды	67
4.2. Призмы	70
4.3. Треугольные пирамиды	73
4.4. Четырёхугольные пирамиды	. 78
4.5. Тела вращения	. 82
5. Планиметрия	86
5.1. Планиметрические задачи (одна конфигурация с окружностью)	86
5.2. Планиметрические задачи (одна конфигурация без окружности)	91
5.3. Планиметрические задачи (две конфигурации)	96
6. Арифметика и алгебра	103
7. Экономические задачи	115
Ответы	121

ВВЕДЕНИЕ

Содержание заданий с развёрнутым ответом контрольных измерительных материалов единого государственного экзамена 2015 года будет отличаться от содержания вариантов 2014 года. Со структурой варианта можно ознакомится на сайте Федерального института педагогических измерений (www.fipi.ru) в разделе «ЕГЭ: демоверсии, спецификации, кодификаторы». В рамках спецификации экзамена по математике профильного уровня продолжается расширение тематики задач, особенно это касается геометрической части экзамена, а также заданий по началам математического анализа. Указанные изменения нашли своё отражение в книге, которую вы держите в руках.

Вторая часть варианта экзамена по математике содержит задания с развёрнутым ответом повышенного и высокого уровней сложности и предназначается, прежде всего, для будущих абитуриентов технических, экономических, математических и других вузов, предъявляющих повышенные требования к уровню математической подготовки абитуриентов. Именно им и адресовано пособие «Решение заданий повышенного и высокого уровня сложности. Как получить максимальный балл на ЕГЭ».

Все решения заданий с развёрнутым ответом должны быть записаны в Бланке ответов № 2 (дополнительном бланке ответов № 2). Обоснованность и полноту решения этих заданий устанавливают эксперты и выставляют баллы в соответствии с Критериями оценивания заданий с развёрнутым ответом (демонстрационный вариант ЕГЭ по математике на сайте ФИПИ).

В пособии собраны задания, которые были в вариантах прошлых лет, диагностических работах. К этим заданиям даны решения, которые предлагались экспертам по проверке заданий с развёрнутым ответом. В каждом разделе сначала даны задания с решениями, а потом задания для самостоятельной работы. Ни в коем случае приведённые решения не претендуют на роль эталона — эти решения даны в очень сжатом виде. Очень часто придётся «расшифровывать» эти решения, дополняя их промежуточными преобразованиями и вычислениями, в них часто лишь обозначены основные этапы решения задачи. Задания пособия можно решать, используя разные подходы и методы, — ведь на экзамене проверяется математическая грамотность решения. Авторы рекомендуют сначала попробовать решить задание самостоятельно, а потом уже знакомиться с авторским решением. После изучения заданий с решениями обязательно нужно решить задания для самостоятельного решения.

Весь материал разбит на главы. Уравнениям (показательным, логарифмическим, тригонометрическим) посвящена первая глава. Вторая глава содержит задания по неравенствам (рациональным, показательным, логарифмическим). Поскольку в этом году в заданиях на неравенства есть изменения в сравнении в вариантом прошлого года, в этой главе каждый раздел усилен ещё и тренировочной работой. В третьей главе собраны задания высокого уровня сложности — задания с параметром. Геометрии посвящены четвёртая (стереометрия) и пятая (планиметрия) главы. В геометрических задачах есть пункт на доказательство какого-либо геометрического факта. Арифметические и алгебраические задачи повышенного и высокого уровня сложности даны в шестой главе. Примерам, впервые включённым в экзаменационный материал заданий (экономические задачи), посвящена последняя глава.

Гарантией успешной сдачи экзамена является систематическое изучение математики, включающее в себя вдумчивое решение математических задач и в школе, и дома, и на курсах подготовки абитуриентов.

При решении заданий повышенного уровня сложности нужно учитывать, что решение должно быть обязательно доведено до ответа — только в этом случае можно рассчитывать на какие-то баллы. В заданиях высокого уровня сложности баллы могут быть выставлены за законченный фрагмент решения. На экзамене нет калькулятора, поэтому в подготовительной работе особо следует уделить внимание вычислениям.

В пособии использованы задачи, предложенные А. Р. Рязановским, П. В. Семёновым, В. С. Панферовым, И. Н. Сергеевым, И. Р. Высоцким, М. Я. Пратусевичем, С. А. Шестаковым, О. Н. Косухиным, А. В. Семеновым, В. А. Смирновым, А. В. Хачатуряном, Р. К. Гординым, А. И. Суздальцевым, Д. А. Фёдоровых, М. А. Волчкевичем.

1. УРАВНЕНИЯ

1.1. Тригонометрические уравнения

- 1. a) Решите уравнение $\cos 2x \sqrt{2} \sin \left(\frac{\pi}{2} x\right) + 1 = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-4\pi; -\frac{5\pi}{2}\right]$.

Решение.

а) Преобразуем исходное уравнение:

$$2\cos^2 x - 1 - \sqrt{2}\cos x + 1 = 0; \ 2\cos^2 x - \sqrt{2}\cos x = 0; \ \cos x \cdot \left(2\cos x - \sqrt{2}\right) = 0.$$

Значит, или $\cos x=0$, откуда $x=\frac{\pi}{2}+\pi k$, $k\in\mathbb{Z}$, или $\cos x=\frac{\sqrt{2}}{2}$, откуда $x=\frac{\pi}{4}+2\pi n$, $n\in\mathbb{Z}$, или $x=-\frac{\pi}{4}+2\pi m$, $m\in\mathbb{Z}$.

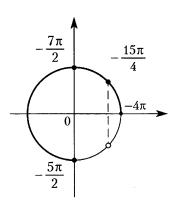
б) С помощью числовой окружности отберём корни, принадле-

жащие отрезку $\left[-4\pi; -\frac{5\pi}{2}\right]$.

Получим числа: $-\frac{15\pi}{4}$; $-\frac{7\pi}{2}$; $-\frac{5\pi}{2}$.

Omsem: a) $\frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$; $\frac{\pi}{4} + 2\pi n$, $n \in \mathbb{Z}$; $-\frac{\pi}{4} + 2\pi m$, $m \in \mathbb{Z}$;

6)
$$-\frac{15\pi}{4}$$
; $-\frac{7\pi}{2}$; $-\frac{5\pi}{2}$.



- **2.** a) Решите уравнение $2\sqrt{3}\sin^2\left(x + \frac{3\pi}{2}\right) + \sin 2x = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-4\pi; -\frac{5\pi}{2}\right]$.

Решение.

а) Преобразуем исходное уравнение:

$$2\sqrt{3}\cos^2 x + 2\sin x \cdot \cos x = 0; \cos x \cdot \left(\sin x + \sqrt{3}\cos x\right) = 0.$$

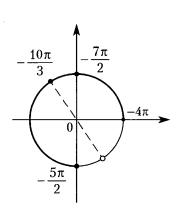
Значит, $\cos x = 0$; $x = \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$, или $\sin x = -\sqrt{3} \cos x$; $\operatorname{tg} x = -\sqrt{3}$; $x = -\frac{\pi}{3} + \pi n$, $n \in \mathbb{Z}$.

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left\lceil -4\pi; -\frac{5\pi}{2} \right\rceil$.

Получим числа: $-\frac{7\pi}{2}$; $-\frac{10\pi}{3}$; $-\frac{5\pi}{2}$.

Ombem: a) $\frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$; $-\frac{\pi}{3} + \pi n$, $n \in \mathbb{Z}$;

6)
$$-\frac{7\pi}{2}$$
; $-\frac{10\pi}{3}$; $-\frac{5\pi}{2}$.



- **3.** a) Решите уравнение $4\cos^4 x 4\cos^2 x + 1 = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $[-2\pi; -\pi]$.

а) Преобразуем исходное уравнение:

$$(2\cos^2 x - 1)^2 = 0$$
; $2\cos^2 x = 1$; $\cos^2 x = \frac{1}{2}$

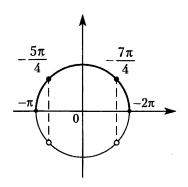
откуда $\cos x = -\frac{1}{\sqrt{2}}$ или $\cos x = \frac{1}{\sqrt{2}}; \ x = \frac{\pi}{4} + \frac{\pi n}{2}, \ n \in \mathbb{Z}.$

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $[-2\pi; -\pi]$.

Получим числа: $-\frac{7\pi}{4}$; $-\frac{5\pi}{4}$.

Omsem: a) $\frac{\pi}{4} + \frac{\pi n}{2}$, $n \in \mathbb{Z}$;

6)
$$-\frac{7\pi}{4}$$
; $-\frac{5\pi}{4}$.



- **4.** а) Решите уравнение $\frac{5\cos x + 4}{4\tan x 3} = 0.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-4\pi; -\frac{5\pi}{2}\right]$.

Решение.

a) Решим уравнение:
$$\frac{5\cos x + 4}{4 \operatorname{tg} x - 3} = 0; \begin{cases} \cos x = -\frac{4}{5}, \\ \operatorname{tg} x \neq \frac{3}{4}. \end{cases}$$

Из уравнения $\cos x=-rac{4}{5}$ получаем, что $x=\pi-\arccosrac{4}{5}+2\pi n,$ $n\in\mathbb{Z},$ или $x=\pi+\arccosrac{4}{5}+2\pi k,\ k\in\mathbb{Z}.$

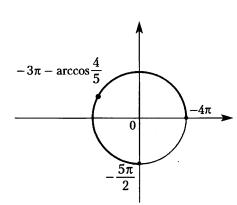
C учётом условия $\lg x \neq \frac{3}{4}$ получаем решение исходного уравнения: $x = \pi - \arccos\frac{4}{5} + 2\pi n, \ n \in \mathbb{Z}.$

б) С помощью числовой окружности отберём корни, $\text{принадлежащие отрезку}\left[-4\pi; -\frac{5\pi}{2}\right].$

Получим число $-3\pi - \arccos \frac{4}{5}$.

Ombem: a) $\pi - \arccos \frac{4}{5} + 2\pi n, n \in \mathbb{Z};$

6)
$$-3\pi - \arccos\frac{4}{5}$$
.



- **5.** a) Решите уравнение $\frac{5}{\cos^2(\frac{13\pi}{2}-x)} + \frac{7}{\sin x} 6 = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие промежутку $\left\lceil \frac{3\pi}{2}; 3\pi \right\rceil$

а) Преобразуем исходное уравнение: $\frac{5}{\sin^2 r} + \frac{7}{\sin r} - 6 = 0$. Пусть $t = \frac{1}{\sin r}$, тогда уравнение примет вид:

$$5t^2+7t-6=0;\;(5t-3)(t+2)=0,\;$$
 откуда $t=\frac{3}{5}\;$ или $t=-2.$

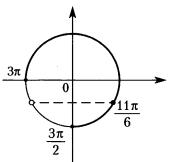
При $t = \frac{3}{5}$ получаем, что $\sin x = \frac{5}{3}$ — нет корней.

При t=-2 получаем, что $\sin x=-\frac{1}{2}$, откуда $x=-\frac{\pi}{6}+2\pi k,\ k\in\mathbb{Z}$, или $x=-\frac{5\pi}{6}+2\pi n,$ $n \in \mathbb{Z}$.

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left\lceil \frac{3\pi}{2}; 3\pi \right\rceil$.

Получим число $\frac{11\pi}{6}$.

Omsem: a) $-\frac{\pi}{6} + 2\pi k, \ k \in \mathbb{Z}; \ -\frac{5\pi}{6} + 2\pi n, \ n \in \mathbb{Z};$ 6) $\frac{11\pi}{c}$.



- **6.** a) Решите уравнение $2 t g^2 x \frac{5}{\sin(x \frac{\pi}{2})} + 4 = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[3\pi; \frac{9\pi}{2}\right]$.

Решение.

а) Преобразуем исходное уравнение: $2tg^2x + \frac{5}{\cos x} + 4 = 0$; $\frac{2 - 2\cos^2 x}{\cos^2 x} + \frac{5}{\cos x} + 4 = 0$.

Пусть $t = \cos x$, тогда уравнение примет вид:

$$\frac{2-2t^2}{t^2} + \frac{5}{t} + 4 = 0; \quad \frac{2t^2 + 5t + 2}{t^2} = 0; \quad \frac{(2t+1)(t+2)}{t^2} = 0,$$

откуда $t = -\frac{1}{2}$ или t = -2.

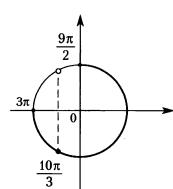
При t=-2 получаем, что $\cos x=-2$ — нет корней.

При $t=-\frac{1}{2}$ получаем, что $\cos x=-\frac{1}{2}$, откуда $x=\frac{2\pi}{3}+2\pi k,\ k\in\mathbb{Z}$, или $x=-\frac{2\pi}{3}+2\pi n,$

- $n \in \mathbb{Z}$.
- б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left[3\pi; \frac{9\pi}{2}\right]$.

Получим число $\frac{10\pi}{3}$.

Omsem: a)
$$\frac{2\pi}{3} + 2\pi k$$
, $k \in \mathbb{Z}$; $-\frac{2\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; 6) $\frac{10\pi}{3}$.



- 7. a) Решите уравнение $2\cos(\pi-x)\cdot\cos\left(\frac{\pi}{2}+x\right)+\sqrt{3}\sin x=0$.
 - б) Найдите все корни этого уравнения, принадлежащие промежутку $[-3\pi; -2\pi]$.

а) Преобразуем исходное уравнение:

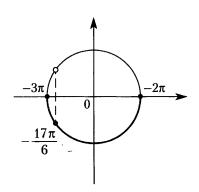
$$2\cos x \cdot \sin x + \sqrt{3}\sin x = 0; \sin x \left(2\cos x + \sqrt{3}\right) = 0,$$

откуда $\sin x=0;\; x=\pi n,\; n\in\mathbb{Z},\;$ или $\cos x=-\frac{\sqrt{3}}{2};\; x=-\frac{5\pi}{6}+2\pi k,\; k\in\mathbb{Z},\;$ или $x=\frac{5\pi}{6}+2\pi m,\;$ $m\in\mathbb{Z}.$

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $[-3\pi; -2\pi]$.

Получим числа: -3π ; $-\frac{17\pi}{6}$; -2π .

Omsem: a) πn , $n \in \mathbb{Z}$; $-\frac{5\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$; $\frac{5\pi}{6} + 2\pi m$, $m \in \mathbb{Z}$; 6) -3π ; $-\frac{17\pi}{6}$; -2π .



- **8.** a) Решите уравнение $\frac{3 \text{tg}^2 x}{\sqrt{7 \cos x}} = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{5\pi}{2}; 4\pi\right]$.

Решение.

a)
$$\frac{3tg^2x}{\sqrt{7\cos x}} = 0;$$

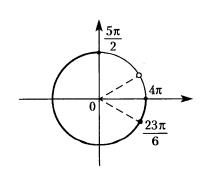
$$\begin{cases} 3\operatorname{tg}^2 x - 1 = 0, \\ \cos x > 0; \end{cases} \begin{cases} \operatorname{tg} x = \pm \frac{1}{\sqrt{3}}, \\ \cos x > 0, \end{cases}$$

откуда $x=rac{\pi}{6}+2\pi k,\,\,k\in\mathbb{Z},\,$ или $x=-rac{\pi}{6}+2\pi n,\,\,n\in\mathbb{Z}.$

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left[\frac{5\pi}{2};4\pi\right]$.

Получим число $\frac{23\pi}{6}$.

Omsem: a)
$$\frac{\pi}{6} + 2\pi k$$
, $k \in \mathbb{Z}$; $-\frac{\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; 6) $\frac{23\pi}{6}$.



- **9.** a) Решите уравнение $\frac{8\sin^2 x 14\sin x + 5}{\sqrt{-6\cos x}} = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{9\pi}{2}; -3\pi\right]$.

a)
$$\frac{8\sin^2 x - 14\sin x + 5}{\sqrt{-6\cos x}} = 0$$
;

$$\begin{cases} 8\sin^2 x - 14\sin x + 5 = 0, \\ \cos x < 0, \end{cases} \begin{cases} (4\sin x - 5)(2\sin x - 1) = 0, \\ \cos x < 0, \end{cases}$$

откуда или
$$\left\{ \begin{array}{l} \sin x=rac{5}{4}, \\ \cos x<0, \end{array}
ight.$$
 — нет корней, или $\left\{ \begin{array}{l} \sin x=rac{1}{2}, \\ \cos x<0; \end{array}
ight.$ $x=rac{5\pi}{6}+2\pi n, \ n\in\mathbb{Z}.$

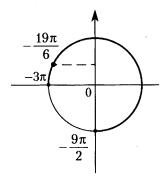
б) С помощью числовой окружности отберём корни, принадле-

жащие отрезку
$$\left[-\frac{9\pi}{2}; -3\pi\right]$$
.

Получим число $-\frac{19\pi}{6}$.

Omsem: a)
$$\frac{5\pi}{6} + 2\pi n, \ n \in \mathbb{Z};$$

6) $-\frac{19\pi}{6}$.



- **10.** a) Решите уравнение $\frac{\sqrt{2}\sin^2 x \cos x \sqrt{2}}{\sqrt{-5}\sin x} = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\pi; \frac{5\pi}{2}\right]$.

Решение.

а) Преобразуем исходное уравнение:

$$\frac{\sqrt{2} - \sqrt{2}\cos^2 x - \cos x - \sqrt{2}}{\sqrt{-5\sin x}} = 0; \quad \frac{\cos x(\sqrt{2}\cos x + 1)}{\sqrt{-5\sin x}} = 0,$$

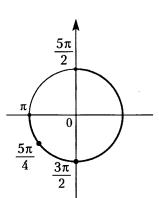
откуда
$$\left\{ egin{aligned} \cos x = 0, \\ \sin x < 0; \end{array} \right. x = -rac{\pi}{2} + 2\pi n, \; n \in \mathbb{Z}, \;$$
или $\left\{ egin{aligned} \cos x = -rac{\sqrt{2}}{2}, \\ \sin x < 0; \end{aligned} \right. x = -rac{3\pi}{4} + 2\pi k, \; k \in \mathbb{Z}.$

б) С помощью числовой окружности отберём корни, принадле-

жащие отрезку
$$\left[\pi; \frac{5\pi}{2}\right]$$
.

Получим числа: $\frac{5\pi}{4}$; $\frac{3\pi}{2}$.

Omsem: a)
$$-\frac{\pi}{2} + 2\pi n$$
, $n \in \mathbb{Z}$, $-\frac{3\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$, 6) $\frac{5\pi}{4}$; $\frac{3\pi}{2}$.



Задания для самостоятельного решения

- **1.** a) Решите уравнение $\cos 2x + \sin(\frac{\pi}{2} + x) + 1 = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.
- **2.** a) Решите уравнение $2\cos^2(\frac{3\pi}{2} + x) + \sin 2x = 0$.
 - б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-3\pi; -\frac{3\pi}{2}\right]$.
- **3.** a) Решите уравнение $16\cos^4 x 24\cos^2 x + 9 = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $[2\pi; 3\pi]$.
- **4.** a) Решите уравнение $\frac{5 \operatorname{tg} x 12}{13 \cos x 5} = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[4\pi; \frac{11\pi}{2}\right]$.
- **5.** a) Решите уравнение $\frac{5}{\sin^2 x} \frac{9}{\cos(\frac{7\pi}{2} + x)} + 4 = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[-\frac{5\pi}{2}; -\pi\right]$.
- **6.** a) Решите уравнение $4 \operatorname{tg}^2 x + \frac{1}{\sin\left(x + \frac{3\pi}{2}\right)} + 1 = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\frac{3\pi}{2}; 3\pi\right]$.
- 7. а) Решите уравнение $2\sin\left(\frac{3\pi}{2}-x\right)\cdot\sin(x-\pi)+\sqrt{2}\cos x=0$.
 - б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\frac{5\pi}{2}; \frac{7\pi}{2}\right]$.
- **8.** а) Решите уравнение $\frac{\operatorname{tg}^2 x 3}{\sqrt{3 \sin x}} = 0.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.
- **9.** а) Решите уравнение $\frac{6\sin^2 x 5\sin x 4}{\sqrt{-2\cos x}} = 0.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-2\pi; -\frac{\pi}{2}\right]$.
- **10.** a) Решите уравнение $\frac{2\sqrt{3}\cos^2 x + 3\sin x 2\sqrt{3}}{\sqrt{8\cos x}} = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[0; \frac{3\pi}{2}\right]$.

1.2. Показательные уравнения

- **1.** a) Решите уравнение $0.5^{2x^2-10x+12}+0.5^{-2x^2+10x-12}=2$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку [log₅20; log₅40].

Решение.

а) Пусть $0.5^{2x^2-10x+12}=t$, тогда уравнение примет вид:

$$t + \frac{1}{t} = 2$$
; $\frac{t^2 - 2t + 1}{t} = 0$,

откуда t=1.

При t=1 получаем: $0.5^{2x^2-10x+12}=1$; $2x^2-10x+12=0$; 2(x-3)(x-2)=0; откуда x=2 или x=3.

6) Поскольку $\log_5 20 < 2 < \log_5 40 < 3$, отрезку $[\log_5 20; \log_5 40]$ принадлежит только корень x=2.

Omeem: a) 2; 3;

б) 2.

- **2.** a) Решите уравнение $2^{x-2} + 9 \cdot 2^{5-x} = 17$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку [log₂35; 6].

Решение.

а) Пусть $2^{x-2} = t$, тогда уравнение примет вид:

$$t + \frac{72}{t} = 17;$$
 $\frac{t^2 - 17t + 72}{t} = 0;$ $\frac{(t-8)(t-9)}{t} = 0;$

откуда t = 8 или t = 9.

При t = 8 получаем: $2^{x-2} = 8$; x - 2 = 3; x = 5.

При t = 9 получаем: $2^{x-2} = 9$; $x - 2 = \log_2 9$; $x = 2 + \log_2 9$.

б) Поскольку $5 < \log_2 35 < \log_2 36 = 2 + \log_2 9 < 6$, отрезку $[\log_2 35; 6]$ принадлежит только корень $x = 2 + \log_2 9$.

Omsem: a) 5; $2 + \log_2 9$;

6) $2 + \log_2 9$.

- **3.** a) Решите уравнение $3^{x+\frac{1}{x}} 2 \cdot 3^{3-x-\frac{1}{x}} = 25$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{1}{3}; \frac{5}{2}\right]$.

Решение.

а) Пусть $3^{x+\frac{1}{x}} = t$, тогда уравнение примет вид:

$$t - \frac{54}{t} = 25;$$
 $\frac{t^2 - 25t - 54}{t} = 0;$ $\frac{(t - 27)(t + 2)}{t} = 0,$

откуда t = -2 или t = 27.

При t = -2 получаем: $3^{x + \frac{1}{x}} = -2$ — нет решений.

При t=27 получаем: $3^{x+\frac{1}{x}}=27; \ x+\frac{1}{x}=3; \ \frac{x^2-3x+1}{x}=0,$ откуда $x=\frac{3-\sqrt{5}}{2}$ или $x=\frac{3+\sqrt{5}}{2}$.

б) Поскольку
$$\frac{1}{3} < \frac{3-\sqrt{5}}{2} < \frac{5}{2} < \frac{3+\sqrt{5}}{2}$$
, отрезку $\left[\frac{1}{3}; \frac{5}{2}\right]$ принадлежит только корень $x = \frac{3-\sqrt{5}}{2}$.

Omsem: a)
$$\frac{3-\sqrt{5}}{2}$$
; $\frac{3+\sqrt{5}}{2}$; 6) $\frac{3-\sqrt{5}}{2}$.

- **4.** a) Решите уравнение $\frac{4^{6x^2-10x-1}-25}{4^{3x^2-5x-0.5}-5}=13.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\log_{63}\frac{1}{4};\log_863\right]$

а) Пусть $4^{3x^2-5x-0.5}=t$, тогда уравнение примет вид:

$$\frac{t^2 - 25}{t - 5} = 13; \quad \frac{t^2 - 13t + 40}{t - 5} = 0; \quad \frac{(t - 5)(t - 8)}{t - 5} = 0,$$

откуда t = 8.

При t=8 получаем, что

$$4^{3x^2-5x-0.5}=8; \ 3x^2-5x-0.5=1.5; \ 3x^2-5x-2=0; \ (3x+1)(x-2)=0.$$

откуда $x = -\frac{1}{3}$ или x = 2.

б) Поскольку $\log_{63}\frac{1}{4}=-\log_{63}4<-\log_{64}4=-\frac{1}{3}<\log_{8}63<2$, отрезку $\left[\log_{63}\frac{1}{4};\log_{8}63\right]$ принадлежит только корень $x=-\frac{1}{3}$.

Omsem: a)
$$-\frac{1}{3}$$
; 2; 6) $-\frac{1}{3}$.

- **5.** a) Решите уравнение $20^{\sqrt{2x^2-5x+1}-2} = 2^{\sqrt{2x^2-5x+1}-2} \cdot 5^{2\sqrt{2x^2-5x+1}-4}$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\log_{49}\frac{1}{3};\log_349\right]$.

Решение.

а) Пусть $t = \sqrt{2x^2 - 5x + 1} - 2$, тогда уравнение примет вид:

$$20^{t} = 2^{t} \cdot 5^{2t}; \quad 2^{2t} \cdot 5^{t} = 2^{t} \cdot 5^{2t}; \quad \left(\frac{2}{5}\right)^{t} = 1,$$

откуда t=0.

При t = 0 получаем, что

$$\sqrt{2x^2 - 5x + 1} - 2 = 0$$
; $2x^2 - 5x + 1 = 4$; $(2x + 1)(x - 3) = 0$;

откуда $x = -\frac{1}{2}$ или x = 3.

б) Поскольку $-\frac{1}{2} = -\log_{49}7 < -\log_{49}3 = \log_{49}\frac{1}{3} < 3 < \log_349$, отрезку $\left[\log_{49}\frac{1}{3}; \log_349\right]$ принадлежит только корень x=3.

Omeem: a)
$$-\frac{1}{2}$$
; 3; 6) 3.

6. a) Решите уравнение
$$7^{2x^2+x} = 49^{\frac{2x+1}{x+1}}$$
.

б) Найдите все корни этого уравнения, принадлежащие отрезку
$$\left[\log_{0,2}\left(\sqrt{5}+1\right); \frac{4\sqrt{3}}{7}\right]$$
.

а)
$$7^{2x^2+x-2\cdot\frac{2x+1}{x+1}}=1;$$
 $2x^2+x-\frac{4x+2}{x+1}=0;\; \frac{2x^3+3x^2-3x-2}{x+1}=0;\; \frac{(x-1)(2x^2+5x+2)}{x+1}=0;\; \frac{(x-1)(2x+1)(x+2)}{x+1}=0,$ откуда $x=-2;\; x=-\frac{1}{2};\; x=1.$

б) Поскольку

$$-2 < \log_{0,2} \left(\sqrt{5} + 1 \right) < \log_{\frac{1}{5}} \sqrt{5} = -\frac{1}{2} < \frac{4\sqrt{3}}{7} < 1,$$

отрезку $\left[\log_{0,2}(\sqrt{5}+1); \frac{4\sqrt{3}}{7}\right]$ принадлежит только корень $x=-\frac{1}{2}$.

Omeem: a)
$$-2$$
; $-\frac{1}{2}$; 1; 6) $-\frac{1}{2}$.

7. a) Решите уравнение
$$\frac{44-4^{-x}}{8-2^{-x}}=7$$
.

б) Найдите все корни этого уравнения, принадлежащие отрезку [-log₄11; 0].

Решение.

а) Пусть $t = 2^{-x}$, тогда уравнение примет вид:

$$\frac{44-t^2}{8-t}=7; \quad \frac{44-t^2-56+7t}{8-t}=0; \quad \frac{t^2-7t+12}{t-8}=0; \quad \frac{(t-3)(t-4)}{t-8}=0,$$

откуда t = 3 или t = 4.

При t=3 получаем: $2^{-x}=3$, откуда $x=-\log_2 3$.

При t = 4 получаем $2^{-x} = 4$, откуда x = -2.

б) Поскольку $-2 < -\log_4 11 < -\log_2 3 < 0$, отрезку $[-\log_4 11; 0]$ принадлежит только корень $x = -\log_2 3$.

Omeem: a)
$$-2$$
; $-\log_2 3$; 6) $-\log_2 3$.

8. a) Решите уравнение
$$3 \cdot 5^{3 \cdot 2^{-|x|} + 2} - 8 \cdot 125^{2^{-|x|} + \frac{1}{3}} = 3 \cdot 5^{3 \cdot 2^{-|x|} + 1} + 500.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку
$$\left[\log_2\frac{4}{5};1\right]$$
.

Решение.

а) Пусть $t = 2^{-|x|}$, тогда уравнение примет вид:

$$3 \cdot 5^{3t+2} - 8 \cdot 125^{t+\frac{1}{3}} = 3 \cdot 5^{3t+1} + 500; \ 75 \cdot 5^{3t} - 40 \cdot 5^{3t} - 15 \cdot 5^{3t} = 500; \ 20 \cdot 5^{3t} = 500; \ 5^{3t} = 25,$$
 откуда $t = \frac{2}{3}$.

При $t=\frac{2}{3}$ получаем: $2^{-|x|}=\frac{2}{3};$ $-|x|=\log_2\frac{2}{3};$ $|x|=\log_2\frac{3}{2},$ откуда $x=-\log_2\frac{3}{2}$ или $x=\log_2\frac{3}{2}.$

6) Поскольку $-\log_2\frac{3}{2}<-\log_2\frac{5}{4}=\log_2\frac{4}{5}<\log_2\frac{3}{2}=\log_21,5<1$, отрезку $\left[\log_2\frac{4}{5};1\right]$ принадлежит только корень $x=\log_2\frac{3}{2}$.

Omeem: a) $-\log_2 \frac{3}{2}$; $\log_2 \frac{3}{2}$; 6) $\log_2 \frac{3}{2}$.

- **9.** a) Решите уравнение $\frac{16^x 8^{x + \frac{2}{3}} + 5}{2^x 3} = 5.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{2}{3};\,1\right]$.

Решение.

а) Пусть $t = 2^x$, тогда уравнение примет вид:

$$\frac{t^4 - 4t^3 + 5}{t - 3} = 5; \ \frac{t^4 - 4t^3 + 5 - 5t + 15}{t - 3} = 0; \ \frac{(t^3 - 5)(t - 4)}{t - 3} = 0,$$

откуда $t = \sqrt[3]{5}$ или t = 4.

При $t = \sqrt[3]{5}$ получаем: $2^x = \sqrt[3]{5}$; $x = \frac{1}{3}\log_2 5$.

При t = 4 получаем: $2^x = 4$; x = 2.

б) Поскольку $\frac{2}{3} < \frac{1}{3} \log_2 5 < 1 < 2$, отрезку $\left[\frac{2}{3}; 1\right]$ принадлежит только корень $x = \frac{1}{3} \log_2 5$.

Omeem: a) $\frac{1}{3}\log_2 5$; 2; 6) $\frac{1}{3}\log_2 5$.

Задачи для самостоятельного решения

- **1.** а) Решите уравнение $\left(\frac{2}{3}\right)^{2x^2-13x-7}+\left(\frac{2}{3}\right)^{-2x^2+13x+7}=2.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\log_4\frac{1}{3};\log_34\right]$.
- **2.** a) Решите уравнение $3^{x-1} + 5 \cdot 3^{3-x} = 14$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку [log₃14; 2,5].
- **3.** a) Решите уравнение $7^{x-\frac{1}{x}} 9 \cdot 7^{2-x+\frac{1}{x}} = 40$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{2}{5}; \frac{5}{2}\right]$.

- **4.** a) Решите уравнение $\frac{6^{8x^2+22x}-4}{6^{4x^2+11x}-2}=218.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $[\log_3 0,05;\log_{80} 3]$.
- **5.** a) Решите уравнение $36^{\sqrt{3x^2+5x+7}-3} = 3^{\sqrt{3x^2+5x+7}-3} \cdot 2^{4\sqrt{3x^2+5x+7}-12}$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\log_7 \frac{1}{36}; \log_{216} 7\right]$.
- **6.** a) Решите уравнение $9^{3x^2+4x} = 9^{\frac{11x+3}{x+1}}$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\log_{\frac{1}{4}}(\sqrt[3]{4}+1);\frac{2\sqrt{30}}{11}\right]$.
- 7. a) Решите уравнение $\frac{13-9^{-x}}{4-3^{-x}}=12$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-2; -\frac{3}{2}\right]$.
- **8.** a) Решите уравнение $5 \cdot 8^{2 \cdot 3^{|x|} + 1} 5 \cdot 64^{3^{|x|} + \frac{1}{3}} = 9 \cdot 8^{2 \cdot 3^{|x|} + \frac{1}{3}} + 1024.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-1; \log_3 \frac{5}{4}\right]$.
- **9.** a) Решите уравнение $\frac{243^x 2 \cdot 81^x 27}{3^x 3} = 27.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{1}{2}; \frac{2}{3}\right]$.

1.3. Логарифмические уравнения

- **1.** a) Решите уравнение $\log_9(x^3 2x^2 + 1) = \log_3|x 1|$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\log_5 4; \sqrt{5}\,\right]$.

Решение.

a)
$$\log_9(x^3 - 2x^2 + 1) = \log_3|x - 1|$$
; $\log_9(x^3 - 2x^2 + 1) = 2\log_9|x - 1|$;

$$\begin{cases} x^3 - 2x^2 + 1 = (x - 1)^2, & \begin{cases} x^3 - 3x^2 + 2x = 0, \\ x \neq 1; \end{cases} & \begin{cases} x(x - 1)(x - 2) = 0, \\ x \neq 1, \end{cases}$$

откуда x = 0 или x = 2.

6) Поскольку $0 < \log_5 4 < 2 < \sqrt{5}$, отрезку $\left[\log_5 4; \sqrt{5}\right]$ принадлежит только корень x=2.

Ответ: a) 0; 2;

б) 2.

- **2.** a) Решите уравнение $\log_4(2x^2-2x-40) + \log_{0.25}(x^2-3x+2) = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $[-2\pi; 2\pi]$.

a) $\log_4(2x^2-2x-40)-\log_4(x^2-3x+2)=0$;

$$\begin{cases} \log_4 \frac{2x^2 - 2x - 40}{x^2 - 3x + 2} = 0, & \begin{cases} \frac{2x^2 - 2x - 40}{x^2 - 3x + 2} = 1, \\ 2x^2 - 2x - 40 > 0, \\ x^2 - 3x + 2 > 0; \end{cases} & \begin{cases} \frac{x^2 + x - 42}{x^2 - 3x + 2} = 0, \\ \begin{cases} x < -4, \\ x > 5; \end{cases} \end{cases} \begin{cases} (x + 7)(x - 6) = 0, \\ x \neq 1, \\ x \neq 2, \\ \begin{cases} x < -4, \\ x > 5, \end{cases} \end{cases}$$

откуда x = 6, x = -7.

б) Поскольку $-7 < -2\pi < 6 < 2\pi$, отрезку принадлежит только корень x = 6.

Omsem: a) -7; 6; б) 6.

- - а) Решите уравнение $\log_{x^2+x-2}(x^3+2x^2-5x-5)=0$. 6) Найдите все корни этого уравнения, принадлежащие отрезку $[\log_3 0,25;\log_3 17]$.

Решение.

а) Исходное уравнение эквивалентно сист

$$\begin{cases} x^3 + 2x^2 - 5x - 5 = 1, \\ x^2 + x - 2 > 0, \\ x^2 + x - 2 \neq 1; \end{cases} \begin{cases} x^3 + 2x^2 - 5x - 6 = 0, \\ (x+2)(x-1) > 0, \\ x \neq -\frac{1 \pm \sqrt{13}}{2}; \end{cases} \begin{cases} (x+1)(x+3)(x-2) = 0, \\ (x+2)(x-1) > 0, \\ x \neq -\frac{1 \pm \sqrt{13}}{2}, \end{cases}$$

откуда x = -3, x = 2.

б) Поскольку $-3 < -\log_3 4 = \log_3 0.25 < -1 < 2 < \log_3 17$, отрезку принадлежит только корень x=2.

Omeem: a) -3; 2; б) 2.

- **4.** a) Решите уравнение $(3x-1)\log_{\frac{1}{x^2}-1}\sqrt{2x^2-5x+3}=0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $5^{-0.5}$; $5^{0.5}$

Решение.

а) Заметим, что $x = -\frac{1}{3}$ является решением исходного уравнения.

Решим уравнение $\log_{\frac{1}{x^2}-1}\sqrt{2x^2-5x+3}=0$. Оно равносильно системе

$$\begin{cases} \sqrt{2x^2 - 5x + 3} = 1, \\ \frac{1}{x^2} - 1 > 0, \\ \frac{1}{x^2} - 1 \neq 1; \end{cases} \begin{cases} 2x^2 - 5x + 2 = 0, \\ x \neq \pm \frac{1}{\sqrt{2}}, \\ x \neq 0, \\ -1 < x < 1; \end{cases} \begin{cases} (2x - 1)(x - 2) = 0, \\ x \neq \pm \frac{1}{\sqrt{2}}, \\ x \neq 0, \\ -1 < x < 1, \end{cases}$$

откуда $x = \frac{1}{2}$.

б) Поскольку $\frac{1}{3} < \frac{1}{\sqrt{5}} < \frac{1}{2} < \sqrt{5}$, отрезку $\left[5^{-0.5}; 5^{0.5}\right]$ принадлежит только корень $x = \frac{1}{2}$.

Omeem: a) $\frac{1}{3}$; $\frac{1}{2}$; 6) $\frac{1}{2}$.

- **5.** a) Решите уравнение $\log_{2^x+1} \frac{x^2-5x+6}{2x^2+x+11} = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $[\log_5 0.01; \log_5 0.5]$.

Решение.

а) Поскольку $2^x + 1 > 1$, исходное уравнение эквивалентно уравнению

$$\frac{x^2 - 5x + 6}{2x^2 + x + 11} = 1; \ \frac{-x^2 - 6x - 5}{2x^2 + x + 11} = 0; \ \frac{(x+5)(x+1)}{2x^2 + x + 11} = 0,$$

откуда x = -5, x = -1.

б) Поскольку

$$-5 < -\log_5 100 = \log_5 0.01 < -1 < -\log_5 2 = \log_5 0.5,$$

отрезку $[\log_5 0.01; \log_5 0.5]$ принадлежит только корень x = -1.

Omsem: a) −5; −1; 6) −1.

- **6.** a) Решите уравнение $\log_{2x^2+6x-8}(x^2+3x+2)=1$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\sqrt{21};\log_{\frac{3}{4}}\frac{1}{2}\right]$.

Решение.

а) Исходное уравнение равносильно системе

$$\begin{cases} x^2 + 3x + 2 = 2x^2 + 6x - 8, \\ 2(x^2 + 3x - 4) > 0, \\ 2(x^2 + 3x - 4) \neq 1; \end{cases} \begin{cases} x^2 + 3x - 10 = 0, \\ (x + 4)(x - 1) > 0, \\ 2x^2 + 6x - 9 \neq 0; \end{cases} \begin{cases} (x + 5)(x - 2) = 0, \\ (x + 4)(x - 1) > 0, \\ x \neq \frac{-3 \pm \sqrt{3}}{2}, \end{cases}$$

откуда x = -5; x = 2.

б) Поскольку $-5 < -\sqrt{21} < 2 = \log_{\frac{3}{4}} \frac{9}{16} < \log_{\frac{3}{4}} \frac{8}{16} = \log_{\frac{3}{4}} \frac{1}{2}$, отрезку $\left[-\sqrt{21}; \log_{\frac{3}{4}} \frac{1}{2} \right]$ принадлежит только корень x = 2.

Omeem: a) −5; 2; 6) 2.

- **7.** a) Решите уравнение $\log_2^2(x-3) + \log_2(x-3)^4 = 5$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку [log₅ 119; log₃ 119].

Решение.

а) Исходное уравнение эквивалентно уравнению

$$\log_2^2(x-3) + 4\log_2(x-3) - 5 = 0; \left(\log_2(x-3) + 5\right)\left(\log_2(x-3) - 1\right) = 0;$$

$$\begin{bmatrix} \log_2(x-3) = -5, & x-3 = \frac{1}{32}, \\ \log_2(x-3) = 1; & x-3 = 2, \end{bmatrix}$$

откуда $x = 3\frac{1}{32}$ или x = 5.

б) Поскольку $\log_5 119 < 3\frac{1}{32} < \log_3 119 < 5$, отрезку $[\log_5 119; \log_3 119]$ принадлежит тол ко корень $x=3\frac{1}{32}$.

Omeem: a) $3\frac{1}{32}$; 5; 6) $3\frac{1}{32}$.

- **8.** a) Решите уравнение $\log_8 \left(\log_2 \left(\log_{16}^2 \left(x + \frac{1}{x} \right) \frac{1}{8} \right) + 11 \right) = 1.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку [log₂₆4; 4].

Решение.

a)
$$\log_8 \left(\log_2 \left(\log_{16}^2 \left(x + \frac{1}{x} \right) - \frac{1}{8} \right) + 11 \right) = 1;$$

$$\log_2 \left(\log_{16}^2 \left(x + \frac{1}{x} \right) - \frac{1}{8} \right) = -3; \quad \log_{16}^2 \left(x + \frac{1}{x} \right) - \frac{1}{8} = \frac{1}{8}; \quad \log_{16} \left(x + \frac{1}{x} \right) = \pm \frac{1}{2};$$

$$\left[x + \frac{1}{x} = 4, \\ x + \frac{1}{x} = \frac{1}{4}. \right]$$

Первое уравнение совокупности имеет корни $x = 2 - \sqrt{3}$ и $x = 2 + \sqrt{3}$.

Второе уравнение совокупности не имеет решений.

Решение исходного уравнения: $x = 2 - \sqrt{3}$; $x = 2 + \sqrt{3}$

б) Поскольку $2-\sqrt{3}<\frac{1}{3}=\log_{27}3<\log_{26}4<2+\sqrt{3}<4$, отрезку $[\log_{26}4;4]$ принадлеж только корень $x=2+\sqrt{3}$.

Omsem: a) $2 - \sqrt{3}$; $2 + \sqrt{3}$; 6) $2 + \sqrt{3}$.

- **9.** a) Решите уравнение $\log_{2-\frac{1}{x+2}} \left(x^2 + 3x \frac{2}{x+2} 6 \right) = 1 + \log_{2-\frac{1}{x+2}} (x^2 + 3x 8).$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\pi\sqrt{\pi};\log_2\pi\right]$.

Решение.

а) Пусть $y = 2 - \frac{1}{x+2}$, $z = x^2 + 3x - 8$, тогда уравнение примет вид:

$$\log_{y}(z+2y-2) = 1 + \log_{y}z; \quad \begin{cases} \log_{y}(z+2y-2) = \log_{y}yz, \\ z > 0; \end{cases} \quad \begin{cases} z+2y-2-yz = 0, \\ z > 0, \\ y > 0, \\ y \neq 1; \end{cases}$$

$$\begin{cases} (z-2)(1-y) = 0, \\ z > 0, \\ y > 0, \\ y \neq 1; \end{cases} \begin{cases} z = 2, \\ y > 0, \\ z = 1; \end{cases} \begin{cases} x^2 + 3x - 8 = 2, \\ 2 - \frac{1}{x+2} > 0, \\ 2 - \frac{1}{x+2} \neq 1; \end{cases} \begin{cases} (x+5)(x-2) = 0, \\ \frac{2x+3}{x+2} > 0, \\ \frac{x+1}{x+2} \neq 0, \end{cases}$$

откуда x = -5; x = 2.

б) Поскольку $-\pi\sqrt{\pi} < -3\sqrt{3} < -5 < \log_2 \pi < 2$, отрезку $\left[-\pi\sqrt{\pi}; \log_2 \pi\right]$ принадлежит только корень x=-5.

Ответ: a) -5; 2;

- б) -5.
- **10.** a) Решите уравнение $1 + \log_3(9x^2 + 1) = \log_{\sqrt{3}} \sqrt{3x^4 + 63}$.
 - б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\frac{3}{2}; \frac{5}{2}\right]$.

Решение.

a) $1 + \log_3(9x^2 + 1) = \log_{\sqrt{3}} \sqrt{3x^4 + 63}$;

$$\log_3(9x^2+1) = \log_3(3x^4+63) - \log_33;$$
 $\log_3(9x^2+1) = \log_3(x^4+21);$ $9x^2+1 = x^4+21;$ $x^4-9x^2+20 = 0;$ $(x^2-4)(x^2-5) = 0.$

Таким образом, уравнение имеет 4 корня: $x = -\sqrt{5}$, x = -2, x = 2, $x = \sqrt{5}$.

6) Поскольку $-\sqrt{5} < -2 < \frac{3}{2} < 2 < \sqrt{5} < \frac{5}{2}$, промежутку $\left[\frac{3}{2}; \frac{5}{2}\right]$ принадлежат только корни x=2 и $x=\sqrt{5}$.

Omsem: a) $-\sqrt{5}$; -2 2; $\sqrt{5}$;

6) 2; $\sqrt{5}$.

Задания для самостоятельного решения

- **1.** a) Решите уравнение $\log_{25}(x^3 8x + 8) = \log_5|x 2|$.
 - б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\log_7 3; \sqrt{7}\right]$.
- **2.** a) Решите уравнение $\log_{\frac{1}{9}}(2x^2 + 4x 30) + \log_9(x^2 + x 2) = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2};\pi\right]$.
- **3.** a) Решите уравнение $\log_{x^2+x-6}(x^3-13x+13)=0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $[\log_2 0.03; \log_2 7]$.
- **4.** a) Решите уравнение $(x+1) \cdot \log_{\frac{9}{x^2}-4} \sqrt{2x^2-3x-1} = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-3^{-0.5}; 3^{0.5}\right]$.

- **5.** a) Решите уравнение $\log_{7^x+2}^{x} \frac{x^2 7x + 12}{2x^2 x + 5} = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{16}{\sqrt{5}};\log_7 6\right]$.
- **6.** a) Решите уравнение $\log_{2x^2-4x-30}(x^2-x-2)=1$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left\lceil \log_3 0{,}03; \frac{5\sqrt{78}}{6} \right\rceil$.
- **7.** a) Решите уравнение $\log_4^2(x+1) + \log_{0.25}(x+1)^2 = 3$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку [log₂₆ 24; 65].
- **8.** a) Решите уравнение $\log_3 \left(\log_{36}^2 \left(\log_{216}^2 \left(x + \frac{4}{x} \right) + \frac{1}{18} \right) + \frac{7}{2} \right) = 1.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку [log₁₂₆ 24; 5].
- **9.** а) Решите уравнение $\log_{\frac{1}{x-1}-1} \left(9x^2-27x+\frac{2}{x-1}+18\right)=1+\log_{\frac{1}{x-1}-1} \left(9x^2-27x+22\right)$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\log_2\pi;\sqrt{\pi}\right]$.
- **10.** a) Решите уравнение $\log_{\sqrt{2}} \sqrt{2x^4 + 20} = 1 + \log_2 (10x^2 + 1)$.
 - б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[-\frac{11}{4}; \frac{2}{3}\right]$.

1.4. Комбинированные уравнения

- **1.** a) Решите уравнение $\log_4(\sin x + \sin 2x + 16) = 2$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-4\pi; -\frac{5\pi}{2}\right]$

Решение.

а) Преобразуем исходное уравнение:

$$\sin x + \sin 2x + 16 = 16$$
; $2\sin x \cos x + \sin x = 0$; $\sin x \cdot (2\cos x + 1) = 0$,

откуда
$$\sin x=0;\; x=\pi n,\; n\in\mathbb{Z},\;$$
или $\cos x=-\frac{1}{2};\; x=\pm\frac{2\pi}{3}+2\pi k,\; k\in\mathbb{Z}.$

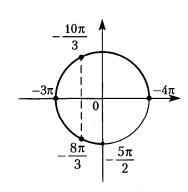
б) С помощью числовой окружности отберём корни, принадле-

жащие отрезку
$$\left[-4\pi; -\frac{5\pi}{2}\right]$$
.

Получим числа:
$$-4\pi$$
; $-\frac{10\pi}{3}$; -3π ; $-\frac{8\pi}{3}$.

Omeem: a)
$$x = \pi n$$
, $n \in \mathbb{Z}$; $x = \pm \frac{2\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$;

6)
$$-4\pi$$
; $-\frac{10\pi}{3}$; -3π ; $-\frac{8\pi}{3}$.



2. a) Решите уравнение $9^{\sin x} + 9^{-\sin x} = \frac{10}{3}$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{7\pi}{2};-2\pi\right]$.

Решение.

а) Пусть $t=9^{\sin x}$, тогда исходное уравнение запишется в виде $t+\frac{1}{t}=\frac{10}{3}$, откуда t=3 или $t=\frac{1}{3}$.

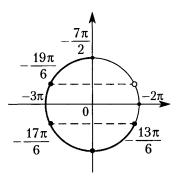
При t=3 получим: $9^{\sin x}=3$, откуда $\sin x=\frac{1}{2};\ x=\frac{\pi}{6}+2\pi k,\ k\in\mathbb{Z},$ или $x=\frac{5\pi}{6}+2\pi n,$ $n\in\mathbb{Z}.$

При $t=\frac{1}{3}$ получим: $9^{\sin x}=\frac{1}{3},$ откуда $\sin x=-\frac{1}{2};$ $x=-\frac{\pi}{6}+2\pi m,$ $m\in\mathbb{Z},$ или $x=-\frac{5\pi}{6}+2\pi l,\ l\in\mathbb{Z}.$

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left[-\frac{7\pi}{2};-2\pi\right]$.

Получим числа:
$$-\frac{19\pi}{6}$$
; $-\frac{17\pi}{6}$; $-\frac{13\pi}{6}$.

Omsem: a)
$$\frac{\pi}{6} + 2\pi k$$
, $k \in \mathbb{Z}$; $\frac{5\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; $-\frac{\pi}{6} + 2\pi m$, $m \in \mathbb{Z}$; $-\frac{5\pi}{6} + 2\pi l$, $l \in \mathbb{Z}$; 6) $-\frac{19\pi}{6}$; $-\frac{17\pi}{6}$; $-\frac{13\pi}{6}$.



3. a) Решите уравнение $12^{\sin x} = 4^{\sin x} \cdot 3^{-\sqrt{3}\cos x}$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{5\pi}{2}; 4\pi\right]$

Решение.

а) Преобразуем исходное уравнение:

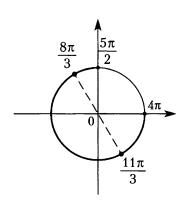
$$4^{\sin x}\cdot 3^{\sin x}=4^{\sin x}\cdot 3^{-\sqrt{3}\cos x};\ 3^{\sin x}=3^{-\sqrt{3}\cos x};\ \sin x=-\sqrt{3}\cos x;\ \mathrm{tg}x=-\sqrt{3},$$
откуда $x=-rac{\pi}{3}+\pi k,\ k\in\mathbb{Z}.$

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left[\frac{5\pi}{2};4\pi\right]$.

Получим числа: $\frac{8\pi}{3}$; $\frac{11\pi}{3}$.

Omeem: a)
$$-\frac{\pi}{3} + \pi k, \ k \in \mathbb{Z};$$

6) $\frac{8\pi}{3}; \frac{11\pi}{3}.$



21

- **4.** а) Решите уравнение $(25^{\cos x})^{\sin x} = 5^{\cos x}$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.

 $m \in \mathbb{Z}$.

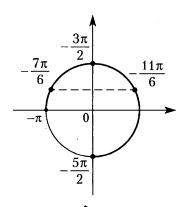
а) Преобразуем уравнение:

$$25^{\cos x \sin x}=5^{\cos x}; \ 5^{2\sin x \cos x}=5^{\cos x}; \ 2\sin x \cos x=\cos x; \ \cos x (2\sin x-1)=0,$$
 откуда или $\cos x=0; \ x=\frac{\pi}{2}+\pi k, \ k\in\mathbb{Z},$ или $\sin x=\frac{1}{2}; \ x=\frac{\pi}{6}+2\pi n, \ n\in\mathbb{Z}; \ x=\frac{5\pi}{6}+2\pi m,$

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.

Получим числа:
$$-\frac{5\pi}{2}$$
; $-\frac{11\pi}{6}$; $-\frac{3\pi}{2}$; $-\frac{7\pi}{6}$.

Omeem: a)
$$\frac{\pi}{2} + \pi k$$
, $k \in \mathbb{Z}$; $\frac{\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; $\frac{5\pi}{6} + 2\pi m$, $m \in \mathbb{Z}$; 6) $-\frac{5\pi}{2}$; $-\frac{11\pi}{6}$; $-\frac{3\pi}{2}$; $-\frac{7\pi}{6}$.



- **5.** а) Решите уравнение $\left(\frac{1}{16}\right)^{\cos x} + 3 \cdot \left(\frac{1}{4}\right)^{\cos x} 4 = 0.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $[4\pi; 7\pi]$.

Решение.

а) Пусть $y = \left(\frac{1}{4}\right)^{\cos x}$, тогда уравнение примет вид:

$$y^2 + 3y - 4 = 0;$$
 $(y+4)(y-1) = 0,$

откуда y = -4 или y = 1.

При y = -4 получаем, что $\left(\frac{1}{4}\right)^{\cos x} = -4$ — нет корней.

При y=1 получаем, что $\left(\frac{1}{4}\right)^{\cos x}=1$, откуда $\cos x=0$; $x=\frac{\pi}{2}+\pi n,\ n\in\mathbb{Z}.$

б) С помощью неравенств найдём корни, принадлежащие отрезку $[4\pi; 7\pi]$.

 $4\pi \leqslant \frac{\pi}{2} + \pi n \leqslant 7\pi$; $4 - \frac{1}{2} \leqslant n \leqslant 7 - \frac{1}{2}$; $3.5 \leqslant n \leqslant 6.5$, $n \in \mathbb{Z}$; n = 4, n = 5, n = 6.

Получим числа: $\frac{9\pi}{2}$; $\frac{11\pi}{2}$; $\frac{13\pi}{2}$.

Omsem: a) $\frac{\pi}{2} + \pi n$, $n \in \mathbb{Z}$;

6)
$$\frac{9\pi}{2}$$
; $\frac{11\pi}{2}$; $\frac{13\pi}{2}$.

- **6.** a) Решите уравнение $\left(\frac{1}{16}\right)^{\sin x} \left(\frac{1}{4}\right)^{\sin x} 2 = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left\lceil 7\pi; \frac{17\pi}{2} \right\rceil$.

а) Пусть $y=\left(\frac{1}{4}\right)^{\sin x}$, тогда уравнение примет вид:

$$y^2 - y - 2 = 0$$
; $(y + 1)(y - 2) = 0$,

откуда y = -1 или y = 2.

При y=-1 получаем, что $\left(\frac{1}{4}\right)^{\sin x}=-1$ — нет корней.

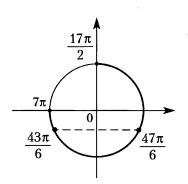
При y=2 получаем, что $\left(\frac{1}{4}\right)^{\sin x}=2$, откуда $\sin x=-\frac{1}{2};\ x=-\frac{\pi}{6}+2\pi n,\ n\in\mathbb{Z},$ или $x=-\frac{5\pi}{6}+2\pi k,\ k\in\mathbb{Z}.$

б) С помощью числовой окружности отберём корни, принадле-

жащие отрезку
$$\left[7\pi; \frac{17\pi}{2}\right]$$
.

Получим числа: $\frac{43\pi}{6}$; $\frac{47\pi}{6}$.

Omsem: a)
$$-\frac{5\pi}{6} + 2\pi n$$
, $n \in \mathbb{Z}$; $-\frac{\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$; 6) $\frac{43\pi}{6}$; $\frac{47\pi}{6}$.



- **7.** a) Решите уравнение $4^{tgx} + 5 \cdot 2^{tgx} 14 = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\pi; \frac{5\pi}{2}\right]$.

Решение.

а) Пусть $y = 2^{\text{tg}x}$, тогда уравнение примет вид:

$$y^2 + 5y - 14 = 0$$
; $(y+7)(y-2) = 0$,

откуда y = -7 или y = 2.

При y = -7 получаем, что $2^{\text{tg}x} = -7$ — нет корней.

При y=2 получаем, что $2^{\operatorname{tg} x}=2$, откуда $\operatorname{tg} x=1;\ x=\frac{\pi}{4}+\pi n,\ n\in\mathbb{Z}.$

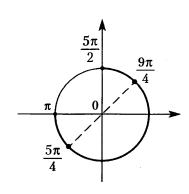
б) С помощью числовой окружности отберём корни, принадле-

жащие отрезку $\left[\pi; \frac{5\pi}{2}\right]$.

Получим числа: $\frac{5\pi}{4}$; $\frac{9\pi}{4}$.

Omsem: a)
$$\frac{\pi}{4} + \pi n, n \in \mathbb{Z};$$

6)
$$\frac{5\pi}{4}$$
; $\frac{9\pi}{4}$.



8. a) Решите уравнение $2^{\sin^2 x} + 2^{\cos^2 x} = 3$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\pi; \frac{\pi}{2}\right]$.

Решение.

а) Преобразуем уравнение: $2^{\sin^2 x} + 2^{\cos^2 x} = 3$; $\frac{2}{2^{\cos^2 x}} + 2^{\cos^2 x} = 3$.

Пусть $t=2^{\cos^2 x}$, тогда уравнение примет вид:

$$\frac{2}{t} + t = 3;$$
 $\frac{t^2 - 3t + 2}{t} = 0;$ $\frac{(t-1)(t-2)}{t} = 0,$

откуда t = 1 или t = 2.

При t=1 получаем: $2^{\cos^2 x}=1$; $\cos^2 x=0$, откуда $x=\frac{\pi}{2}+\pi n,\ n\in\mathbb{Z}.$

При t=2 получаем: $2^{\cos^2 x}=2$; $\cos^2 x=1$; $\sin^2 x=0$, откуда $x=\pi m,\ m\in\mathbb{Z}$.

Объединяя эти два решения, получаем решение уравнения: $x=\frac{\pi k}{2},\ k\in\mathbb{Z}.$

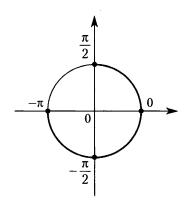
б) С помощью числовой окружности отберём корни, принадле-

жащие отрезку
$$\left[-\pi; \frac{\pi}{2}\right]$$
.

Получим числа: $-\pi$; $-\frac{\pi}{2}$; 0; $\frac{\pi}{2}$.

Omeem: a) $\frac{\pi k}{2}$, $k \in \mathbb{Z}$;

6)
$$-\pi$$
; $-\frac{\pi}{2}$; 0; $\frac{\pi}{2}$



9. a) Решите уравнение $(3\cos 2x - 11\cos x + 7)\sqrt{-7 \operatorname{tg} x} = 0$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{5\pi}{2}; 4\pi\right]$.

Решение.

а) Произведение равно нулю, если хотя бы один из его множителей равен нулю, а другой существует. Поэтому решение уравнения — это объединение решений уравнения $\sqrt{-7\,\mathrm{tg}x}=0$ и системы $\begin{cases} 3\cos 2x - 11\cos x + 7 = 0, \\ \mathrm{tg}x \leqslant 0. \end{cases}$

Решим уравнение: $\sqrt{-7 \, \mathrm{tg} x} = 0$; $\mathrm{tg} x = 0$, откуда $x = \pi k, \ k \in \mathbb{Z}$. Решим систему:

$$\begin{cases} 3\cos 2x - 11\cos x + 7 = 0, \\ \tan x \le 0; \end{cases} \begin{cases} 6\cos^2 x - 3 - 11\cos x + 7 = 0, \\ \tan x \le 0; \end{cases}$$

$$\begin{cases} (3\cos x - 4)(2\cos x - 1) = 0, \\ \tan x \le 0; \end{cases} \begin{cases} \cos x = \frac{4}{3} \\ \cos x = \frac{1}{2}, \\ \tan x \le 0; \end{cases} \begin{cases} \cos x = \frac{1}{2}, \\ \tan x \le 0, \end{cases}$$

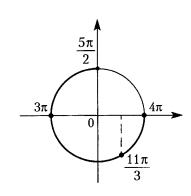
откуда получаем, что $x=-\frac{\pi}{3}+2\pi m,\ m\in\mathbb{Z}.$

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left\lceil \frac{5\pi}{2}; 4\pi \right\rceil$.

Получим числа: 3π ; 4π ; $\frac{11\pi}{3}$.

Omsem: a) πk , $k \in \mathbb{Z}$; $-\frac{\pi}{3} + 2\pi m$, $m \in \mathbb{Z}$;

6)
$$3\pi$$
; 4π ; $\frac{11\pi}{3}$.



10. a) Решите уравнение $\frac{4^{\cos x} - 2^{\sqrt{3}}}{\sqrt{7 \sin x}} = 0$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[3\pi; \frac{9\pi}{2}\right]$

Решение.

a)
$$\frac{4^{\cos x} - 2^{\sqrt{3}}}{\sqrt{7 \sin x}} = 0;$$

$$\begin{cases} 4^{\cos x} = 2^{\sqrt{3}}, & \begin{cases} 2^{2\cos x} = 2^{\sqrt{3}}, \\ \sin x > 0; \end{cases} & \begin{cases} 2\cos x = \sqrt{3}, \\ \sin x > 0; \end{cases} & \begin{cases} \cos x = \frac{\sqrt{3}}{2}, \\ \sin x > 0; \end{cases} \end{cases}$$

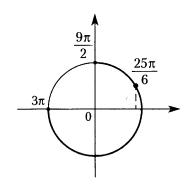
откуда $x=rac{\pi}{6}+2\pi k,\;k\in\mathbb{Z}.$

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left[3\pi; \frac{9\pi}{2}\right]$.

Получим число $\frac{25\pi}{6}$.

Omsem: a)
$$\frac{\pi}{6} + 2\pi k$$
, $k \in \mathbb{Z}$;

6)
$$\frac{25\pi}{6}$$
.



11. а) Решите уравнение $\frac{16^{\sin x} - 6 \cdot 4^{\sin x} + 8}{\sqrt{3} \operatorname{tg} x - 1} = 0.$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-2\pi; -\frac{\pi}{2}\right]$

Решение.

a)
$$\frac{16^{\sin x} - 6 \cdot 4^{\sin x} + 8}{\sqrt{3} \operatorname{tg} x - 1} = 0;$$

$$\begin{cases} 16^{\sin x} - 6 \cdot 4^{\sin x} + 8 = 0, \\ \sqrt{3} \operatorname{tg} x - 1 \neq 0. \end{cases}$$

Решим первое уравнение системы. Пусть $t = 4^{\sin x}$, тогда уравнение принимает вид:

$$t^2-6t+8=0$$
; $(t-2)(t-4)=0$,

откуда $t=2\,$ или t=4.

При t=2 получаем: $4^{\sin x}=2$, откуда $\sin x=\frac{1}{2},\ x=\frac{\pi}{6}+2\pi k,\ k\in\mathbb{Z},\$ или $x=\frac{5\pi}{6}+2\pi n,$ $n\in\mathbb{Z}.$

При t=4 получаем: $4^{\sin x}=4$, откуда $\sin x=1$, $x=\frac{\pi}{2}+2\pi m$, $m\in\mathbb{Z}$.

Решим неравенство: $\sqrt{3} \operatorname{tg} x - 1 \neq 0$; $\operatorname{tg} x \neq \frac{\sqrt{3}}{3}$, откуда $x \neq \frac{\pi}{6} + \pi l, \ l \in \mathbb{Z}$.

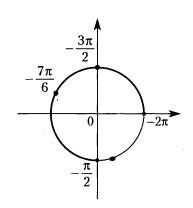
Таким образом, исходное уравнение имеет решение: $x = \frac{5\pi}{6} + 2\pi n$, $x = \frac{\pi}{2} + 2\pi m$, $n, m \in \mathbb{Z}$.

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left[-2\pi;-\frac{\pi}{2}\right]$.

Получим числа: $-\frac{3\pi}{2}$; $-\frac{7\pi}{6}$.

Omsem: a)
$$\frac{5\pi}{6} + 2\pi n$$
, $n \in \mathbb{Z}$; $\frac{\pi}{2} + 2\pi m$, $m \in \mathbb{Z}$;

6)
$$-\frac{3\pi}{2}$$
; $-\frac{7\pi}{6}$.



- **12.** a) Решите уравнение $(6\sin^2 x 11\sin x + 4)\log_{13}(-\operatorname{tg} x) = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{3\pi}{2};3\pi\right]$.

Решение.

а) Произведение равно нулю, если хотя бы один из его множителей равен нулю, а другой существует. Поэтому решение уравнения — это объединение решений уравнения $\log_{13}(-\operatorname{tg} x)=0$ и системы

$$\begin{cases} 6\sin^2 x - 11\sin x + 4 = 0, \\ -\operatorname{tg} x > 0. \end{cases}$$

Решим уравнение:

$$\log_{13}(-tgx) = 0; \ tgx = -1,$$

откуда
$$x=-rac{\pi}{4}+\pi k,\;k\in\mathbb{Z}.$$

Решим систему:

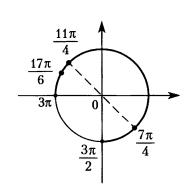
$$\begin{cases} 6\sin^2 x - 11\sin x + 4 = 0, \\ -tgx > 0; \end{cases} \begin{cases} (3\sin x - 4)(2\sin x - 1) = 0, \\ tgx < 0; \end{cases} \begin{cases} \sin x = \frac{4}{3} \\ \sin x = \frac{1}{2}, \\ tgx < 0; \end{cases} \begin{cases} \sin x = \frac{4}{3} \\ \cos x = \frac{1}{2}, \end{cases}$$

откуда получаем, что $x=\frac{5\pi}{6}+2\pi m, \ m\in\mathbb{Z}.$

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left\lceil \frac{3\pi}{2}; 3\pi \right\rceil$.

Получим числа:
$$\frac{7\pi}{4}$$
; $\frac{11\pi}{4}$; $\frac{17\pi}{6}$.

Omsem: a)
$$-\frac{\pi}{4} + \pi k$$
, $k \in \mathbb{Z}$; $\frac{5\pi}{6} + 2\pi m$, $m \in \mathbb{Z}$; 6) $\frac{7\pi}{4}$; $\frac{11\pi}{4}$; $\frac{17\pi}{6}$.



13. а) Решите уравнение $\sqrt{2\cos x + 1} \cdot \log_2(2\sin x) = 0$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{7\pi}{2}; -2\pi\right]$.

Решение.

а) Произведение равно нулю, если хотя бы один из его множителей равен нулю, а другой существует. Поэтому решение уравнения — это объединение решений систем

$$\begin{cases} \sqrt{2\cos x + 1} = 0, \\ 2\sin x > 0 \end{cases} \quad \text{if} \quad \begin{cases} 2\cos x + 1 \geqslant 0, \\ \log_2(2\sin x) = 0. \end{cases}$$

Решим первую систему:

$$\begin{cases} \sqrt{2\cos x + 1} = 0, \\ 2\sin x > 0; \end{cases} \begin{cases} \cos x = -\frac{1}{2}, \\ \sin x > 0, \end{cases}$$

откуда $x = \frac{2\pi}{3} + 2\pi k, \ k \in \mathbb{Z}.$

Решим вторую систему:

$$\begin{cases} 2\cos x + 1 \ge 0, \\ \log_2(2\sin x) = 0; \end{cases} \begin{cases} \cos x \ge -\frac{1}{2}, \\ 2\sin x = 1; \end{cases} \begin{cases} \cos x \ge -\frac{1}{2}, \\ \sin x = \frac{1}{2}, \end{cases}$$

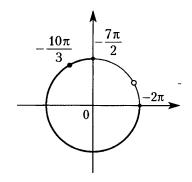
откуда получаем, что $x = \frac{\pi}{6} + 2\pi m, \ m \in \mathbb{Z}$.

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left[-\frac{7\pi}{2};-2\pi\right]$.

Получим число $-\frac{10\pi}{3}$.

Ответ: a)
$$\frac{\pi}{6} + 2\pi m, \ m \in \mathbb{Z};$$

6) $-\frac{10\pi}{3}$.



14. a) Решите уравнение $\frac{2\cos^2 x - \sqrt{3}\cos x}{\log_7(\sin x)} = 0$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{\pi}{2};\pi\right]$

Решение.

a)
$$\frac{2\cos^2 x - \sqrt{3}\cos x}{\log_7(\sin x)} = 0$$
; $\begin{cases} 2\cos^2 x - \sqrt{3}\cos x = 0, \\ \log_7(\sin x) \neq 0; \end{cases}$ $\begin{cases} 2\cos^2 x - \sqrt{3}\cos x = 0, \\ \sin x \neq 1, \\ \sin x > 0. \end{cases}$

Решим первое уравнение системы:

$$2\cos^2 x - \sqrt{3}\cos x = 0$$
; $\cos x \left(\cos x - \frac{\sqrt{3}}{2}\right) = 0$,

откуда $\cos x = 0; \ x = \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z}, \$ или $\cos x = \frac{\sqrt{3}}{2}; \ x = \pm \frac{\pi}{6} + 2\pi n, \ n \in \mathbb{Z}.$

С учётом условий $\sin x \neq 1$ и $\sin x > 0$ получаем решение исходного уравнения:

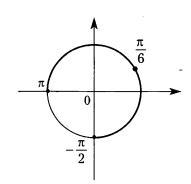
$$x=\frac{\pi}{6}+2\pi n, \ n\in\mathbb{Z}.$$

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left[-\frac{\pi}{2};\pi\right]$.

Получим число $\frac{\pi}{6}$.

Omsem: a)
$$\frac{\pi}{6} + 2\pi n$$
, $n \in \mathbb{Z}$;

6)
$$\frac{\pi}{6}$$
.



- **15.** a) Решите уравнение $\frac{3 \text{tg}^2 x 1}{\log_5(\cos x)} = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[0; \frac{3\pi}{2}\right]$.

Решение.

a)
$$\frac{3 \text{tg}^2 x - 1}{\log_5(\cos x)} = 0$$
;
$$\begin{cases} 3 \text{tg}^2 x - 1 = 0, \\ \log_5(\cos x) \neq 0; \end{cases} \begin{cases} 3 \text{tg}^2 x - 1 = 0, \\ \cos x \neq 1, \\ \cos x > 0. \end{cases}$$

Решим первое уравнение системы:

$$3tg^2x - 1 = 0; tgx = \pm \frac{\sqrt{3}}{3},$$

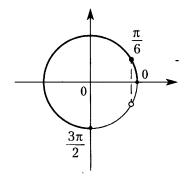
откуда $x = \pm \frac{\pi}{6} + \pi k, \ k \in \mathbb{Z}.$

C учётом условий $\cos x \neq 1$ и $\cos x > 0$ получаем решение исходного уравнения: $x = -\frac{\pi}{6} + 2\pi k, \ k \in \mathbb{Z}; \ x = \frac{\pi}{6} + 2\pi n, \ n \in \mathbb{Z}.$

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left[0; \frac{3\pi}{2}\right]$.

Получим число $\frac{\pi}{6}$.

Omsem: a)
$$\frac{\pi}{6} + 2\pi k$$
, $k \in \mathbb{Z}$; $-\frac{\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; 6) $\frac{\pi}{6}$.



Задания для самостоятельного решения

- **1.** a) Решите уравнение $\log_7(2\cos^2 x + 3\cos x 1) = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{7\pi}{2}; -2\pi\right]$.
- **2.** a) Решите уравнение $4^{\cos x} + 4^{-\cos x} = \frac{5}{2}$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-3\pi; -\frac{3\pi}{2}\right]$.
- **3.** а) Решите уравнение $(25^{\cos x})^{-\sin x} = (0,2)^{\sqrt{3}\cos x}$.
 - б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\pi; \frac{5\pi}{2}\right]$.

- **4.** a) Решите уравнение $(4^{\cos x})^{-\sin x} = (0.5)^{\sqrt{2}\cos x}$.
 - б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\frac{9\pi}{2}; 6\pi\right]$.
- **5.** a) Решите уравнение $81^{\cos x} 2 \cdot 9^{\cos x} 3 = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $[-2\pi;\pi]$.
- **6.** a) Решите уравнение $3.81^{\sin x} + 2.9^{\sin x} 1 = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $[-2\pi;\pi]$.
- **7.** a) Решите уравнение $\left(\frac{1}{9}\right)^{\text{tg}x} 6 \cdot \left(\frac{1}{3}\right)^{\text{tg}x} + 9 = 0.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $[5\pi; 8\pi]$.
- **8.** a) Решите уравнение $3^{\sin^2 x} + 3^{\cos^2 x} = 4$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[2\pi; \frac{7\pi}{2}\right]$.
- **9.** a) Решите уравнение $(6\cos 2x 8\cos x 1)\sqrt{5 \operatorname{tg} x} = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{7\pi}{2}; -2\pi\right]$.
- **10.** а) Решите уравнение $\frac{9^{\sin x} 3^{\sqrt{2}}}{\sqrt{5 \cos x}} = 0.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $[\pi; 4\pi]$.
- **11.** а) Решите уравнение $\frac{4 \cdot \left(\frac{1}{16}\right)^{\cos x} 9 \cdot \left(\frac{1}{4}\right)^{\cos x} + 2}{\operatorname{tg} x \sqrt{3}} = 0.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{\pi}{2}; \frac{3\pi}{2}\right]$.
- **12.** а) Решите уравнение $(10\cos^2 x 17\cos x + 6)\log_4(\sqrt{2}\cos x) = 0.$
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[5\pi; \frac{13\pi}{2}\right]$
- **13.** а) Решите уравнение $\sqrt{2\sin x + \sqrt{3}} \cdot \log_4(\sqrt{2}\cos x) = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.
- **14.** а) Решите уравнение $\frac{2\sin^2 x \sqrt{2}\sin x}{\log_{17}(\cos x)} = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-2\pi; -\frac{\pi}{2}\right]$.
- **15.** а) Решите уравнение $\frac{tg^2x 3}{\log_6(\sin x)} = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{\pi}{2}; \frac{5\pi}{2}\right]$.

2. НЕРАВЕНСТВА И ИХ СИСТЕМЫ

2.1. Рациональные неравенства

1. Решите неравенство $\frac{12x^2 - 31x + 14}{4x^2 + 3x - 1} \le 0.$

Решение.

Исходное неравенство равносильно неравенству $\frac{(x-2)(12x-7)}{(4x-1)(x+1)} \le 0$, откуда $-1 < x < \frac{1}{4}$ или $\frac{7}{12} \le x \le 2$.

Omsem: $\left(-1; \frac{1}{4}\right), \left[\frac{7}{12}; 2\right]$.

2. Решите неравенство $\frac{x^5 - x^2}{x^2} \geqslant \frac{x^3 - 1}{4x^2}$.

Решение.

Исходное неравенство равносильно неравенству

$$\frac{x^2(x^3-1)}{x^2} - \frac{x^3-1}{4x^2} \ge 0; \quad \frac{(x^3-1)(4x^2-1)}{4x^2} \ge 0;$$
$$\frac{(x-1)(x^2+x+1)(2x-1)(2x+1)}{x^2} \ge 0; \quad \frac{(x-1)(2x-1)(2x+1)}{x^2} \ge 0,$$

откуда $-\frac{1}{2} \leqslant x < 0$, $0 < x \leqslant \frac{1}{2}$ или $x \geqslant 1$.

Omeem: $\left[-\frac{1}{2};0\right)$, $\left(0;\frac{1}{2}\right]$, $\left[1;+\infty\right)$.

3. Решите неравенство $4x^2 - 10x - \frac{8x^3 - 42x^2 + 75x - 51}{2x - 5} \le -9$.

Решение.

Исходное неравенство равносильно неравенству

$$\frac{8x^3-20x^2-20x^2+50x-8x^3+42x^2-75x+51+18x-45}{2x-5}\leqslant 0;$$

$$\frac{2x^2-7x+6}{2x-5}\leqslant 0; \ \frac{(2x-3)(x-2)}{2x-5}\leqslant 0, \ \text{откуда} \ x\leqslant \frac{3}{2} \ \text{или} \ 2\leqslant x<\frac{5}{2}.$$

Omsem: $\left(-\infty; \frac{3}{2}\right]$, $\left[2; \frac{5}{2}\right)$.

4. Решите неравенство $2x(x-1) \le -\sqrt{28}(x-1)$.

Решение.

Исходное неравенство равносильно неравенству

$$(x-1)(2x+2\sqrt{7}) \le 0; (x-1)(x+\sqrt{7}) \le 0,$$

откуда $-\sqrt{7} \leqslant x \leqslant 1$.

Omeem: $\left[-\sqrt{7}; 1\right]$.

5. Решите неравенство $6x \ge |2x + 6| + |3 - 2x|$.

Решение.

Исходное неравенство равносильно неравенству $|x+3|+\left|x-\frac{3}{2}\right|-3x\leqslant 0$. Рассмотрим три случая.

Первый случай: x < -3. Неравенство принимает вид

$$-x-3-x+\frac{3}{2}-3x \le 0; \quad 5x \ge -\frac{3}{2}; \quad x \ge -\frac{3}{10}.$$

С учётом условия x < -3 получаем, что в этом случае решений нет.

Второй случай: $-3 \le x < \frac{3}{2}$. Неравенство принимает вид:

$$x + 3 - x + \frac{3}{2} - 3x \le 0; \quad 3x \ge \frac{9}{2}; \quad x \ge \frac{3}{2}.$$

С учётом условия $-3 \leqslant x < \frac{3}{2}$ получаем, что в этом случае решений нет.

Третий случай: $x \ge \frac{3}{2}$. Неравенство принимает вид:

$$x+3+x-\frac{3}{2}-3x \le 0; \quad x \ge \frac{3}{2}.$$

Получаем, что в этом случае все значения переменной удовлетворяют исходному неравенству. Объединяя все случаи, получаем решение неравенства: $x \geqslant \frac{3}{2}$.

Omsem: $\left[\frac{3}{2}; +\infty\right)$.

6. Решите неравенство $-4|x^2-1|-3 \geqslant \frac{1}{x^2-1}$.

Решение.

Заметим, что $x=\pm 1$ не является решением неравенства.

Рассмотрим два случая.

Первый случай: -1 < x < 1. В этом случае $x^2 - 1 < 0$ и неравенство принимает вид:

$$4x^2 - 4 - 3 \ge \frac{1}{x^2 - 1}; \quad 4x^4 - 11x^2 + 7 \le 1; \quad (x^2 - 2)(4x^2 - 3) \le 0.$$

Поскольку $x^2-2 < x^2-1 < 0$, неравенство равносильно неравенству $4x^2-3 \geqslant 0$, откуда получаем, что $x \leqslant -\frac{\sqrt{3}}{2}$ или $x \geqslant \frac{\sqrt{3}}{2}$.

С учётом условия -1 < x < 1 получаем решение:

$$-1 < x \le -\frac{\sqrt{3}}{2}, \quad \frac{\sqrt{3}}{2} \le x < 1.$$

Второй случай: $x < -1\,$ или x > 1. В этом случае $x^2 - 1 > 0\,$ и неравенство принимает вид:

$$-4x^2 + 4 - 3 \ge \frac{1}{x^2 - 1}$$
; $-4x^4 + 5x^2 - 1 \ge 1$; $4x^4 - 5x^2 + 2 \le 0$.

Последнее неравенство решений не имеет

Решение неравенства: $-1 < x \le -\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2} \le x < 1.$

Omsem: $\left(-1; -\frac{\sqrt{3}}{2}\right]$, $\left\lceil \frac{\sqrt{3}}{2}; 1\right\rangle$.

7. Решите неравенство $\left| 2x^2 + \frac{19}{8}x - \frac{1}{8} \right| \ge 3x^2 + \frac{1}{8}x - \frac{19}{8}$.

Решение.

Исходное неравенство равносильно совокупности неравенств:

$$\begin{bmatrix} 2x^2 + \frac{19}{8}x - \frac{1}{8} \ge 3x^2 + \frac{1}{8}x - \frac{19}{8} \\ -2x^2 - \frac{19}{8}x + \frac{1}{8} \ge 3x^2 + \frac{1}{8}x - \frac{19}{8}; \end{bmatrix} \begin{bmatrix} x^2 - \frac{9}{4}x - \frac{9}{4} \le 0 \\ x^2 + \frac{1}{2}x - \frac{1}{2} \le 0; \end{bmatrix} \begin{bmatrix} (x-3)\left(x + \frac{3}{4}\right) \le 0 \\ (x+1)\left(x - \frac{1}{2}\right) \le 0, \end{bmatrix}$$

откуда $-1 \leqslant x \leqslant 3$.

Omeem: [-1; 3].

8. Решите неравенство $\frac{1}{|3r+1|} \ge 1-x$.

Решение.

Преобразуем исходное неравенство:

$$\frac{1}{|3x+1|} - 1 + x \ge 0; \quad \frac{1 + |3x+1|(x-1)}{|3x+1|} \ge 0.$$

Заметим, что $x=-\frac{1}{3}$ не является решением неравенства, а при $x\neq -\frac{1}{3}$ оно равносильно неравенству $1+|3x+1|(x-1)\geqslant 0$.

Рассмотрим два случая.

Первый случай: $x < -\frac{1}{3}$. Неравенство принимает вид:

$$1 - (3x + 1)(x - 1) \ge 0; \ 3x^2 - 2x - 2 \le 0; \ \left(x - \frac{1 + \sqrt{7}}{3}\right) \cdot \left(x - \frac{1 - \sqrt{7}}{3}\right) \le 0,$$

откуда $\frac{1-\sqrt{7}}{3} \le x \le \frac{1+\sqrt{7}}{3}$.

С учётом условия $x < -\frac{1}{3}$ получаем решение: $\frac{1-\sqrt{7}}{3} \le x < -\frac{1}{3}$.

Второй случай: $x > -\frac{1}{3}$. Неравенство принимает вид:

$$1 + (3x + 1)(x - 1) \ge 0$$
; $3x^2 - 2x \ge 0$; $x(3x - 2) \ge 0$,

откуда $x \le 0$ или $x \ge \frac{2}{3}$.

С учётом условия $x > -\frac{1}{3}$ получаем решение: $-\frac{1}{3} < x \le 0, \ x \ge \frac{2}{3}$.

Объединяя все случаи, получаем решение неравенства: $\frac{1-\sqrt{7}}{3} \leqslant x < -\frac{1}{3}, -\frac{1}{3} < x \leqslant 0,$ $x \geqslant \frac{2}{3}.$

Omsem:
$$\left[\frac{1-\sqrt{7}}{3}; -\frac{1}{3}\right), \left(-\frac{1}{3}; 0\right], \left[\frac{2}{3}; +\infty\right).$$

9. Решите неравенство $x(|3x-8|-|x-2|) \le 2|3x-8|-2|x-2|$.

Решение.

Преобразуем неравенство: $(x-2)(|3x-8|-|x-2|) \le 0$.

Заметим, что x = 2 является решением неравенства.

Рассмотрим три случая.

Первый случай: x < 2. В этом случае x - 2 < 0 и неравенство принимает вид:

$$-3x + 8 + x - 2 \ge 0$$
; $2x \le 6$; $x \le 3$.

Получаем, что в этом случае все значения переменной удовлетворяют исходному неравенству.

Второй случай: $2 < x \le \frac{8}{3}$. В этом случае x - 2 > 0 и неравенство принимает вид:

$$-3x + 8 - x + 2 \le 0$$
; $4x \ge 10$; $x \ge \frac{5}{2}$.

С учётом условия $2 < x \le \frac{8}{3}$ получаем решение: $\frac{5}{2} \le x \le \frac{8}{3}$.

Третий случай: $x > \frac{8}{3}$. В этом случае x - 2 > 0 и неравенство принимает вид:

$$3x - 8 - x + 2 \le 0$$
; $2x \le 6$; $x \le 3$.

C учётом условия $x > \frac{8}{3}$ получаем решение: $\frac{8}{3} < x \le 3$.

Объединяя все случаи, получаем решение неравенства: $x \le 2$, $\frac{5}{2} \le x \le \frac{8}{3}$.

Omsem: $(-\infty; 2], \left\lceil \frac{5}{2}; 3 \right\rceil$.

10. Решите неравенство $\frac{1}{|x+2|} - \frac{1}{|x-3|} \ge -\frac{1}{6}$.

Решение.

Заметим, что x=-2 и x=3 не являются решением неравенства, а при $x\neq -2$ и $x\neq 3$ преобразуем неравенство:

$$6(|x-3|-|x+2|)+|x+2||x-3| \ge 0; \quad 6(|x-3|-|x+2|)+|x^2-x-6| \ge 0.$$

Рассмотрим три случая.

Первый случай: x < -2. Неравенство принимает вид:

$$6(-x+3+x+2)+x^2-x-6 \ge 0$$
; $x^2-x+24 \ge 0$.

Решением последнего неравенства является любое число, значит, в этом случае все значения переменной удовлетворяют исходному неравенству.

Второй случай: -2 < x < 3. Неравенство принимает вид:

$$6(-x+3-x-2)-x^2+x+6 \ge 0$$
; $x^2+11x-12 \le 0$; $(x+12)(x-1) \le 0$,

откуда $-12 \leqslant x \leqslant 1$.

С учётом условия -2 < x < 3 получаем решение: $-2 < x \le 1$.

Третий случай: x > 3. Неравенство принимает вид:

$$6(x-3-x-2) + x^2 - x - 6 \ge 0; \quad x^2 - x - 36 \ge 0;$$
$$\left(x - \frac{1 - \sqrt{145}}{2}\right) \left(x - \frac{1 + \sqrt{145}}{2}\right) \ge 0,$$

откуда $x \leqslant \frac{1 - \sqrt{145}}{2}$ или $x \geqslant \frac{1 + \sqrt{145}}{2}$.

С учётом условия x > 3 получаем решение: $x \ge \frac{1 + \sqrt{145}}{2}$.

Объединяя все случаи, получаем решение неравенства: $x < -2, -2 < x \le 1, x \ge \frac{1 + \sqrt{145}}{2}$

Omsem:
$$(-\infty; -2), (-2; 1], \left[\frac{1+\sqrt{145}}{2}; +\infty\right).$$

11. Решите неравенство $|8x-2| - \frac{16x+5}{8x} \ge \frac{8x-1}{8|x|} - 6$.

Решение.

Преобразуем неравенство:

$$2|4x-1|+4-\frac{x}{|x|}+\frac{1}{8|x|}-\frac{5}{8x}\geq 0.$$

Заметим, что x = 0 не является решением неравенства.

Рассмотрим три случая.

Первый случай: x < 0. Неравенство принимает вид:

$$-8x + 2 + 4 + 1 - \frac{1}{8x} - \frac{5}{8x} \ge 0; \quad 8x - 7 + \frac{3}{4x} \le 0;$$
$$32x^2 - 28x + 3 \ge 0; \quad (8x - 1)(4x - 3) \ge 0,$$

откуда $x \leqslant \frac{1}{8}$ или $x \geqslant \frac{3}{4}$.

Получаем, что в этом случае все значения переменной удовлетворяют исходному неравенству.

Второй случай: $0 < x < \frac{1}{4}$. Неравенство принимает вид:

$$-8x + 2 + 4 - 1 + \frac{1}{8x} - \frac{5}{8x} \ge 0; \quad 8x - 5 + \frac{1}{2x} \le 0;$$

$$16x^2 - 10x + 1 \le 0; \quad (8x - 1)(2x - 1) \le 0,$$

откуда $\frac{1}{8} \leqslant x \leqslant \frac{1}{2}$.

C учётом условия $0 < x < \frac{1}{4}$ получаем решение: $\frac{1}{8} \le x < \frac{1}{4}$.

Третий случай: $x \geqslant \frac{1}{4}$. Неравенство принимает вид:

$$8x-2+4-1+\frac{1}{8x}-\frac{5}{8x}\geqslant 0; \quad 8x+1-\frac{1}{2x}\geqslant 0; \quad \frac{16x^2+2x-1}{x}\geqslant 0,$$

откуда $-\frac{\sqrt{17}+1}{16} \le x < 0$ или $x \ge \frac{\sqrt{17}-1}{16}$.

Получаем, что в этом случае все значения переменной удовлетворяют исходному неравенству, поскольку $\frac{\sqrt{17}-1}{16}<\frac{1}{4}$.

Объединяя все случаи, получаем решение неравенства: x < 0; $x \ge \frac{1}{8}$.

Omsem: $(-\infty; 0), \left\lceil \frac{1}{8}; +\infty \right\rceil$.

12. Решите неравенство $\frac{x^2+1}{|x|-1} \leqslant -\frac{17}{12}$

Решение.

Пусть t = |x|, тогда неравенство принимает вид:

$$\frac{t^2+1}{t-1} \leqslant -\frac{17}{12}; \quad \frac{t^2+1}{t-1} + \frac{17}{12} \leqslant 0; \quad \frac{12t^2+17t-5}{12(t-1)} \leqslant 0; \quad \frac{(3t+5)(4t-1)}{t-1} \leqslant 0,$$

откуда $t \leqslant -\frac{5}{3}$ или $\frac{1}{4} \leqslant t < 1$.

При $t \leqslant -\frac{5}{3}$ получаем, что $|x| \leqslant -\frac{5}{3}$ — нет решений.

При $\frac{1}{4} \leqslant t < 1$ получаем, что $\frac{1}{4} \leqslant |x| < 1$, откуда $-1 < x \leqslant -\frac{1}{4}$ или $\frac{1}{4} \leqslant x < 1$.

Решение неравенства: $-1 < x \le -\frac{1}{4}, \frac{1}{4} \le x < 1.$

Omsem: $\left(-1; -\frac{1}{4}\right], \left[\frac{1}{4}; 1\right)$.

13. Решите неравенство $|4x-1|+|4x-7| \le 6$.

Решение.

Рассмотрим три случая.

Первый случай: $x < \frac{1}{4}$. Неравенство принимает вид:

$$-4x + 1 - 4x + 7 \le 6; \quad 8x \ge 2; \quad x \ge \frac{1}{4}.$$

С учётом условия $x < \frac{1}{4}$ получаем, что в этом случае нет решений.

Второй случай: $\frac{1}{4} \le x < \frac{7}{4}$. Неравенство принимает вид:

$$4x - 1 - 4x + 7 \le 6$$
: $6 \le 6$.

Решением последнего неравенства является любое число, значит, в этом случае все значения переменной удовлетворяют исходному неравенству.

Третий случай: $x \geqslant \frac{7}{4}$. Неравенство принимает вид:

$$4x - 1 + 4x - 7 \le 6$$
; $8x \le 14$; $x \le \frac{7}{4}$.

С учётом условия $x \geqslant \frac{7}{4}$ получаем решение: $x = \frac{7}{4}$.

Объединяя все случаи, получаем решение неравенства: $\frac{1}{4} \le x \le \frac{7}{4}$.

Omeem: $\left[\frac{1}{4}; \frac{7}{4}\right]$.

Задания для самостоятельного решения

1. Решите неравенство
$$\frac{6x^2 - 25x + 21}{3x^2 + 4x - 4} \le 0.$$

2. Решите неравенство
$$9 \cdot \frac{x^5 - 8x^2}{x^2 + 2x + 1} \ge 16 \cdot \frac{x^3 - 8}{x^2 + 2x + 1}$$
.

3. Решите неравенство
$$x^2 - 5x + 10 + \frac{2x^3 - 21x^2 + 75x - 102}{10 - 2x} \le 1$$
.

4. Решите неравенство
$$2x(x+1) \le \sqrt{28}(x+1)$$
.

5. Решите неравенство
$$3x - |x + 6| - |3 - x| \ge 0$$
.

6. Решите неравенство
$$-6|x^2-1|-1 \geqslant \frac{1}{x^2-1}$$
.

7. Решите неравенство
$$\left| x^2 + \frac{17}{4}x + \frac{13}{10} \right| \ge 2x^2 + \frac{53}{20}x + \frac{1}{2}$$
.

8. Решите неравенство
$$\frac{1}{|2x-1|} \ge 1 + \frac{2x}{3}$$
.

9. Решите неравенство
$$x(|3x+8|-|x+2|) \ge 3|3x+8|-3|x+2|$$
.

10. Решите неравенство
$$\frac{2}{|x+3|} - \frac{2}{|x-2|} \ge -\frac{1}{3}$$

11. Решите неравенство
$$|6x-12|-\frac{3x+8}{x} \ge \frac{7-9x}{|x|}-5$$
.

12. Решите неравенство
$$\frac{3(x+1)^2-16}{3|x+1|-6} \le \frac{11}{6}$$
.

13. Решите неравенство
$$|5x-2|+|5x+6| \le 8$$
.

14. Решите неравенство
$$x^3 - 6x^2 + \frac{21x^2 + 3x + 12}{x + 4} \ge 3$$
.

15. Решите неравенство
$$2|x+2| + \frac{1}{2}|x-1| - \frac{1}{2}x \le 7$$
.

Тренировочная работа

1. Решите неравенство
$$\frac{20x^2 - 32x + 3}{3x^2 + 7x + 2} \le 0.$$

2. Решите неравенство
$$4 \cdot \frac{x^3 + x^2}{x^2 - 2x + 1} \le 9 \cdot \frac{x + 1}{x^2 - 2x + 1}$$
.

3. Решите неравенство
$$x^2 + 2x - \frac{x^3 + 5x^2 - 21x - 104}{x + 5} \ge 10.$$

4. Решите неравенство
$$x(x-2) \le -\sqrt{28}(x-2)$$
.

5. Решите неравенство
$$6x + |2x - 18| + |2x + 9| \le 0$$
.

6. Решите неравенство
$$-8|x^2-1|-2 \geqslant \frac{1}{x^2-1}$$
.

7. Решите неравенство
$$\left| x^2 - \frac{29}{12}x - \frac{35}{12} \right| \ge 2x^2 - \frac{61}{12}x - \frac{19}{12}$$
.

8. Решите неравенство
$$\frac{1}{|2x+1|} \geqslant \frac{5+2x}{3}$$
.

9. Решите неравенство
$$(x-1)(|3x-14|-|x-4|) \le |3x-14|-|x-4|$$
.

10. Решите неравенство
$$\frac{6}{|x+9|} - \frac{6}{|x|} < 4$$
.

11. Решите неравенство
$$|2x-2| - \frac{4x+5}{2x} \ge \frac{2x-1}{2|x|} - 6$$
.

12. Решите неравенство
$$\frac{(2x-1)^2}{|2x-1|-2} \le -\frac{1}{15}$$
.

13. Решите неравенство
$$|3x + 8| + |3x - 2| \le 10$$
.

14. Решите неравенство
$$x^3 + 5x^2 + \frac{28x^2 + 5x - 30}{x - 6} \le 5$$
.

15. Решите неравенство
$$4|x+1| + \frac{1}{2}|x-4| - \frac{5}{2}x \le 12$$
.

2.2. Логарифмические неравенства

1. Решите неравенство $\log_{6x^2-x-1}(2x^2-5x+3) \ge 0$.

Решение.

Рассмотрим два случая.

Первый случай: $0 < 6x^2 - x - 1 < 1$. В этом случае получаем систему неравенств:

$$\begin{cases} 6x^2 - x - 1 > 0, \\ 6x^2 - x - 1 < 1, \\ 2x^2 - 5x + 3 > 0, \\ 2x^2 - 5x + 3 \le 1; \end{cases} \begin{cases} (2x - 1)(3x + 1) > 0, \\ (2x + 1)(3x - 2) < 0, \\ (x - 1)(2x - 3) > 0, \\ (x - 2)(2x - 1) \le 0. \end{cases}$$

Решение системы неравенств: $\frac{1}{2} < x < \frac{2}{3}$.

Второй случай: $6x^2 - x - 1 > 0$. В этом случае получаем систему неравенств:

$$\begin{cases} 6x^2 - x - 1 > 1, \\ 2x^2 - 5x + 3 \ge 1; \end{cases} \begin{cases} (2x + 1)(3x - 2) > 0, \\ (x - 2)(2x - 1) \ge 0. \end{cases}$$

Решение системы неравенств: $x < -\frac{1}{2}$ или $x \ge 2$.

Объединяя все случаи, получаем решение неравенства: $x < -\frac{1}{2}, \frac{1}{2} < x < \frac{2}{3}, x \ge 2$.

Ombem:
$$\left(-\infty; -\frac{1}{2}\right), \left(\frac{1}{2}; \frac{2}{3}\right), [2; +\infty).$$

2. Решите неравенство $\log_{4-x} \frac{x+3}{(x-4)^2} \ge -2$.

Решение.

Исходное неравенство равносильно следующему неравенству:

$$\log_{4-x}(x+3) - \log_{4-x}(x-4)^2 \ge -2; \quad \log_{4-x}(x+3) \ge 0.$$

Рассмотрим два случая.

Первый случай: 0 < 4 - x < 1. В этом случае получаем систему неравенств:

$$\begin{cases} \log_{4-x}(x+3) \geqslant 0, & \begin{cases} 0 < x+3 \leqslant 1, \\ 0 < 4-x < 1; \end{cases} & \text{нет решений.} \end{cases}$$

Второй случай: 4-x>1. В этом случае получаем систему неравенств:

$$\begin{cases} \log_{4-x}(x+3) \ge 0, & \begin{cases} x+3 \ge 1, \\ 4-x > 1; \end{cases} & \begin{cases} x < 3, \end{cases}$$

откуда -2 ≤ x < 3.

Решение неравенства: $-2 \le x < 3$.

Ответ: [-2; 3).

3. Решите неравенство $\log_2^2(-\log_2 x) + \log_2 \log_2^2 x \le 3$.

Решение.

Из условия следует, что $-\log_2 x > 0$, поэтому $\log_2 \log_2^2 x = 2\log_2(-\log_2 x)$.

Пусть $t = \log_2(-\log_2 x)$. Тогда неравенство принимает вид:

$$t^2 + 2t \le 3$$
; $(t-1)(t+3) \le 0$; $-3 \le t \le 1$.

Обратная замена:

$$-3 \le \log_2(-\log_2 x) \le 1; \ \frac{1}{8} \le -\log_2 x \le 2; \ -2 \le \log_2 x \le -\frac{1}{8},$$

откуда $\frac{1}{4} \leqslant x \leqslant \frac{1}{\sqrt[8]{2}}$.

Omeem:
$$\left[\frac{1}{4}; \frac{1}{\sqrt[8]{2}}\right]$$
.

Решите неравенство $\log_2^2(4x) \cdot \log_4(0.125x)^2 \le \log_2 3 \cdot \log_3 \frac{x}{8}$.

$$\log_2^2(4x) \cdot \log_4(0.125x)^2 \le \log_2 3 \cdot \log_3 \frac{x}{8}; \quad (2 + \log_2 x)^2 (\log_2 x - 3) \le \log_2 x - 3.$$

Пусть $t = \log_2 x$. Тогда получаем неравенство

$$(2+t)^2(t-3) \le t-3; (t-3)(t+1)(t+3) \le 0,$$

откуда $-1 \leqslant t \leqslant 3$ или $t \leqslant -3$.

Обратная замена:

$$\begin{bmatrix}
-1 \leqslant \log_2 x \leqslant 3 \\ \log_2 x \leqslant -3;
\end{bmatrix}
\begin{bmatrix}
0.5 \leqslant x \leqslant 8 \\ 0 < x \leqslant 0.125.
\end{bmatrix}$$

Omeem: (0; 0,125], [0,5; 8].

Решите неравенство $\log_{123}(4x-x^2)\cdot\log_{\frac{x+1}{2}x}123 \le \log_{\frac{1}{2}+\frac{1}{2x}}(1+2x-x^2).$

Решение.

$$\log_{123}(4x-x^2)\cdot\log_{\frac{x+1}{2x}}123\leqslant\log_{\frac{1}{2}+\frac{1}{2x}}(1+2x-x^2);\quad\log_{\frac{x+1}{2x}}(4x-x^2)\leqslant\log_{\frac{x+1}{2x}}(1+2x-x^2).$$

Рассмотрим два случая.

Первый случай: $0 < \frac{x+1}{2x} < 1$. Получаем систему неравенств:

рвый случай:
$$0 < \frac{1}{2x} < 1$$
. Получаем систему неравенств:
$$\begin{cases} 0 < \frac{x+1}{2x} < 1, \\ 4x - x^2 \geqslant 1 + 2x - x^2, \\ 1 + 2x - x^2 > 0; \end{cases} \begin{cases} \frac{x+1}{2x} > 0, \\ \frac{1-x}{2x} < 0, \\ 2x \geqslant 1, \\ x^2 - 2x - 1 < 0; \end{cases} \begin{cases} \frac{x+1}{2x} > 0, \\ \frac{x-1}{2x} > 0, \\ x \geqslant \frac{1}{2}, \\ (x-1-\sqrt{2})(x-1+\sqrt{2}) < 0, \end{cases}$$

откуда $1 < x < 1 + \sqrt{2}$.

Второй случай: $\frac{x+1}{2x} > 1$. Получаем систему неравенств:

$$\begin{cases} \frac{x+1}{2x} > 1, \\ 4x - x^2 \le 1 + 2x - x^2, \\ 4x - x^2 > 0; \end{cases} \begin{cases} \frac{x-1}{2x} < 0, \\ x(x-4) < 0, \\ 2x \le 1, \end{cases}$$

откуда $0 < x \leqslant \frac{1}{2}$.

Объединяя все случаи, получаем решение неравенства: $0 < x \le \frac{1}{2}$, $1 < x < 1 + \sqrt{2}$.

Omsem: $(0; \frac{1}{2}], (1; 1 + \sqrt{2}).$

Решите неравенство $\log_2 \frac{x^2}{4} \cdot \log_{0.5}(0.5x) \leqslant \frac{\log_3 \frac{x}{2}}{\log_2 2}$.

Решение.

Преобразуем неравенство:

$$\log_2 \frac{x^2}{4} \cdot \log_{0.5}(0.5x) \le \log_2 x - 1; \quad (2\log_2 x - 2) \cdot (1 - \log_2 x) \le \log_2 x - 1;$$

$$-2(\log_2 x - 1)^2 \le \log_2 x - 1.$$

Пусть $t = \log_2 x$, тогда неравенство принимает вид:

$$-2(t-1)^2 \leqslant t-1; \ (t-1)(2t-1) \geqslant 0,$$

откуда $t \leqslant \frac{1}{2}$ или $t \geqslant 1$.

Обратная замена:

$$\begin{bmatrix} \log_2 x \leqslant \frac{1}{2} & 0 < x \leqslant \sqrt{2} \\ \log_2 x \geqslant 1; & x \geqslant 2. \end{bmatrix}$$

Omeem: $(0; \sqrt{2}]$, $[2; +\infty)$.

7. Решите неравенство $\log_3 \frac{1}{x} + \log_{\frac{1}{x}} 3 \le 2.5$.

Решение.

Преобразуем неравенство:

$$-\log_3 x - \log_x 3 \le 2.5; \quad \log_3 x + \frac{1}{\log_3 x} + 2.5 \ge 0.$$

Пусть $z = \log_3 x$, тогда неравенство принимает вид:

$$z + \frac{1}{z} + 2.5 \ge 0;$$
 $\frac{2z^2 + 5z + 2}{z} \ge 0;$ $\frac{(2z+1)(z+2)}{z} \ge 0;$ $\begin{bmatrix} -2 \le z \le -0.5 \\ z > 0. \end{bmatrix}$

Обратная замена:
$$\begin{bmatrix} -2 \leqslant \log_3 x \leqslant -0.5 \\ \log_3 x > 0; \end{bmatrix} \begin{bmatrix} \frac{1}{9} \leqslant x \leqslant \frac{1}{\sqrt{3}} \\ x > 1. \end{bmatrix}$$

Omsem:
$$\left[\frac{1}{9}; \frac{1}{\sqrt{3}}\right]$$
, $(1; +\infty)$.

8. Решите неравенство $\log_{x^2}(x+1)^2 \le 1$.

Решение.

Рассмотрим два случая.

Первый случай: $0 < x^2 < 1$. Неравенство принимает вид:

$$(x+1)^2 \geqslant x^2; \quad 2x+1 \geqslant 0; \quad x \geqslant -\frac{1}{2}.$$

С учётом условия $0 < x^2 < 1$ получаем решение: $-\frac{1}{2} \le x < 0, \ 0 < x < 1.$

Второй случай: $x^2 > 1$. Неравенство принимает вид:

$$(x+1)^2 \le x^2$$
; $2x+1 \le 0$; $x \le -\frac{1}{2}$.

C учётом условия $x^2 > 1$ получаем решение: x < -1.

Объединяя все случаи, получаем решение неравенства: x < -1, $-\frac{1}{2} \le x < 0$, 0 < x < 1.

Omsem:
$$(-\infty; -1), \left[-\frac{1}{2}; 0\right), (0; 1).$$

9. Решите неравенство $\log_{x-3}(x-1) \cdot \log_{2x+3}(x-3) \ge 0$.

Решение.

Преобразуем неравенство:

$$\frac{\log_{x-3}(x-1)}{\log_{x-3}(2x+3)} \ge 0; \quad \begin{cases} \log_{2x+3}(x-1) \ge 0, \\ x-3 > 0, \\ x-3 \ne 1. \end{cases}$$

Решим неравенство $\log_{2x+3}(x-1) \ge 0$. Рассмотрим два случая.

Первый случай: 0 < 2x + 3 < 1; $-\frac{3}{2} < x < -1$. В этом случае неравенство принимает вид:

$$0 < x - 1 \le 1$$
; $1 < x \le 2$,

откуда с учётом условия $-\frac{3}{2} < x < -1$ получаем, что решений нет.

Второй случай: 2x + 3 > 1; x > -1. В этом случае неравенство принимает вид:

$$x-1 \geqslant 1$$
; $x \geqslant 2$,

откуда с учётом условия x > -1 получаем решение: $x \ge 2$.

Исходное неравенство равносильно системе

$$\begin{cases} x \geqslant 2, \\ x > 3, \\ x \neq 4, \end{cases}$$

откуда получаем решение: 3 < x < 4, x > 4.

Omsem: $(3; 4), (4; +\infty)$.

10. Решите неравенство $\log_{x^2-1}(2x^2+3x+1) \le 1$.

Решение.

Рассмотрим два случая.

Первый случай: $0 < x^2 - 1 < 1$; $1 < x^2 < 2$. Неравенство принимает вид:

$$2x^2 + 3x + 1 \ge x^2 - 1$$
; $x^2 + 3x + 2 \ge 0$; $(x+1)(x+2) \ge 0$,

откуда с учётом условия $1 < x^2 < 2$ получаем решение: $1 < x < \sqrt{2}$.

Второй случай: $x^2 - 1 > 1$; $x^2 > 2$. Неравенство принимает вид:

$$0 < 2x^{2} + 3x + 1 \le x^{2} - 1; \quad \begin{cases} x^{2} + 3x + 2 \le 0, \\ 2x^{2} + 3x + 1 > 0; \end{cases} \quad \begin{cases} (x+1)(x+2) \le 0, \\ (2x+1)(x+1) > 0, \end{cases}$$

откуда с учётом условия $x^2 > 2$ получаем решение: $-2 \leqslant x < -\sqrt{2}$.

Объединяя все случаи, получаем решение неравенства: $-2 \leqslant x < -\sqrt{2}$; $1 < x < \sqrt{2}$.

Omsem:
$$\left[-2; -\sqrt{2}\right)$$
, $\left(1; \sqrt{2}\right)$.

Задания для самостоятельного решения

- **1.** Решите неравенство $\log_{2x^2+9x+10}(3x^2+4x+1) \le 0$.
- **2.** Решите неравенство $\log_{3-x} \frac{x+4}{(x-3)^4} \ge -4$.

- **3.** Решите неравенство $\log_2^2(-\log_3 x) + \log_2 \log_3^2 x \le 8$.
- **4.** Решите неравенство $\log_4^2 (16x) \cdot \log_{16} (0.0625x)^2 \le \log_4 \frac{x}{16}$.
- **5.** Решите неравенство $\log_{813}(x^2 4x + 3) \cdot \log_{\frac{2x+3}{3x}} 813 \le \log_{\frac{2}{3} + \frac{1}{x}}(x^2 2x 8)$.
- **6.** Решите неравенство $\log_5 \frac{x^3}{25} \cdot \log_{0,2}(0.04x) \leqslant \frac{5\log_2 \frac{x}{25}}{\log_2 5}$.
- **7.** Решите неравенство $\log_4 \frac{1}{x} + \log_{\frac{1}{x}} 8 \le 3.5$.
- **8.** Решите неравенство $\log_{x^2-1}(x+2)^2 \le 1$.
- **9.** Решите неравенство $\log_{x-2}(x+3) \cdot \log_{3x+4}(x-2) \ge 0$.
- **10.** Решите неравенство $\log_{2x^2-1}(x^2+3x-3) \ge 1$.

Тренировочная работа

- **1.** Решите неравенство $\log_{6x^2+5x}(2x^2-3x+1) \ge 0$.
- **2.** Решите неравенство $\log_{5-x} \frac{x+2}{(x-5)^4} \ge -4$.
- **3.** Решите неравенство $\log_{0.5}^2(-\log_3 x) \log_{0.5}\log_3^2 x \le 3$.
- **4.** Решите неравенство $\log_{0.5}^2 (4x) \cdot \log_{0.25} (0.25x)^2 \le \log_{0.5} 5 \cdot \log_5 \frac{x}{4}$
- **5.** Решите неравенство $\log_{12}(x^2 + 2x 3) \cdot \log_{\frac{2x-2}{x}} 12 \le \log_{2-\frac{2}{x}}(x^2 5x + 6)$.
- **6.** Решите неравенство $\log_3 \frac{x^2}{81} \cdot \log_{\frac{1}{3}} \frac{x}{9} \leqslant \frac{3\log_2 \frac{x}{9}}{\log_2 3}$
- **7.** Решите неравенство $\log_5 \frac{1}{x} + \log_{\frac{1}{x}} \sqrt{5} \le -1,5.$
- **8.** Решите неравенство $\log_{x^2-2}(x+2)^2 \le 1$.
- **9.** Решите неравенство $\log_{x+2}(x+4) \cdot \log_{2x+5}(x+2) \ge 0$.
- **10.** Решите неравенство $\log_{2x^2+x-1}(3x^2-x-4) \ge 1$.

2.3. Показательные неравенства

1. Решите неравенство $2^{2x+4} - 16 \cdot 2^{x+3} - 2^{x+1} + 16 \le 0$.

Решение.

Пусть $t = 2^x$, тогда неравенство принимает вид:

$$16t^2 - 128t - 2t + 16 \le 0;$$
 $8t^2 - 64t - t + 8 \le 0;$ $8t(t-8) - (t-8) \le 0;$ $(8t-1)(t-8) \le 0,$

откуда $\frac{1}{8} \leqslant t \leqslant 8$.

Обратная замена: $\frac{1}{8} \le 2^x \le 8$, откуда $-3 \le x \le 3$.

Ответ: [-3; 3].

2. Решите неравенство $\frac{6}{2^x-2} - \frac{1}{2^x-4} \le 0.75$.

Решение.

Пусть $t = 2^x - 3$, тогда неравенство примет вид

$$\frac{6}{t+1} - \frac{1}{t-1} \le \frac{3}{4}; \quad \frac{24t - 24 - 4t - 4 - 3t^2 + 3}{4(t+1)(t-1)} \le 0; \quad \frac{-3t^2 + 20t - 25}{(t+1)(t-1)} \le 0;$$
$$\frac{3t^2 - 20t + 25}{(t+1)(t-1)} \ge 0; \quad \frac{(3t-5)(t-5)}{(t+1)(t-1)} \ge 0,$$

откуда $t < -1, \ 1 < t \leqslant \frac{5}{3}$ или $t \geqslant 5.$

При t < -1 имеем: $2^x - 3 < -1$; $2^x < 2$; x < 1.

При 1 < $t \le \frac{5}{3}$ имеем: 1 < $2^x - 3 \le \frac{5}{3}$, 4 < $2^x \le \frac{14}{3}$; 2 < $x \le \log_2 \frac{14}{3}$.

При t > 5 имеем: $2^x - 3 \ge 5$; $2^x \ge 8$; $x \ge 3$.

Omsem: $(-\infty; 1)$, $(2; \log_2 \frac{14}{3}]$, $[3; +\infty)$.

3. Решите неравенство $\frac{\left(\frac{10}{3}\right)^{-|x^2+4x+2|}-0.09}{2x+5}\leqslant 0.$

Решение.

Преобразуем неравенство:

$$\frac{\left(\frac{3}{10}\right)^{\left|x^{2}+4x+2\right|}-\left(\frac{3}{10}\right)^{2}}{2x+5}\leqslant 0;\quad \frac{\left(\frac{3}{10}\right)^{\left|x^{2}+4x+2\right|-2}-1}{2x+5}\leqslant 0.$$

Полученное неравенство равносильно неравенству $\frac{|x^2+4x+2|-2}{2x+5}\geqslant 0$, так как $\frac{3}{10}<1$.

Рассмотрим два случая.

Первый случай: $x^2 + 4x + 2 < 0$. Неравенство принимает вид:

$$\frac{-x^2-4x-2-2}{2x+5} \ge 0; \quad \frac{x^2+4x+4}{2x+5} \le 0; \quad \frac{(x+2)^2}{2x+5} \le 0,$$

откуда $x < -\frac{5}{2}$ или x = -2.

С учётом неравенства $x^2+4x+2<0$, то есть $-2-\sqrt{2}< x<-2+\sqrt{2}$, получаем решен в этом случае: $-2-\sqrt{2}< x<-\frac{5}{2};\; x=-2.$

Второй случай: $x^2 + 4x + 2 \ge 0$. Неравенство принимает вид:

$$\frac{x^2+4x+2-2}{2x+5} \ge 0; \quad \frac{x^2+4x}{2x+5} \ge 0; \quad \frac{x(x+4)}{2x+5} \ge 0,$$

откуда $-4 \leqslant x < -\frac{5}{2}$ или $x \geqslant 0$.

С учётом условия $x^2+4x+2\geqslant 0$, то есть $x\leqslant -2-\sqrt{2}$ или $x\geqslant -2+\sqrt{2}$, получаем решение в этом случае: $-4\leqslant x\leqslant -2-\sqrt{2}$ или $x\geqslant 0$.

Объединяя все случаи, получаем решение неравенства: $-4 \leqslant x < -\frac{5}{2}, \ x = -2, \ x \geqslant 0.$

Ответ:
$$\left[-4; -\frac{5}{2}\right), -2, [0; +\infty).$$

4. Решите неравенство
$$4^{\frac{9x^2}{4}} - \left(\frac{3x}{2} + 1\right)^{\frac{9x^2 - 4}{4\log_2\left(\frac{3x}{2} + 1\right)}} \le 3.$$

Решение.

Преобразуем неравенство:

$$4^{\frac{9x^{2}}{4}} - \left(\frac{3x}{2} + 1\right)^{\left(\log_{\frac{3x}{2} + 1} 2\right) \cdot \frac{9x^{2} - 4}{4}} \le 3;$$

$$\begin{cases} 4^{\frac{9x^{2}}{4}} - 2^{\frac{9x^{2} - 4}{4}} \le 3, & \begin{cases} 2 \cdot 4^{\frac{9x^{2}}{4}} - 2^{\frac{9x^{2}}{4}} \le 6, \\ x > -\frac{2}{3}, \\ x \neq 0. \end{cases}$$

Пусть $t = 2^{\frac{9x^2}{4}}$. Тогда первое неравенство системы принимает вид:

$$2t^2 - t \le 6$$
; $2t^2 - t - 6 \le 0$; $(2t + 3)(t - 2) \le 0$,

откуда $-\frac{3}{2} \leqslant t \leqslant 2$.

Обратная замена: $-\frac{3}{2}\leqslant 2^{\frac{9x^2}{4}}\leqslant 2; \ \frac{9x^2}{4}\leqslant 1; \ x^2\leqslant \frac{4}{9},$ откуда $-\frac{2}{3}\leqslant x\leqslant \frac{2}{3}.$

C учётом условий $\begin{cases} x > -\frac{2}{3}, \\ x \neq 0 \end{cases}$ получаем решение исходного неравенства: $-\frac{2}{3} < x < 0,$

$$0 < x \leqslant \frac{2}{3}.$$

Omeem: $\left(-\frac{2}{3};0\right)$, $\left(0;\frac{2}{3}\right]$.

5. Решите неравенство
$$\frac{7^{(x^2+1)\log\sqrt{7}^2} - 32^x}{1-3x} \ge 0.$$

Решение.

$$\frac{7^{\frac{(x^2+1)\log\sqrt{7}^2}{3x-1}} - 32^x}{1-3x} \geqslant 0; \quad \frac{\left(7^{\log_7 2}\right)^{2(x^2+1)} - 32^x}{1-3x} \geqslant 0; \quad \frac{4^{x^2+1} - 32^x}{3x-1} \leqslant 0;$$

$$\frac{2^{2x^2+2} - 2^{5x}}{3x-1} \leqslant 0; \quad \frac{2x^2 - 5x + 2}{3x-1} \leqslant 0; \quad \frac{(2x-1)(x-2)}{3x-1} \leqslant 0,$$

откуда $x < \frac{1}{3}$ или $\frac{1}{2} \leqslant x \leqslant 2$.

Omsem: $\left(-\infty; \frac{1}{3}\right)$, $\left[\frac{1}{2}; 2\right]$.

6. Решите неравенство $(5 \cdot 2^{x^2})^{\frac{1}{x}} - 2(2 \cdot 5^{\frac{1}{x}})^{x-1} \ge 2^{x+2}$.

Решение.

$$\left(5 \cdot 2^{x^2}\right)^{\frac{1}{x}} - 2\left(2 \cdot 5^{\frac{1}{x}}\right)^{x-1} \geqslant 2^{x+2}; \quad 5^{\frac{1}{x}} \cdot 2^x - 2 \cdot 2^{x-1} \cdot 5^{1-\frac{1}{x}} \geqslant 4 \cdot 2^x; \\ 5^{\frac{1}{x}} - 5^{1-\frac{1}{x}} \geqslant 4.$$

Пусть $t = 5^{\frac{1}{x}}$, тогда неравенство принимает вид:

$$t - \frac{5}{t} \ge 4$$
; $\frac{t^2 - 4t - 5}{t} \ge 0$; $\frac{(t - 5)(t + 1)}{t} \ge 0$,

откуда $-1 \le t < 0$ или $t \ge 5$.

При $-1 \le t < 0$ имеем: $-1 \le 5^{\frac{1}{x}} < 0$ — нет решений.

При $t \geqslant 5$ имеем: $5^{\frac{1}{x}} \geqslant 5$; $\frac{1}{x} \geqslant 1$, откуда $0 < x \leqslant 1$.

Ответ: (0; 1].

7. Решите неравенство $54 \cdot 3^{x^2 + 2x - 1} - 3^{|-15x + 20|} \ge 3^{x^2 + 2x + 2}$.

Решение.

$$54 \cdot 3^{x^{2} + 2x - 1} - 3^{|-15x + 20|} \geqslant 3^{x^{2} + 2x + 2};$$

$$2 \cdot 3^{x^{2} + 2x + 2} - 3^{|-15x + 20|} \geqslant 3^{x^{2} + 2x + 2}; \quad 3^{x^{2} + 2x + 2} \geqslant 3^{|-15x + 20|}; \quad x^{2} + 2x + 2 \geqslant |-15x + 20|;$$

$$\begin{cases} x^{2} + 17x - 18 \geqslant 0, & \{(x + 18)(x - 1) \geqslant 0, \\ x^{2} - 13x + 22 \geqslant 0; & \{(x - 2)(x - 11) \geqslant 0, \\ (x - 2)(x - 11) \geqslant 0, \end{cases}$$

откуда $x \le -18$; $1 \le x \le 2$ или $x \ge 11$.

Omsem: $(-\infty; -18], [1; 2], [11; +\infty).$

8. Решите неравенство $45^x - 3 \cdot 5^x + 0.6 < \frac{9^x}{5}$.

Решение.

$$45^{x} - 3 \cdot 5^{x} + 0.6 < \frac{9^{x}}{5}; \quad \left(5^{x} - 0.2\right)\left(9^{x} - 3\right) < 0; \quad \left(5^{x} - 5^{-1}\right)\left(3^{2x} - 3\right) < 0;$$
$$(x + 1)(2x - 1) < 0,$$

откуда -1 < x < 0,5.

Omsem: (-1; 0,5).

9. Решите неравенство $2^x \cdot 3^{\frac{1}{x}} > 6$.

Решение.

$$2^{x} \cdot 3^{\frac{1}{x}} > 6; \quad x + \frac{1}{x} \log_{2} 3 > \log_{2} 6;$$

$$\frac{x^{2} - x(1 + \log_{2} 3) + \log_{2} 3}{x} > 0; \quad \frac{(x - 1)(x - \log_{2} 3)}{x} > 0,$$

откуда 0 < x < 1 или $x > \log_2 3$.

Omsem: (0; 1), $(\log_2 3; +\infty)$.

10. Решите неравенство $4 \cdot 16^{-x} - 65 \cdot 4^{-x} + 16 \le 0$.

Решение.

Пусть $t = 4^{-x}$, тогда неравенство принимает вид:

$$4t^2 - 65t + 16 \le 0; \quad (4t - 1)(t - 16) \le 0;$$

откуда $\frac{1}{4} \leqslant t \leqslant 16$.

Обратная замена: $\frac{1}{4} \leqslant 4^{-x} \leqslant 16$; $-1 \leqslant -x \leqslant 2$, откуда $-2 \leqslant x \leqslant 1$.

Ответ: [-2; 1].

Задания для самостоятельного решения

- **1.** Решите неравенство $5^{2x+4} 25 \cdot 5^{x+4} 5^x + 25 \le 0$.
- **2.** Решите неравенство $\frac{6}{1-2\cdot 2^x} \frac{1}{1-4\cdot 2^x} \leqslant \frac{3}{2^{x+2}}$.
- 3. Решите неравенство $\frac{4^{-|x^2-4x+2|}-\frac{1}{16}}{5-2x} \le 0.$
- **4.** Решите неравенство $4^{x^2} (1-x)^{\frac{x^2-1}{\log_2(1-x)}} \le 3$.
- **5.** Решите неравенство $\frac{5^{(x^2-3)\log_{\sqrt{5}}3}-27^{x+7}}{6-x}\geqslant 0.$

- **6.** Решите неравенство $(9 \cdot 5^{x^2})^{\frac{1}{x}} 50(5 \cdot 3^{\frac{1}{x}})^{x-2} \ge 5^x$.
- **7.** Решите неравенство $6 \cdot 5^{2x^2 7x + 13} 5^{|-9x + 17|} \ge 5^{2x^2 7x + 14}$
- **8.** Решите неравенство $250^x 5 \cdot 2^x + 1{,}25 < \frac{5^{3x}}{4}$.
- **9.** Решите неравенство $3^x \cdot 25^{\frac{1}{x}} \ge 45$.
- **10.** Решите неравенство $9^{\frac{3}{2}-x} 244 \cdot 3^{-x} + 9 \le 0$.

Тренировочная работа

- **1.** Решите неравенство $0.5^{2x+5} 2 \cdot 0.5^{x+3} 64 \cdot 0.5^{x+2} + 128 \le 0.$
- **2.** Решите неравенство $\frac{6}{2^{x-2}-2} \frac{1}{2^{x-2}-4} \leqslant \frac{3}{4}$.
- 3. Решите неравенство $\frac{5^{-|0.25x^2+2x+2|}-0.04}{x+5} \le 0.$
- **4.** Решите неравенство $4^{(x+1)^2} (-x)^{\frac{(x+1)^2 1}{\log_2(-x)}} \le 3$.
- **5.** Решите неравенство $\frac{3^{(x^2-1)\log_{\sqrt{3}}16} 32^{x-1}}{1-2x} \leqslant 0.$
- **6.** Решите неравенство $(7 \cdot 6^{x^2})^{\frac{1}{x}} 6(6 \cdot 7^{\frac{1}{x}})^{x-1} \ge 6^{x+1}$.
- **7.** Решите неравенство $4^{x^2-9x+54}-4^{|-12x+57|} \ge 3 \cdot 4^{x^2-9x+53}$.
- **8.** Решите неравенство $12^x 729 \cdot 4^x + 364, 5 < \frac{3^x}{2}$.
- **9.** Решите неравенство $8^{x+1} \cdot 3^{-\frac{1}{x}} > 3$.
- **10.** Решите неравенство $81^{\frac{3}{4}-x} 730 \cdot 9^{-x} + 27 \le 0$.

2.4. Системы неравенств

1. Решите систему неравенств
$$\begin{cases} 3^{x} + \frac{54}{3^{x}} \ge 29, \\ \log_{x+3} \left(\frac{x+1}{4} \right) \le 0. \end{cases}$$

Решение.

1. Решим первое неравенство системы: $3^x + \frac{54}{3^x} \ge 29$.

Пусть $t = 3^x$, тогда неравенство примет вид:

$$t + \frac{54}{t} - 29 \ge 0;$$
 $\frac{t^2 - 29t + 54}{t} \ge 0;$ $\frac{(t-2)(t-27)}{t} \ge 0,$

откуда $0 < t \le 2; \ t \ge 27.$

При $0 < t \le 2$ получим: $0 < 3^x \le 2$, откуда $x \le \log_3 2$.

При $t \geqslant 27$ получим: $3^x \geqslant 27$, откуда $x \geqslant 3$.

Решение первого неравенства исходной системы: $x \le \log_3 2$, $x \ge 3$.

2. Решим второе неравенство системы: $\log_{x+3} \left(\frac{x+1}{4} \right) \le 0$.

Рассмотрим два случая.

Первый случай: 0 < x + 3 < 1.

$$\begin{cases} \frac{x+1}{4} \geqslant 1, & \begin{cases} x \geqslant 3, \\ 0 < x+3 < 1; \end{cases} \begin{cases} x \geqslant 3, \\ -3 < x < -2; \end{cases}$$
 нет решений.

Второй случай: x + 3 > 1.

$$\begin{cases} 0 < \frac{x+1}{4} \le 1, & \begin{cases} -1 < x \le 3, \\ x > -2, \end{cases} \text{ откуда } -1 < x \le 3. \end{cases}$$

Решение второго неравенства исходной системы: $-1 < x \le 3$.

3. Поскольку $-1 < \log_3 2 < 3$, получаем решение исходной системы неравенств: $-1 < x \le \log_3 2$, x = 3.

Omeem: $(-1; \log_3 2]$, 3.

2. Решите систему неравенств $\begin{cases} \log_{2-x}(x+2) \cdot \log_{x+3}(3-x) \leq 0, \\ 4^{x^2+x-3} - 0.5^{2x^2-6x-2} \leq 0. \end{cases}$

Решение.

1. Решим первое неравенство системы: $\log_{2-x}(x+2) \cdot \log_{x+3}(3-x) \le 0$.

Значения, при которых определено неравенство: -2 < x < 1, 1 < x < 2.

Рассмотрим два случая.

Первый случай: -2 < x < 1. Получаем, что $\log_{x+3}(3-x) > 0$; 2-x > 1, тогда

$$\begin{cases} \log_{2-x}(x+2) \cdot \log_{x+3}(3-x) \leq 0, & \begin{cases} \log_{2-x}(x+2) \leq 0, \\ -2 < x < 1; \end{cases} & \begin{cases} 0 < x+2 \leq 1, \\ -2 < x < 1; \end{cases}$$

откуда -2 < x ≤ -1.

Второй случай: 1 < x < 2. Получаем, что $\log_{2-x}(x+2) < 0$; $\log_{x+3}(3-x) > 0$, следовательно, при 1 < x < 2 первое неравенство исходной системы верно.

Решение первого неравенства исходной системы: $-2 < x \le -1$, 1 < x < 2.

2. Решим второе неравенство системы:

$$4^{x^2+x-3} - 0.5^{2x^2-6x-2} \le 0; \quad 2^{2x^2+2x-6} \le 2^{-2x^2+6x+2};$$

$$2x^2+2x-6 \le -2x^2+6x+2; \quad x^2-x-2 \le 0,$$

откуда $-1 \le x \le 2$.

Решение второго неравенства исходной системы: $-1 \le x \le 2$.

3. Решение исходной системы неравенств: x = -1, 1 < x < 2.

Omeem: -1, (1; 2).

3. Решите систему неравенств
$$\begin{cases} 4^{x-\frac{1}{2}} - 17 \cdot 2^{x-2} + 2 \leq 0, \\ \log_{3x-5} (2x^2 - 9x + 10) \geq 0. \end{cases}$$

Решение.

1. Решим первое неравенство системы: $4^{x-\frac{1}{2}} - 17 \cdot 2^{x-2} + 2 \le 0$.

Пусть $t = 2^x$, тогда неравенство примет вид:

$$2t^2 - 17t + 8 \le 0$$
; $(2t - 1)(t - 8) \le 0$,

откуда
$$\frac{1}{2} \leqslant t \leqslant 8; \, \frac{1}{2} \leqslant 2^x \leqslant 8; \, -1 \leqslant x \leqslant 3.$$

Решение первого неравенства исходной системы: $-1 \le x \le 3$.

2. Решим второе неравенство системы: $\log_{3x-5}(2x^2-9x+10) \ge 0$.

Рассмотрим два случая. Первый случай: 0 < 3x - 5 < 1.

$$\begin{cases} 0 < 3x - 5 < 1, \\ \log_{3x - 5}(2x^2 - 9x + 10) \ge 0; \end{cases} \begin{cases} \frac{5}{3} < x < 2, \\ 0 < 2x^2 - 9x + 10 \le 1; \end{cases} \begin{cases} \frac{5}{3} < x < 2, \\ (2x - 5)(x - 2) > 0, \\ (2x - 3)(x - 3) \le 0, \end{cases}$$

откуда $\frac{5}{3} < x < 2$.

Второй случай: 3x - 5 > 1.

$$\begin{cases} 3x - 5 > 1, & \begin{cases} x > 2, \\ \log_{3x - 5}(2x^2 - 9x + 10) \ge 0; \end{cases} \begin{cases} x > 2, \\ 2x^2 - 9x + 10 \ge 1; \end{cases} \begin{cases} x > 2, \\ (2x - 3)(x - 3) \ge 0, \end{cases}$$

откуда $x \geqslant 3$.

Решение второго неравенства исходной системы: $\frac{5}{3} < x < 2, \ x = 3.$

3. Решение исходной системы неравенств: $\frac{5}{3} < x < 2, x = 3.$

Omeem: $(\frac{5}{3}; 2)$, 3.

4. Решите систему неравенств
$$\begin{cases} 25^{x-\frac{1}{2}} - 26 \cdot 5^{x-1} + 5 \geqslant 0, \\ x \cdot \log_5 (3 + x - x^2) \geqslant 0. \end{cases}$$

Решение.

1. Решим первое неравенство системы: $25^{x-\frac{1}{2}} - 26 \cdot 5^{x-1} + 5 \ge 0$.

Пусть $t = 5^x$, тогда неравенство примет вид:

$$t^2 - 26t + 25 \ge 0; \quad (t-1)(t-25) \ge 0,$$

откуда $t \le 1$ или $t \ge 25$.

При $t \le 1$ получим: $5^x \le 1$, откуда $x \le 0$.

При $t \ge 25$ получим: $5^x \ge 25$, откуда $x \ge 25$

Решение первого неравенства исходной системы: $x \le 0, x \ge 2$.

2. Решим второе неравенство системы: $x \cdot \log_5 (3 + x - x^2) \ge 0$.

Очевидно, x = 0 является решением.

При $x \neq 0$ рассмотрим два случая.

Первый случай: x > 0.

$$\begin{cases} x > 0, & \begin{cases} x > 0, \\ \log_5(3 + x - x^2) \ge 0; \end{cases} \begin{cases} x > 0, \\ 3 + x - x^2 \ge 1; \end{cases} \begin{cases} x > 0, \\ (x+1)(x-2) \le 0, \end{cases}$$

откуда $0 < x \le 2$.

Второй случай: x < 0.

$$\begin{cases} x < 0, \\ \log_5(3 + x - x^2) \le 0, \end{cases} \begin{cases} x < 0, \\ 0 < 3 + x - x^2 \le 1; \end{cases}$$
$$\begin{cases} x < 0, \\ \left(x - \frac{1 + \sqrt{13}}{2}\right) \left(x - \frac{1 - \sqrt{13}}{2}\right) < 0, \\ (x + 1)(x - 2) \ge 0, \end{cases}$$

откуда
$$\frac{1-\sqrt{13}}{2} < x \leqslant -1$$
.

Решение второго неравенства исходной системы: $\frac{1-\sqrt{13}}{2} < x \le -1$, $0 \le x \le 2$.

3. Решение исходной системы неравенств: $\frac{1-\sqrt{13}}{2} < x \le -1, \ x=0, \ x=2.$

Omsem:
$$\left(\frac{1-\sqrt{13}}{2}; -1\right]$$
, 0, 2.

5. Решите систему неравенств
$$\begin{cases} x^3 + 6x^2 + \frac{28x^2 + 2x - 10}{x - 5} \le 2, \\ 3|x + 1| + \frac{1}{2}|x - 2| - \frac{3}{2}x \le 8. \end{cases}$$

Решение.

1. Решим первое неравенство системы:

$$x^{3} + 6x^{2} + \frac{28x^{2} + 2x - 10}{x - 5} \le 2; \quad x^{3} + 6x^{2} + \frac{28x^{2}}{x - 5} \le 0;$$
$$\frac{x^{4} + x^{3} - 2x^{2}}{x - 5} \le 0; \quad \frac{x^{2}(x + 2)(x - 1)}{x - 5} \le 0,$$

откуда $x \le -2$, x = 0 или $1 \le x < 5$.

Решение первого неравенства исходной системы: $x \le -2$, x = 0, $1 \le x < 5$.

2. Решим второе неравенство системы $3|x+1| + \frac{1}{2}|x-2| - \frac{3}{2}x \le 8$.

Рассмотрим три случая.

Первый случай: x < -1. Неравенство принимает вид:

$$-3x - 3 - \frac{1}{2}x + 1 - \frac{3}{2}x \le 8; \quad 5x \ge -10; \quad x \ge -2.$$

С учётом условия x < -1 получаем решение: $-2 \le x < -1$.

Второй случай: $-1 \le x < 2$. Неравенство принимает вид:

$$3x + 3 - \frac{1}{2}x + 1 - \frac{3}{2}x \le 8; \quad x \le 4.$$

Получаем, что в этом случае все значения переменной удовлетворяют исходному неравенству.

Третий случай: $x \ge 2$. Неравенство принимает вид:

$$3x + 3 + \frac{1}{2}x - 1 - \frac{3}{2}x \le 8; \quad 2x \le 6; \quad x \le 3.$$

С учётом условия $x \ge 2$ получаем решение: $2 \le x \le 3$.

Решение второго неравенства исходной системы: $-2 \le x \le 3$.

3. Решение исходной системы неравенств: $x = -2, x = 0, 1 \le x \le 3.$

Omsem: -2, 0, [1; 3].

Задания для самостоятельного решения

- 1. Решите систему неравенств $\begin{cases} \frac{320-4^{-x}}{64-2^{-x}} \geqslant 5, \\ \log_{0.25x^2}\!\left(\frac{x+6}{4}\right) \leqslant 1. \end{cases}$
- 2. Решите систему неравенств $\begin{cases} 5^{x+2} + 2 \cdot 5^{-x} \le 51, \\ \log_{2x} 0.25 \ge \log_2 32x 1. \end{cases}$
- **3.** Решите систему неравенств $\begin{cases} 3 \cdot 9^{-x} 28 \cdot 3^{-x} + 9 \leqslant 0, \\ \log_{x^2} (x+1)^2 \leqslant 1. \end{cases}$
- **4.** Решите систему неравенств $\begin{cases} 4^{x} 6 \cdot 2^{x} + 8 \ge 0, \\ \log_{3} \frac{2x^{2} + 3x 5}{x + 1} \le 1. \end{cases}$
- 5. Решите систему неравенств $\begin{cases} 2^x + \frac{80}{2^x} \ge 21, \\ \log_{x-1} \left(\frac{x+1}{5} \right) \le 0. \end{cases}$
- **6.** Решите систему неравенств $\begin{cases} \log_{3-x}(x+3) \cdot \log_{x+4}(5-x) \leq 0, \\ 16^{x^2-5x+5} 0.25^{2x^2+8x-30} \leq 0. \end{cases}$

7. Решите систему неравенств
$$\begin{cases} 9^{x-\frac{3}{2}} - 82 \cdot 3^{x-3} + 3 \leq 0, \\ \log_{3x-8} (2x^2 - 13x + 21) \geq 0. \end{cases}$$

8. Решите систему неравенств
$$\begin{cases} 81^{x+\frac{1}{2}} - 10 \cdot 9^x + 1 \ge 0, \\ x \cdot \log_8 (5 + 3x - x^2) \le 0. \end{cases}$$

9. Решите систему неравенств
$$\begin{cases} 16^{x+\frac{3}{4}} - 33 \cdot 4^{x-\frac{1}{2}} + 1 \geqslant 0, \\ (x-1) \cdot \log_{x+5} (x+3) \cdot \log_5 (x+5)^2 \leqslant 0. \end{cases}$$

10. Решите систему неравенств
$$\begin{cases} 3^x + 8 \cdot 3^{-x} \geqslant 9, \\ 2\log_{(x^2 - 4x + 5)^2} (4x^2 + 1) \leqslant \log_{x^2 - 4x + 5} (3x^2 + 4x + 1). \end{cases}$$

11. Решите систему неравенств
$$\begin{cases} 9^{x+\frac{1}{9}} - 4 \cdot 3^{x+\frac{10}{9}} + 27 \ge 0, \\ \log_{8x^2 - 23x + 15} (2x - 2) \le 0. \end{cases}$$

12. Решите систему неравенств
$$\begin{cases} \log_{7-x} \frac{x+3}{(x-7)^8} \geqslant -8, \\ x^3 + 6x^2 + \frac{40x^2 + 3x - 24}{x-8} \leqslant 3. \end{cases}$$

13. Решите систему неравенств
$$\begin{cases} \log_{4-x}(28-3x-x^2) \leqslant 1, \\ x+7+\frac{14x-24}{x^2-4x+3} \geqslant \frac{5}{x-1}. \end{cases}$$

14. Решите систему неравенств
$$\begin{cases} \log_{3-x} \frac{(x-3)^4}{x} \geqslant 4, \\ \frac{x^2-12x+10}{x-1} + \frac{x^2-5x+5}{x-5} \leqslant 2x-11. \end{cases}$$

15. Решите систему неравенств
$$\begin{cases} \log_{-1-x} \frac{-4-x}{x+1} \leqslant -1, \\ \frac{x^2+6x+7}{x+2} + \frac{2-6x}{x} \leqslant x-2. \end{cases}$$

3. ЗАДАНИЯ С ПАРАМЕТРОМ

1. Найдите все значения а, при каждом из которых уравнение

$$\left|\frac{5}{x} - 3\right| = ax - 2$$

на промежутке $(0; +\infty)$ имеет более двух корней.

Решение.

Рассмотрим функции f(x) = ax - 2 и $g(x) = \left| \frac{5}{x} - 3 \right|$. Исследуем уравнение f(x) = g(x) на промежутке $(0; +\infty)$.

При $a \le 0$ все значения функции f(x) на промежутке $(0; +\infty)$ отрицательны, а все значения функции g(x) — неотрицательны, поэтому при $a \le 0$ уравнение f(x) = g(x) не имеет решений на промежутке $(0; +\infty)$.

При a>0 функция f(x) возрастает. Функция g(x) убывает на промежутке $\left(0;\frac{5}{3}\right]$, поэтому уравнение f(x)=g(x) имеет не более одного решения на промежутке $\left(0;\frac{5}{3}\right]$, причем решение будет существовать тогда и только тогда, когда $f\left(\frac{5}{3}\right)\leqslant g\left(\frac{5}{3}\right)$, откуда получаем $a\cdot\frac{5}{3}-2\geqslant 0$, то есть $a\geqslant\frac{6}{5}$.

На промежутке $\left(\frac{5}{3}; +\infty\right)$ уравнение f(x)=g(x) принимает вид $ax-2=3-\frac{5}{x}$. Это уравнение сводится к уравнению $ax^2-5x+5=0$. Будем считать, что a>0, поскольку случай $a\leqslant 0$ был рассмотрен ранее. Дискриминант квадратного уравнения D=25-20a, поэтому при $a>\frac{5}{4}$ это уравнение не имеет корней; при $a=\frac{5}{4}$ уравнение имеет единственный корень, равный 2; при $0< a<\frac{5}{4}$ уравнение имеет два корня.

Если уравнение имеет два корня x_1 и x_2 , то есть $0 < a < \frac{5}{4}$, то больший корень $x_2 = \frac{5+\sqrt{D}}{2a} > \frac{5}{2a} > 2 > \frac{5}{3}$, поэтому он принадлежит промежутку $\left(\frac{5}{3}; +\infty\right)$. Меньший корень x_1 принадлежит промежутку $\left(\frac{5}{3}; +\infty\right)$ тогда и только тогда, когда

$$a\left(x_1-\frac{5}{3}\right)\left(x_2-\frac{5}{3}\right)=a\left(\frac{5}{3}\right)^2-5\cdot\frac{5}{3}+5=\frac{25a-30}{9}>0,$$

то есть $a > \frac{6}{5}$.

Таким образом, уравнение $\left|\frac{5}{x}-3\right|=ax-2$ имеет следующее количество корней на промежутке $(0;+\infty)$:

- нет корней при $a \leqslant 0$;
- один корень при $0 < a < \frac{6}{5}$ и $a > \frac{5}{4}$;
- два корня при $a = \frac{6}{5}$ и $a = \frac{5}{4}$;
- три корня при $\frac{6}{5} < a < \frac{5}{4}$.

Omsem: $\frac{6}{5} < a < \frac{5}{4}$.

2. Найдите все значения а, при каждом из которых уравнение

$$a|x-3| = \frac{5}{x+2}$$

на промежутке $[0; +\infty)$ имеет ровно два корня.

Решение.

Рассмотрим функции f(x) = a |x-3| и $g(x) = \frac{5}{x+2}$. Исследуем уравнение f(x) = g(x) на промежутке $[0; +\infty)$.

При $a \le 0$ все значения функции f(x) на промежутке $[0; +\infty)$ неположительны, а все значения функции g(x) — положительны, поэтому при $a \le 0$ уравнение f(x) = g(x) не имеет решений на промежутке $[0; +\infty)$.

При a>0 функция f(x) возрастает на промежутке $(3;+\infty)$. Функция g(x) убывает на этом промежутке, поэтому уравнение f(x)=g(x) всегда имеет ровно одно решение на промежутке $(3;+\infty)$, поскольку f(3)< g(3) и $f\left(3+\frac{1}{a}\right)>g\left(3+\frac{1}{a}\right)$.

На промежутке [0;3] уравнение f(x)=g(x) принимает вид $3a-ax=\frac{5}{x+2}$. Это уравнение сводится к уравнению $ax^2-ax+(5-6a)=0$. Будем считать, что a>0, поскольку случай $a\leqslant 0$ был рассмотрен ранее. Дискриминант квадратного уравнения $D=a^2-4a(5-6a)=25a^2-20a$, поэтому при $0< a<\frac{4}{5}$ это уравнение не имеет корней; при $a=\frac{4}{5}$ уравнение имеет единственный корень, равный $\frac{1}{2}$; при $a>\frac{4}{5}$ уравнение имеет два корня.

Пусть уравнение имеет два корня, то есть $a>\frac{4}{5}$. Тогда оба корня меньше 3, поскольку при $x\geqslant 3$ значения функции 3a-ax неположительны, а значения функции $\frac{5}{x+2}$ положительны. По теореме Виета сумма корней равна 1, а произведение равно $\frac{5}{a}-6$. Значит, больший корень всегда принадлежит промежутку [0; 3], а меньший принадлежит этому промежутку тогда и только тогда, когда $\frac{5}{a}-6\geqslant 0$, то есть $a\leqslant \frac{5}{6}$.

Таким образом, уравнение $a|x-3|=\frac{5}{x+2}$ имеет следующее количество корней на промежутке $[0;+\infty)$:

- нет корней при $a \leq 0$;
- один корень при $0 < a < \frac{4}{5}$;
- два корня при $a = \frac{4}{5}$ и $a > \frac{5}{6}$;
- три корня при $\frac{4}{5} < a \leqslant \frac{5}{6}$.

Omsem: $a = \frac{4}{5}, \ a > \frac{5}{6}$.

3. Найдите все значения a, при каждом из которых наименьшее значение функции

$$f(x) = 4x^2 - 4ax + a^2 + 2a + 2$$

на множестве $|x| \ge 1$ не меньше 6.

Решение.

Графиком функции $f(x)=(2x-a)^2+2a+2$ является парабола, ветви которой направлены вверх, а вершина имеет координаты $\left(\frac{a}{2};2a+2\right)$. Значит, минимум функции f(x) на всей числовой оси достигается при $x=\frac{a}{2}$.

На множестве $|x| \ge 1$ эта функция достигает наименьшего значения либо в точке $x = \frac{a}{2}$, если эта точка принадлежит множеству, либо в одной из граничных точек $x = \pm 1$.

Если наименьшее значение функции не меньше 6, то и всякое значение функции не меньше 6. В частности,

$$f(1) \ge 6$$
; $a^2 - 2a + 6 \ge 6$; $a(a-2) \ge 0$,
 $f(-1) \ge 6$; $a^2 + 6a + 6 \ge 6$; $a(a+6) \ge 0$,

откуда получаем систему неравенств

$$\begin{cases} a(a-2) \geqslant 0, \\ a(a+6) \geqslant 0, \end{cases}$$

решениями которой являются $a \le -6$; a = 0; $a \ge 2$.

При $a \le -6$ имеем: $\frac{a}{2} \le -3$, значит, наименьшее значение функции достигается в точке $x = \frac{a}{2}$ и $f\left(\frac{a}{2}\right) = 2a + 2 \le -10$, что не удовлетворяет условию задачи.

При a=0 имеем: $\frac{a}{2}=0$, значит, наименьшее значение функции достигается в одной из граничных точек $x=\pm 1$, в которых значение функции не меньше 6.

При $a\geqslant 2$ имеем: $\frac{a}{2}\geqslant 1$, значит, наименьшее значение функции достигается в точке $x=\frac{a}{2}$ и $f\Big(\frac{a}{2}\Big)=2a+2\geqslant 6$, что удовлетворяет условию задачи.

Omsem: a = 0, $a \ge 2$.

4. Найдите все значения а, при каждом из которых уравнение

$$|2x^2-3x-2|=a-2x^2-8x$$

либо не имеет решений, либо имеет единственное решение.

Решение.

Рассмотрим функцию

$$f(x) = 2x^2 + 8x + |2x^2 - 3x - 2|$$

При $2x^2 - 3x - 2 \ge 0$:

$$x \in \left(-\infty; -\frac{1}{2}\right] \cup [2; +\infty)$$
 и $f(x) = 4\left(x + \frac{5}{8}\right)^2 - \frac{57}{16}$.

При $2x^2 - 3x - 2 < 0$:

$$x \in \left(-\frac{1}{2}; 2\right)$$
 и $f(x) = 11x + 2$.

Функция y=11x+2 возрастает на всей числовой оси. Функция $y=4\left(x+\frac{5}{8}\right)^2-\frac{57}{16}$ убывает при $x<-\frac{5}{8}$ и возрастает при $x>-\frac{5}{8}$. Таким образом, функция f(x) убывает при $x<-\frac{5}{8}$ и возрастает при $x>-\frac{5}{8}$. Наименьшее значение этой функции равно $-\frac{57}{16}$ и достигается при $x=-\frac{5}{8}$.

Значит, уравнение f(x)=a не имеет решений при $a<-\frac{57}{16}$, имеет единственное решение при $a=-\frac{57}{16}$ и имеет два решения при $a>-\frac{57}{16}$.

Omeem: $a \le -\frac{57}{16}$.

5. Найдите все значения a, при которых уравнение

$$\sqrt{x^4 + (a-5)^4} = |x+a-5| + |x-a+5|$$

имеет единственное решение.

Решение.

Заметим, что если число x_0 является решением уравнения, то и число $-x_0$ также является решением этого уравнения. Значит, если уравнение имеет единственное решение, то это решение x=0.

При x = 0 уравнение принимает вид

$$\sqrt{(a-5)^4} = 2|a-5|; (a-5)^2 = 2|a-5|; |a-5| \cdot (|a-5|-2) = 0,$$

откуда a = 3, a = 5, a = 7.

При a=3 и a=7 исходное уравнение принимает вид $\sqrt{x^4+16}=|x-2|+|x+2|$. При x<-2 правая часть уравнения равна $-2x< x^2< \sqrt{x^4+16}$. При $-2\leqslant x\leqslant 2$ правая часть уравнения равна 4, а левая часть уравнения не меньше 4, причем равенство достигается только при x=0. При x>2 правая часть уравнения равна $2x< x^2< \sqrt{x^4+16}$. Значит, исходное уравнение имеет единственное решение x=0.

При a=5 исходное уравнение принимает вид $\sqrt{x^4}=2|x|$. Числа $-2,\ 0$ и 2 являются корнями этого уравнения.

Таким образом, исходное уравнение имеет единственное решение при a=3 и a=7.

Omeem: a = 3, a = 7.

6. Найдите все значения a, при которых уравнение

 $\left(\log_2(x+a)-\log_2(x-a)\right)^2-3a\left(\log_2(x+a)-\log_2(x-a)\right)+2a^2-a-1=0$ имеет ровно два решения.

Решение.

Пусть $t = \log_2(x + a) - \log_2(x - a)$, тогда уравнение запишется в виде

$$t^2 - 3at + 2a^2 - a - 1 = 0$$
.

откуда t=a-1 или t=2a+1. Значит, решения исходного уравнения — это решения уравнений $\log_2(x+a)-\log_2(x-a)=a-1$ или $\log_2(x+a)-\log_2(x-a)=2a+1$.

Исследуем, сколько решений имеет уравнение $\log_2(x+a) - \log_2(x-a) = b$ в зависимости от a и b. При $a \neq 0$ и x > a и x > -a, то есть при x > |a|, левая часть определена и принимает вид $\log_2\left(\frac{x+a}{x-a}\right) = \log_2\left(1+\frac{2a}{x-a}\right)$. При x > |a| выражение $1+\frac{2a}{x-a}$ принимает по одному

разу все значения из промежутка $(1; +\infty)$ для a>0 и принимает по одному разу все значения из промежутка (0; 1) для a<0. Значит, при x>|a| выражение $\log_2\Big(1+\frac{2a}{x-a}\Big)$ принимает по одному разу все значения из промежутка $(0; +\infty)$ при a>0 и принимает по одному разу все значения из промежутка $(-\infty; 0)$ при a<0. Таким образом, уравнение

$$\log_2(x+a) - \log_2(x-a) = b$$

имеет одно решение при ab > 0 и не имеет решений при $a \neq 0$ и $ab \leq 0$. При a = 0 и x > 0 уравнение принимает вид 0 = b и либо имеет бесконечно много решений, либо не имеет решений.

Уравнения $\log_2(x+a) - \log_2(x-a) = a-1$ и $\log_2(x+a) - \log_2(x-a) = 2a+1$ могут иметь общие решения при a-1=2a+1, то есть при a=-2. При a=-2 оба уравнения принимают вид $\log_2(x-2) - \log_2(x+2) = -3$ и имеют одно решение.

При других значениях a исходное уравнение имеет два решения, если оба уравнения $\log_2(x+a) - \log_2(x-a) = a-1$ и $\log_2(x+a) - \log_2(x-a) = 2a+1$ имеют по одному решению.

Получаем систему неравенств:

$$\begin{cases} (a-1)a > 0, \\ (2a+1)a > 0, \end{cases}$$

то есть $a < -\frac{1}{2}$; a > 1.

Omsem: $a < -\frac{1}{2}$, a > 1.

7. Найдите все значения a, при которых уравнение

$$\left(\log_5(x+3)-\log_5(x-3)\right)^2-7\left(\log_5(x+3)-\log_5(x-3)\right)-4a^2-6a+10=0$$
 имеет ровно два решения.

Решение.

Пусть $t=\log_5{(x+3)}-\log_5{(x-3)}$, тогда уравнение запишется в виде $t^2-7t-(4a^2+6a-10)=0$, откуда t=2a+5 или t=2-2a. Значит, решения исходного уравнения — это решения уравнений $\log_5{(x+3)}-\log_5{(x-3)}=2a+5$ или $\log_5{(x+3)}-\log_5{(x-3)}=2-2a$.

Исследуем, сколько решений имеет уравнение $\log_5(x+3) - \log_5(x-3) = b$ в зависимости от b. При x>3 левая часть определена и принимает вид $\log_5\left(\frac{x+3}{x-3}\right) = \log_5\left(1+\frac{6}{x-3}\right)$. При x>3 выражение $1+\frac{6}{x-3}$ принимает по одному разу все значения из промежутка $(1;+\infty)$. Таким образом, уравнение $\log_5(x+3) - \log_5(x-3) = b$ имеет одно решение при b>0 и не имеет решений при $b\leqslant 0$.

Уравнения $\log_5(x+3) - \log_5(x-3) = 2a+5$ и $\log_5(x+3) - \log_5(x-3) = 2-2a$ могут иметь общие решения при 2a+5=2-2a, то есть при $a=-\frac{3}{4}$. При $a=-\frac{3}{4}$ оба уравнения принимают вид $\log_5(x+3) - \log_5(x-3) = \frac{7}{2}$ и имеют одно решение.

При других значениях a исходное уравнение имеет два решения, если оба уравнения $\log_5(x+3) - \log_5(x-3) = 2a+5$ и $\log_5(x+3) - \log_5(x-3) = 2-2a$ имеют по одному решению. Получаем систему неравенств:

$$\begin{cases} 2a+5 > 0, \\ 2-2a > 0, \end{cases}$$

то есть $-\frac{5}{2} < a < 1$.

Omsem: $-\frac{5}{2} < a < 1$.

8. Найдите все значения a, при которых уравнение

$$(|x+1|+|x-a|)^2-2(|x+1|+|x-a|)+4a(1-a)=0$$

имеет ровно два решения.

Решение.

Пусть t=|x+1|+|x-a|, тогда уравнение запишется в виде $t^2-2t+4a(1-a)=0$, откуда t=2a или t=2-2a. Значит, решения исходного уравнения — это решения уравнений |x+1|+|x-a|=2a или |x+1|+|x-a|=2-2a.

Исследуем, сколько решений имеет уравнение |x+1|+|x-a|=b в зависимости от a и b. Рассмотрим функцию f(x)=|x+1|+|x-a|. При $a\neq -1$ графиком этой функции является ломаная, состоящая из трёх звеньев, угловые коэффициенты которых равны -2, 0 и 2. Минимальное значение достигается на отрезке с концами -1 и a и равно |a+1|. Таким образом,

уравнение |x+1|+|x-a|=b имеет два решения при b>|a+1|, бесконечно много решений при b=|a+1| и не имеет решений при b<|a+1|. В случае a=-1 уравнение 2|x+1|=b имеет два решения при b>0, одно решение при b=0 и не имеет решений при b<0.

Уравнения |x+1|+|x-a|=2a и |x+1|+|x-a|=2-2a могут иметь общие решения при 2a=2-2a, то есть при $a=\frac{1}{2}$. При $a=\frac{1}{2}$ оба уравнения принимают вид $|x+1|+\left|x-\frac{1}{2}\right|=1$ и не имеют решений.

При других значениях a исходное уравнение имеет ровно два решения, если одно из уравнений |x+1|+|x-a|=2a и |x+1|+|x-a|=2-2a не имеет решений, а другое имеет два решения. Эти условия равносильны неравенству (2a-|a+1|)(2-2a-|a+1|)<0. При $a \le -1$ неравенство принимает вид (3a+1)(3-a)<0, которое выполняется при любом $a \le -1$. При a > -1 неравенство принимает вид (a-1)(1-3a)<0, откуда с учётом условия a > -1 получаем: $-1 < a < \frac{1}{3}$; a > 1.

Таким образом, исходное уравнение имеет ровно два решения при $a < \frac{1}{3}; \ a > 1$.

Omeem: $a < \frac{1}{3}, \ a > 1$.

9. Найдите все значения a, при которых уравнение

$$((a-1)x^2+3x)^2-2((a-1)x^2+3x)+1-a^2=0$$

имеет ровно два решения.

Решение.

Пусть $t=(a-1)x^2+3x$, тогда уравнение запишется в виде $t^2-2t+1-a^2=0$, откуда t=a+1 или t=1-a. Значит, решения исходного уравнения — это решения уравнений $(a-1)x^2+3x=a+1$ или $(a-1)x^2+3x=1-a$.

Исследуем, сколько решений имеет уравнение $(a-1)x^2+3x=b$ в зависимости от a и b. При $a\neq 1$ уравнение принимает вид $(a-1)x^2+3x-b=0$. Это квадратное уравнение, дискриминант которого равен 9+4(a-1)b. Таким образом, уравнение $(a-1)x^2+3x=b$ имеет два решения при $(a-1)b>-\frac{9}{4}$, одно решение при $(a-1)b=-\frac{9}{4}$ и не имеет решений при $(a-1)b<-\frac{9}{4}$. При a=1 уравнение принимает вид 3x=b и имеет одно решение.

Уравнения $(a-1)x^2+3x=a+1$ и $(a-1)x^2+3x=1-a$ могут иметь общие решения при a+1=1-a, то есть при a=0. При a=0 оба уравнения принимают вид $-x^2+3x=1$ и имеют два решения.

При других значениях a исходное уравнение имеет ровно два решения, если либо оба уравнения $(a-1)x^2+3x=a+1$ и $(a-1)x^2+3x=1-a$ имеют по одному решению, либо одно из них не имеет решений, а другое имеет два решения. При a=1 каждое из этих уравнений имеет единственное решение и эти решения различны. При других значениях a выполнено неравенство $a^2-1>-\frac{9}{4}$, поэтому уравнение $(a-1)x^2+3x=a+1$ имеет два решения. Уравнение $(a-1)x^2+3x=1-a$ не имеет решений при $(a-1)^2>\frac{9}{4}$, то есть при $a<-\frac{1}{2}$ и при $a>\frac{5}{2}$.

Таким образом, исходное уравнение имеет ровно два решения при $a<-\frac{1}{2};\ a=0;\ a=1;$ $a>\frac{5}{2}.$

Omsem:
$$a < -\frac{1}{2}$$
, $a = 0$, $a = 1$, $a > \frac{5}{2}$.

10. Найдите все значения а, при каждом из которых уравнение

$$ax + \sqrt{-7 - 8x - x^2} = 2a + 3$$

имеет единственный корень.

Решение.

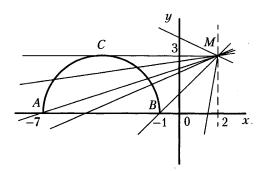
Запишем уравнение в виде

$$\sqrt{-7 - 8x - x^2} = -ax + 2a + 3.$$

Рассмотрим две функции:

$$f(x) = \sqrt{-7 - 8x - x^2}$$
 и $g(x) = -ax + 2a + 3$.

Графиком функции $f(x) = \sqrt{3^2 - (x+4)^2}$ является полуокружность радиуса 3 с центром в точке (-4;0), лежащая в верхней полуплоскости (см. рис.). При каждом значении a графиком функции g(x) является прямая с угловым коэффициентом -a, проходящая через точку M(2;3).



Уравнение имеет единственный корень, если графики функций f(x) и g(x) имеют единственную общую точку: либо прямая касается полуокружности, либо пересекает её в единственной точке.

Касательная MC, проведённая из точки M к полуокружности, имеет угловой коэффициент, равный нулю, то есть при a=0 исходное уравнение имеет единственный корень. При -a<0 прямая не имеет общих точек с полуокружностью.

Прямая MA, заданная уравнением y=-ax+2a+3, проходит через точки M(2;3) и A(-7;0), следовательно, её угловой коэффициент $-a=\frac{1}{3}$. При $0<-a<\frac{1}{3}$ прямая, заданная уравнением y=-ax+2a+3, имеет две общие точки с полуокружностью. Прямая MB, заданная уравнением y=-ax+2a+3, проходит через точки M(2;3) и B(-1;0), следовательно, её угловой коэффициент -a=1. При $\frac{1}{3}<-a\leqslant 1$ прямая, заданная уравнением y=-ax+2a+3, имеет угловой коэффициент больше, чем у прямой MA, и не больше, чем у прямой MB, и пересекает полуокружность в единственной точке. Получаем, что при $-1\leqslant a<-\frac{1}{3}$ исходное уравнение имеет единственный корень. При -a>1 прямая не имеет общих точек с полуокружностью.

Omeem: $-1 \le a < -\frac{1}{3}$, a = 0.

11. Найдите все значения a, при каждом из которых уравнение

$$x^{2} + (2 - a)^{2} = |x - 2 + a| + |x - a + 2|$$

имеет единственный корень.

Решение.

Если x_0 является корнем исходного уравнения, то и $-x_0$ является его корнем. Значит, исходное уравнение имеет единственный корень, только если $x_0 = -x_0$, то есть $x_0 = 0$. Подставим значение x = 0 в исходное уравнение:

$$(2-a)^2 = 2|2-a|; |2-a| \cdot (|2-a|-2) = 0,$$

откуда либо |2-a|=0; a=2, либо |2-a|=2; a=0 или a=4.

При a=2 исходное уравнение принимает вид: $x^2=2|x|$. Корнями этого уравнения являются числа -2; 0 и 2, то есть исходное уравнение имеет более одного корня.

При a = 0 и при a = 4 уравнение принимает вид: $x^2 + 4 = |x - 2| + |x + 2|$.

При x < -2 это уравнение сводится к уравнению $x^2 + 2x + 4 = 0$, которое не имеет корней.

При $-2 \le x \le 2$ получаем уравнение $x^2 = 0$, которое имеет единственный корень.

При x > 2 получаем уравнение $x^2 = 0$, которое не имеет корней.

При a = 0 и при a = 4 исходное уравнение имеет единственный корень.

Omeem: a = 0, a = 4.

12. Найдите все значения а, при каждом из которых уравнение

$$|(x-1)^2-2^{1-a}|+|x-1|+(1-x)^2+2^{a-1}=4+4^a$$

имеет единственное решение. Найдите это решение для каждого полученного значения a.

Решение.

Если x_0 является решением исходного уравнения, то $(2-x_0)$ также является его решением. Значит, исходное уравнение имеет нечётное число корней, только если $x_0 = 2-x_0$, то есть $x_0 = 1$. Подставим значение x = 1 в уравнение:

$$2^{1-a} + 2^{a-1} = 4 + 4^a; \quad \frac{2}{2^a} + \frac{2^a}{2} = 4 + 4^a; \quad \frac{1}{2^{a+1}} = 1,$$

откуда a = -1.

При a = -1 исходное уравнение примет вид

$$|(x-1)^2-4|+|x-1|=4-(1-x)^2.$$

Отсюда следует, что $4-(1-x)^2\geqslant 0$, а значит, $\left|(x-1)^2-4\right|=4-(1-x)^2$. Исходное уравнение принимает вид |x-1|=0, и оно имеет единственное решение x=1, удовлетворяющее условию $4-(1-x)^2\geqslant 0$. Следовательно, a=-1 удовлетворяет условию задачи.

Omsem: a = -1, x = 1.

13. Найдите все значения a, при каждом из которых множество значений функции

$$y = \frac{\sin 2x - 2a}{\cos 4x + 2}$$

содержит число 1.

Решение.

Пусть $z = \sin 2x$, тогда $-1 \le z \le 1$ и требуется найти все значения параметра a, при каждом из которых множество значений функции $y = \frac{z-2a}{3-2z^2}$, $-1 \le z \le 1$, содержит число 1.

Число 1 принадлежит множеству значений функции $y=\frac{z-2a}{3-2z^2}$, $-1\leqslant z\leqslant 1$, если и только если уравнение $1=\frac{z-2a}{3-2z^2}$ имеет хотя бы одно решение на отрезке $-1\leqslant z\leqslant 1$. Заметим, что при $-1\leqslant z\leqslant 1$ знаменатель не обращается в ноль. Поэтому уравнение $1=\frac{z-2a}{3-2z^2}$ приводится к виду

$$3-2z^2=z-2a$$
; $2z^2+z-2a-3=0$.

Рассмотрим квадратичную функцию $f(z)=2z^2+z-(2a+3)$. Уравнение f(z)=0 имеет хотя бы одно решение на промежутке [-1;1] тогда и только тогда, когда дискриминант уравнения f(z)=0 и значение функции f(z) на конце отрезка [-1;1] неотрицательны.

$$\begin{cases} f(1) \ge 0 \\ f(-1) \ge 0, \\ 1 + 8(2a + 3) \ge 0; \end{cases} \begin{cases} -2a - 2 \ge 0 \\ -2a \ge 0, \\ 16a + 25 \ge 0; \end{cases} \begin{cases} a \le 0, \\ a \ge -\frac{25}{16}, \end{cases}$$

то есть $-\frac{25}{16} \le a \le 0$.

Omsem: $-\frac{25}{16} \le a \le 0$.

14. Найдите все значения а, при каждом из которых множество значений функции

$$y = \frac{a + 3x - ax}{x^2 + 2ax + a^2 + 1}$$

содержит отрезок [0; 1].

Решение.

Запишем уравнение, задающее функцию, в виде $y=\frac{a+(3-a)x}{(x+a)^2+1}$. Область определения функции есть всё множество действительных чисел, и на нём эта функция непрерывна. Следовательно, если при некоторых значениях a существуют такие числа x_0 и x_1 , что выполняются равенства $0=\frac{a+(3-a)x_0}{(x_0+a)^2+1}$ и $1=\frac{a+(3-a)x_1}{(x_1+a)^2+1}$, то весь отрезок [0; 1] будет принадлежать множеству значений данной функции. С другой стороны, понятно, что существование таких x_0 и x_1 необходимо.

Рассмотрим уравнение $0 = \frac{a + (3 - a)x}{(x + a)^2 + 1}$; (a - 3)x = a.

Оно имеет решение при любом $a \neq 3$.

Рассмотрим уравнение $1 = \frac{a + (3 - a)x}{(x + a)^2 + 1}$; $x^2 + 3(a - 1)x + a^2 - a + 1 = 0$.

Это уравнение имеет решение тогда и только тогда, когда его дискриминант неотрицателен:

$$9(a-1)^{2} - 4(a^{2} - a + 1) \ge 0; \quad 5a^{2} - 14a + 5 \ge 0;$$
$$\left(a - \frac{7 - 2\sqrt{6}}{5}\right) \left(a - \frac{7 + 2\sqrt{6}}{5}\right) \ge 0,$$

откуда $a\leqslant \frac{7-2\sqrt{6}}{5}$ или $a\geqslant \frac{7+2\sqrt{6}}{5}.$

Таким образом, поскольку $\frac{7+2\sqrt{6}}{5} < 3$, условию задачи удовлетворяют значения

$$a \in \left(-\infty; \frac{7-2\sqrt{6}}{5}\right] \cup \left[\frac{7+2\sqrt{6}}{5}; 3\right) \cup (3; +\infty).$$

Omeem: $a \le \frac{7 - 2\sqrt{6}}{5}$, $\frac{7 + 2\sqrt{6}}{5} \le a < 3$, a > 3.

15. Найдите все значения а, при каждом из которых множество значений функции

$$y = \frac{\sqrt{a} - 2\sin x + 1}{\cos^2 x + a + 2\sqrt{a} + 1}$$

содержит отрезок [1; 2].

Решение.

Пусть
$$z = \sin x$$
, a $f(z) = \frac{\sqrt{a} - 2z + 1}{1 - z^2 + (\sqrt{a} + 1)^2}$.

Поскольку $|z| \le 1$ и $1 + \left(1 + \sqrt{a}\right)^2 \ge 2$, то для любого $a \ge 0$ функция f(z) определена на всём отрезке [-1;1] и непрерывна на нём. Следовательно, если при некоторых значениях $a \ge 0$ на отрезке [-1;1] существуют такие числа z_1 и z_2 , что выполняются равенства $f(z_1) = 1$ и $f(z_2) = 2$, то весь отрезок [1;2] будет принадлежать множеству значений данной функции. С другой стороны, понятно, что существование таких z_1 и z_2 необходимо.

Рассмотрим уравнение $\frac{\sqrt{a}-2z+1}{1-z^2+\left(\sqrt{a}+1\right)^2}=1$. С учётом того, что $|z|\leqslant 1$, оно эквивалентно

уравнению $z^2 - 2z - (a + \sqrt{a} + 1) = 0$. Дискриминант этого уравнения

$$D = 4 + 4\left(a + \sqrt{a} + 1\right) \geqslant 0$$

при всех значениях a. Значит, оно имеет хотя бы одно решение на отрезке [-1;1] тогда и только тогда, когда значение функции $\phi(z)=z^2-2z-\left(a+\sqrt{a}+1\right)$ хотя бы на одном из концов отрезка [-1;1] неотрицательно:

$$\begin{bmatrix} 3 - \left(a + \sqrt{a} + 1\right) \geqslant 0 & \left[a + \sqrt{a} - 2 \geqslant 0 \\ -1 - \left(a + \sqrt{a} + 1\right) \geqslant 0; & \left[a + \sqrt{a} + 2 \leqslant 0; & \left[\sqrt{a} + 2\right)\left(\sqrt{a} - 1\right) \leqslant 0 \\ a + \sqrt{a} + 2 \leqslant 0; & a + \sqrt{a} + 2$$

откуда $0 \le a \le 1$.

Рассмотрим уравнение $\frac{\sqrt{a}-2z+1}{1-z^2+\left(\sqrt{a}+1\right)^2}=2$. С учётом того, что $|z|\leqslant 1$, оно эквивалентно

уравнению $2z^2 - 2z - (2a + 3\sqrt{a} + 3) = 0$. Дискриминант этого уравнения

$$D = 4 + 8(2a + 3\sqrt{a} + 3) \ge 0$$

при всех значениях a. Значит, оно имеет хотя бы одно решение [-1;1] на отрезке тогда и только тогда, когда значение функции $\varphi(z)=2z^2-2z-\left(2a+3\sqrt{a}+3\right)$ хотя бы на одном из концов отрезка [-1;1] неотрицательно:

$$\begin{bmatrix} 4 - \left(2a + 3\sqrt{a} + 3\right) \geqslant 0 & \left[2a + 3\sqrt{a} - 1 \leqslant 0 \\ -\left(2a + 3\sqrt{a} + 3\right) \geqslant 0; & \left[2a + 3\sqrt{a} + 3 \leqslant 0; \right] \\ \left[\left(\sqrt{a} + \frac{3 + \sqrt{17}}{4}\right)\left(\sqrt{a} - \frac{\sqrt{17} - 3}{4}\right) \leqslant 0 & -\frac{\sqrt{17} + 3}{4} \leqslant \sqrt{a} \leqslant \frac{\sqrt{17} - 3}{4}, \\ 2a + 3\sqrt{a} + 3 \leqslant 0; & -\frac{\sqrt{17} + 3}{4} \leqslant \sqrt{a} \leqslant \frac{\sqrt{17} - 3}{4}, \\ -\frac{\sqrt{17} + 3}{4} \leqslant \sqrt{a} \leqslant \sqrt{a} \leqslant \frac{\sqrt{17} - 3}{4}, \\ -\frac{\sqrt{17} + 3}{4} \leqslant \sqrt{a} \leqslant \sqrt{a} \leqslant \sqrt{a}, \\ -\frac{\sqrt{17} + 3}{4} \leqslant \sqrt{a}, \\ -\frac{\sqrt{17} + 3}{4$$

откуда $0 \leqslant a \leqslant \frac{13 - 3\sqrt{17}}{8}$.

Поскольку $\frac{13-3\sqrt{17}}{8} < 1$, получим все значения параметра a, при каждом из которых множество значений функции $y = \frac{\sqrt{a}-2\sin x+1}{\cos^2 x+a+2\sqrt{a}+1}$ содержит отрезок [1; 2]: $0 \le a \le \frac{13-3\sqrt{17}}{8}$.

Omsem: $0 \le a \le \frac{13 - 3\sqrt{17}}{8}$.

16. Найдите все значения a, при каждом из которых множество решений неравенства

$$\frac{a - (a^2 - 2a - 3)\sin x + 4}{\cos^2 x + a^2 + 1} < 1$$

содержит отрезок $\left[0; \frac{5\pi}{6}\right]$.

Решение.

Условие задачи выполнено тогда и только тогда, когда для любого $x \in \left[0; \frac{5\pi}{6}\right]$ данное неравенство верно.

Пусть $z=\sin x$, тогда $0\leqslant z\leqslant 1$ исходное неравенство принимает вид

$$\frac{a-(a^2-2a-3)z+4}{a^2+2-z^2}<1; \quad \frac{z^2-(a^2-2a-3)z+2+a-a^2}{a^2+2-z^2}<0.$$

При $0 \le z \le 1$ имеем: $a^2 + 2 - z^2 > 0$, поэтому исходное неравенство эквивалентно неравенству $z^2 - (a^2 - 2a - 3)z + 2 + a - a^2 < 0$. Таким образом, необходимо найти все значения па-

раметра a, при каждом из которых неравенство $z^2 - (a^2 - 2a - 3)z + 2 + a - a^2 < 0$ справедливо для всех z, принадлежащих отрезку [0; 1].

Рассмотрим функцию $\varphi(z) = z^2 - (a^2 - 2a - 3)z + 2 + a - a^2$. Её графиком является парабола, ветви которой направлены вверх. Для того, чтобы при всех z, принадлежащих отрезку [0; 1], выполнялось неравенство $\varphi(z) < 0$, необходимо и достаточно, чтобы выполнялась система неравенств

$$\begin{cases} \varphi(0) < 0, & \begin{cases} 2 + a - a^2 < 0, \\ \varphi(1) < 0; & \begin{cases} 1 - (a^2 - 2a - 3) + 2 + a - a^2 < 0; \\ (a + 1)(a - 2) > 0, \end{cases} \\ \left(a - \frac{3 - \sqrt{57}}{4} \right) \left(a - \frac{3 + \sqrt{57}}{4} \right) > 0, \end{cases}$$

откуда $a<rac{3-\sqrt{57}}{4}$ или $a>rac{3+\sqrt{57}}{4}$

Ombem: $a < \frac{3 - \sqrt{57}}{4}$, $a > \frac{3 + \sqrt{57}}{4}$.

17. Найдите все неотрицательные значения a, при каждом из которых множество решений неравенства

$$\frac{a + x^2 - 4\log_{0,5}(a^2 - 2a + 4)}{3\sqrt{7x^4 + x^2} + a + 4 + \log_{0,5}^2(a^2 - 2a + 4)} \ge 1$$

состоит из одной точки, и найдите это решение.

Решение.

Если неравенство выполняется в точке x_0 , то оно выполнено и в точке $-x_0$. Следовательно, чтобы неравенство выполнялось только в одной точке, необходимо, чтобы оно выполнялось только при x=0.

Таким образом, должно быть выполнено неравенство

$$\frac{a-4\log_{0,5}(a^2-2a+4)}{a+4+\log_{0,5}^2(a^2-2a+4)} \geqslant 1.$$

Поскольку $a \ge 0$, знаменатель дроби положителен, а значит, неравенство эквивалентно следующему неравенству:

$$a+4+\log_{0.5}^2(a^2-2a+4)\leqslant a-4\log_{0.5}(a^2-2a+4), \quad \left(\log_{0.5}(a^2-2a+4)+2\right)^2\leqslant 0, \\ \log_{0.5}(a^2-2a+4)+2=0, \quad a^2-2a+4=4,$$

откуда a = 0 или a = 2.

При a = 0 или a = 2 имеем: $\log_{0.5}(a^2 - 2a + 4) = -2$.

При a=0 неравенство принимает вид

$$1 \leq \frac{x^2 + 8}{3\sqrt{7x^4 + x^2} + 8}; \quad 3\sqrt{7x^4 + x^2} \leq x^2; \quad 63x^4 + 9x^2 \leq x^4; \quad (62x^2 + 9)x^2 \leq 0,$$

откуда x=0.

При a = 2 неравенство принимает вид

$$1 \le \frac{x^2 + 10}{3\sqrt{7x^4 + x^2} + 10}; \quad 3\sqrt{7x^4 + x^2} \le x^2; \quad 63x^4 + 9x^2 \le x^4; \quad (62x^2 + 9)x^2 \le 0,$$

откуда x=0.

Таким образом, условию задачи удовлетворяют a = 0 и a = 2.

Ответ: a = 0, x = 0 или a = 2, x = 0.

18. Найдите все значения a, для каждого из которых уравнение

$$|3\sin^2 2x - a| + |3\cos 4x - 2a - 3| = a + 6$$

имеет хотя бы одно решение.

Решение.

Пусть $y = 3\sin^2 2x$, тогда $0 \le y \le 3$ и уравнение принимает вид

$$|y-a| + 2|y+a| = a+6.$$

Таким образом, необходимо найти все значения параметра a, при которых последнее уравнение имеет хотя бы одно решение на отрезке [0; 3].

При a=0 уравнение принимает вид 3|y|=6 и имеет решение y=2 на отрезке [0; 3].

Рассмотрим функцию f(y) = |y - a| + 2|y + a| - a - 6.

Если a < 0, то при $y \le -a$ эта функция убывает, а при $y \ge -a$ она возрастает. Значит, функция достигает наименьшего значения в точке -a. Следовательно, чтобы уравнение имело хотя бы одно решение на отрезке [0;3], необходимо, чтобы и выполнялось хотя бы одно из условий $f(0) \ge 0$ или $f(3) \ge 0$:

$$\begin{cases} a < 0, \\ f(-a) \le 0, \end{cases} \begin{cases} a < 0, \\ -3a - 6 \le 0, \end{cases}$$

$$\begin{cases} [f(0) \ge 0] \\ f(3) \ge 0; \end{cases} \begin{cases} [3|a| - a - 6 \ge 0] \\ |3 - a| + 2|3 + a| \ge a + 6; \end{cases}$$

$$\begin{cases} a < 0, \\ a \ge -2, \end{cases}$$

$$\begin{cases} [a < 0, \\ a \ge -2, \end{cases}$$

$$\begin{cases} [a < -\frac{3}{2}] \\ (3 - a) + 2(3 + a) \ge a + 6; \end{cases}$$

$$\begin{cases} [a < 0, \\ [a \ge -\frac{3}{2}] \\ [a \le -\frac{3}{2}] \end{cases}$$

откуда $-2 \le a < 0$.

Если a>0, то при $y\geqslant -a$ она возрастает. Значит, эта функция возрастает на всём промежутке [0;3]. Следовательно, чтобы уравнение f(y)=0 имело хотя бы одно решение на отрезке [0;3], необходимо, чтобы $f(0)\leqslant 0$ и $f(3)\geqslant 0$:

$$\begin{cases} a > 0, \\ f(0) \le 0, \\ f(3) \ge 0; \end{cases} \begin{cases} a > 0, \\ 3|a| - a - 6 \le 0, \\ |3 - a| + 2|3 + a| \ge a + 6; \end{cases}$$

$$\begin{cases} a > 0, \\ a \le 3, \\ |3 - a| + 2(3 + a) \ge a + 6; \end{cases} \begin{cases} a > 0, \\ a \le 3, \\ |3 - a| \ge -a, \end{cases}$$

откуда $0 < a \le 3$.

Таким образом, уравнение $|3\sin^2 2x - a| + |3\cos 4x - 2a - 3| = a + 6$ имеет хотя бы одно решение при $-2 \le a \le 3$.

Omsem: -2 ≤ a ≤ 3.

19. Найдите все значения a, при каждом из которых система уравнений

$$\begin{cases} 2x^2 + 2y^2 = 5xy, \\ (x-a)^2 + (y-a)^2 = 5a^4 \end{cases}$$

имеет ровно два решения.

Решение.

Преобразуем систему уравнений:

$$\begin{cases} (x-2y)(y-2x) = 0, \\ (x-a)^2 + (y-a)^2 = 5a^4; \end{cases}$$

$$\begin{cases} x = 2y, \\ (x-a)^2 + (y-a)^2 = 5a^4, \\ y = 2x, \\ (x-a)^2 + (y-a)^2 = 5a^4. \end{cases}$$

Заметим, что вторая система в совокупности получается из первой заменой x на y, а y на x. Значит, если первая система имеет решение (a;b), то решением второй будет (b;a). Следовательно, исходная система уравнений имеет ровно два решения тогда и только тогда, когда система

$$\begin{cases} x = 2y, \\ (x-a)^2 + (y-a)^2 = 5a^4 \end{cases}$$

имеет ровно одно нетривиальное решение.

$$\begin{cases} x = 2y, \\ (x-a)^2 + (y-a)^2 = 5a^4; \end{cases} \begin{cases} x = 2y, \\ (2y-a)^2 + (y-a)^2 = 5a^4; \end{cases}$$
$$\begin{cases} x = 2y, \\ 5y^2 - 6ay = 5a^4 - 2a^2; \end{cases} \begin{cases} x = 2y, \\ \left(y - \frac{3a}{5}\right)^2 = \frac{a^2(5a-1)(5a+1)}{25}. \end{cases}$$

Последняя система имеет ровно одно решение тогда и только тогда, когда $\frac{a^2(5a-1)(5a+1)}{25}=0$, то есть при a=0, $a=\frac{1}{5}$ и $a=-\frac{1}{5}$.

При a=0 получаем, что последняя система имеет тривиальное решение.

При $a=\frac{1}{5}$ получаем, что последняя система имеет решение $\left(\frac{6}{25};\frac{3}{25}\right)$, а значит, исходная система имеет ровно два решения.

При $a=-\frac{1}{5}$ получаем, что последняя система имеет решение $\left(-\frac{6}{25};-\frac{3}{25}\right)$, а значит, исходная система имеет ровно два решения.

Таким образом, исходная система имеет ровно два решения только при $a=\frac{1}{5}$ или $a=-\frac{1}{5}$.

Omeem:
$$a = \frac{1}{5}$$
; $a = -\frac{1}{5}$.

Задания для самостоятельного решения

1. Найдите все значения a, при каждом из которых уравнение

$$\left|\frac{5}{x}-3\right|=ax-2$$

на промежутке $(0; +\infty)$ имеет ровно два корня.

2. Найдите все значения a, при каждом из которых уравнение

$$a|x-3| = \frac{5}{x+2}$$

на промежутке $[0; +\infty)$ имеет более двух корней.

3. Найдите все значения а, при каждом из которых наименьшее значение функции

$$f(x) = \frac{9}{4}x^2 - 3ax + a^2 + 3a + 3$$

на множестве $|x| \ge 2$ не меньше 12.

4. Найдите все значения *a*, при каждом из которых уравнение

$$|3x^2 - 5x + 2| = a - 3x^2 + 2x$$

либо не имеет решений, либо имеет единственное решение.

5. Найдите все значения a, при которых уравнение

$$2\sqrt{x^4 + (a-2)^4} = |x+a-2| + |x-a+2|$$

имеет единственное решение.

6. Найдите все значения a, при которых уравнение

$$\left(\log_7(x+a)-\log_7(x-a)\right)^2-3a\left(\log_7(x+a)-\log_7(x-a)\right)+2a^2+3a-9=0$$
 имеет ровно два решения.

7. Найдите все значения a, при которых уравнение

$$\left(\log_6(x+4)-\log_6(x-4)\right)^2-10\left(\log_6(x+4)-\log_6(x-4)\right)-4a^2+4a+24=0$$
 имеет ровно два решения.

8. Найдите все значения a, при которых уравнение

$$(|x-9|-|x-a|)^2 - 9a(|x-9|-|x-a|) + 8a^2 + 28a - 16 = 0$$

имеет ровно два решения.

9. Найдите все значения а, при которых уравнение

$$(ax^2-2x)^2+(a^2-a+2)(ax^2-2x)-a^2(a-2)=0$$

имеет ровно два решения.

10. Найдите все значения a, при которых уравнение

$$10a + \sqrt{-35 + 12x - x^2} = ax + 1$$

имеет единственный корень.

11. Найдите все значения а, при каждом из которых уравнение

$$|x^2 - |x - 5 + a| = |x - a + 5| - (5 - a)^2$$

имеет единственный корень.

12. Найдите все значения а, при каждом из которых уравнение

$$|(x+1)^2 - 2^{-a-1}| + |x+1| + (1+x)^2 + 2^{a+1} = 0.25 + 4^a$$

имеет единственное решение. Найдите это решение для каждого полученного значения а.

- **13.** Найдите все значения a, при каждом из которых множество значений функции $y = \frac{\cos x a}{\cos 2x 4}$ содержит число -2.
- **14.** Найдите все значения a, при каждом из которых множество значений функции $y = \frac{5a + 150x 10ax}{100x^2 + 20ax + a^2 + 25}$ содержит отрезок [0; 1].
- **15.** Найдите все значения a, при каждом из которых множество значений функции $y = \frac{\sqrt{a-1} 2\sin 2x + 1}{\cos^2 2x + a + 2\sqrt{a-1}} \text{ содержит отрезок [1; 2]}.$
- **16.** Найдите все значения a, при каждом из которых множество решений неравенства $\frac{a-(a^2-2a)\cos 2x+2}{3-\cos 4x+a^2}<1\ \text{содержит отрезок}\left[-2\pi;-\frac{7\pi}{6}\right].$
- **17.** Найдите все отрицательные значения a, при каждом из которых множество решений неравенства

$$\frac{x^2 - 2x + 1 - a^3 - 10\log_{0,5}(a^2 + 10a + 32)}{11\sqrt{23(1-x)^4 + 7x^2 - 14x + 7} - a^3 + 25 + \log_{0,5}^2(a^2 + 10a + 32)} \ge 1$$

состоит из одной точки, и найдите это решение.

- **18.** Найдите все значения a, для каждого из которых уравнение $|2\cos^2 x a| + 3|\cos 2x + a + 1| = a + 9$ имеет хотя бы одно решение.
- **19.** Найдите все значения a, при каждом из которых система уравнений

$$\begin{cases} 3x^2 + 3y^2 + 10xy = 0, \\ (x-a)^2 + (y-a)^2 = 10a^4 \end{cases}$$

имеет ровно два решения.

4. СТЕРЕОМЕТРИЯ

4.1. Параллелепипеды

- **1.** В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания равна 11, а боковое ребро $AA_1 = 7$. Точка K принадлежит ребру B_1C_1 и делит его в отношении 8:3, считая от вершины B_1 .
 - а) Постройте сечение этой призмы плоскостью, проходящей через точки В, D и К.
 - б) Найдите площадь этого сечения.

Решение.

- а) Пусть L точка, в которой плоскость сечения пересекает ребро C_1D_1 . Отрезок KL параллелен диагонали BD. Искомое сечение трапеция BDLK (рис. 1).
- б) Плоскость сечения пересекает нижнее основание по прямой BD, параллельной B_1D_1 , значит, KL параллельно B_1D_1 .

Треугольники LC_1K и D_1C_1B подобны, следовательно,

$$C_1L:C_1D_1=C_1K:C_1B_1=KL:B_1D_1=3:11.$$

Значит, $BD = B_1D_1 = 11\sqrt{2}$, $KL = 3\sqrt{2}$.

В равных прямоугольных треугольниках DD_1L и BB_1K имеем

$$BK = DL = \sqrt{DD_1^2 + D_1L^2} = \sqrt{113},$$

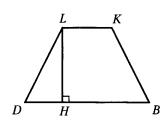
значит, трапеция *BDLK* равнобедренная.

Пусть LH — высота трапеции BDLK, проведённая к основанию BD (рис. 2), тогда:

$$DH = \frac{BD - LK}{2} = 4\sqrt{2}; \quad LH = \sqrt{DL^2 - DH^2} = 9;$$

$$S_{BDLK} = \frac{BD + KL}{2} \cdot LH = 63\sqrt{2}.$$

Omeem: 6) $63\sqrt{2}$.



В

Рис. 1

Рис. 2

2. Точка M — середина ребра C_1D_1 куба $ABCDA_1B_1C_1D_1$ с ребром 2. Найдите угол между прямыми AM и BA_1 .

Решение.

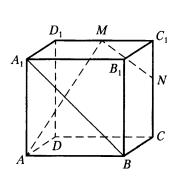
Пусть N — середина ребра CC_1 . Поскольку MN — средняя линия треугольника D_1CC_1 , $MN \parallel CD_1 \parallel BA_1$, то есть угол $\angle AMN$ искомый.

$$AM = \sqrt{AA_1^2 + A_1D_1^2 + D_1M^2} = \sqrt{4 + 4 + 1} = 3,$$

аналогично, AN=3, то есть, треугольник AMN равнобедренный с основанием $MN=\frac{CD_1}{2}=\sqrt{2}$.

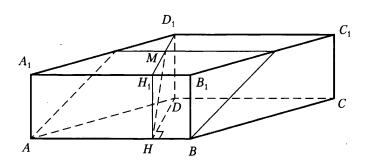
Tогда
$$\cos \angle AMN = \frac{MN}{2AM} = \frac{\sqrt{2}}{6}$$
.

Ombem: $\arccos \frac{\sqrt{2}}{6}$.



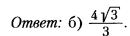
- **3.** В основании прямого параллелепипеда $ABCDA_1B_1C_1D_1$ высотой 1 лежит ромб ABCD, у которого AB=2 и $\angle A=30^\circ$. Проведена плоскость, содержащая ребро AB и составляющая с плоскостью основания параллелепипеда угол 60° .
 - а) Постройте сечение параллелепипеда этой плоскостью.
 - б) Найдите площадь этого сечения.

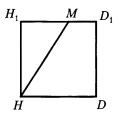
Решение.



- а) Проведём через точку D сечение DD_1H_1H параллелепипеда, перпендикулярное AB. В плоскости этого сечения будет располагаться линейный угол двугранного угла между плоскостью сечения и плоскостью основания. Поскольку $DH = 2\sin 30^\circ = 1 = DD_1$, сечение будет квадратом, а значит, наша плоскость пройдёт через точку M, лежащую на стороне D_1H_1 , поскольку $\angle MHD = 60^\circ > 45^\circ$. Искомое сечение будет параллелограммом со стороной AB и высотой MH к ней.
 - б) Из треугольника MHH_1 получаем, что $MH=\frac{1}{\sin 60^\circ}=\frac{2}{\sqrt{3}}$.

Площадь параллелограмма $S = MH \cdot AB = \frac{4}{\sqrt{3}}$.





4. В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны 1, а боковые рёбра равны 4. На ребре AA_1 отмечена точка E так, что $AE:EA_1=3:1$. Найдите угол между плоскостями ABC и BED_1 .

Решение.

Прямая D_1E пересекает прямую AD в точке K. Плоскости ABC и BED_1 пересекаются по прямой KB.

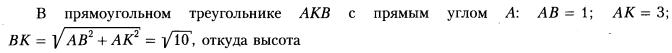
Из точки E опустим перпендикуляр EH на прямую KB, тогда отрезок AH (проекция EH) перпендикулярен прямой KB. Угол AHE является линейным углом двугранного угла, образованного плоскостями ABC и BED_1 .

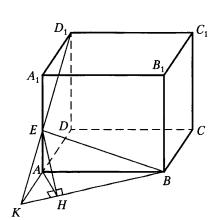
Поскольку $AE:EA_1=3:1$, получаем:

$$AE = \frac{3AA_1}{4} = 3; \quad EA_1 = AA_1 - AE = 1.$$

Из подобия треугольников A_1D_1E и AKE находим:

$$AK = \frac{AE}{EA_1} \cdot A_1 D_1 = 3.$$





$$AH = \frac{AK \cdot AB}{BK} = \frac{3\sqrt{10}}{10}.$$

Из прямоугольного треугольника АНЕ с прямым углом А получаем:

$$tg\angle AHE = \frac{AE}{AH} = \sqrt{10}$$
.

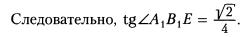
Omeem: $arctg\sqrt{10}$.

5. В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ AB=2, $AD=AA_1=1$. Найдите угол между прямой A_1B_1 и плоскостью AB_1D_1 .

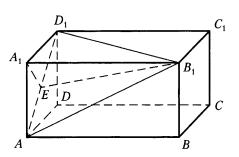
Решение.

Пусть точка E — середина отрезка AD_1 . Прямые A_1E и B_1E перпендикулярны прямой AD_1 , значит, прямая AD_1 перпендикулярна плоскости A_1EB_1 . Плоскости AB_1D_1 и A_1EB_1 перпендикулярны, значит, искомый угол равен углу A_1B_1E . В прямоугольном треугольнике A_1B_1E

$$A_1 E = \frac{\sqrt{2}}{2}, \ A_1 B_1 = 2.$$



Omeem: $arctg \frac{\sqrt{2}}{4}$.



6. В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны рёбра AB=4, AD=3, $AA_1=7$. Точка O принадлежит ребру BB_1 и делит его в отношении $3\!:\!4$, считая от вершины B. Найдите площадь сечения этого параллелепипеда плоскостью, проходящей через точки A, O и C_1 .

Решение.

Отрезок AP параллелен C_1O (точка P принадлежит ребру DD_1). Плоскость сечения пересекает плоскость CC_1D_1 по прямой C_1P , параллельной AO, следовательно, искомое сечение — параллелограмм AOC_1P (рис. 1).

Треугольники ADP и C_1B_1O равны, следовательно,

$$DP = B_1O = \frac{4}{7}BB_1 = 4;$$

$$BO = BB_1 - B_1O = 3.$$

$$AP = \sqrt{AD^2 + DP^2} = 5;$$

$$AO = \sqrt{AB^2 + BO^2} = 5.$$

значит, AOC_1P — ромб со стороной 5 и диагональю $AC_1=\sqrt{AB^2+BC^2+CC_1^2}=\sqrt{74}$ (рис. 2). Тогда диагональ

$$OP = 2\sqrt{AO^2 - \left(\frac{AC_1}{2}\right)^2} = \sqrt{26};$$

 $S_{AOC_1P} = \frac{AC_1 \cdot OP}{2} = \sqrt{481}.$

Ответ: $\sqrt{481}$.

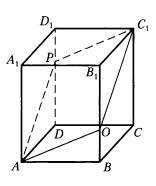


Рис. 1

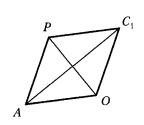


Рис. 2

Задания для самостоятельного решения

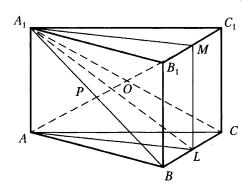
- **1.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны рёбра AB = 5, AD = 4, $AA_1 = 9$. Точка O принадлежит ребру BB_1 и делит его в отношении 4:5, считая от вершины B. а) Постройте сечение этого параллелепипеда плоскостью, проходящей через точки A, O и C_1 .
 - б) Найдите площадь этого сечения.
- **2.** Точка M- середина ребра BB_1 куба $ABCDA_1B_1C_1D_1$ с ребром 3. Найдите угол между прямыми D_1M и DC_1 .
- **3.** В основании прямого параллелепипеда $ABCDA_1B_1C_1D_1$ высотой 1 лежит ромб ABCD, у которого AB=4 и $\angle A=60$ °. Через ребро AB проведена плоскость, составляющая с плоскостью основания параллелепипеда угол 30°.
 - а) Постройте сечение параллелепипеда этой плоскостью.
 - б) Найдите площадь этого сечения.
- **4.** В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны 1, а боковые рёбра равны 5. На ребре AA_1 отмечена точка E так, что $AE:EA_1=1:4$. Найдите угол между плоскостями ABC и BED_1 .
- **5.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны рёбра AB=3, $AD=AA_1=2$. Найдите угол между прямой A_1B_1 и плоскостью AB_1D_1 .
- **6.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны рёбра AB=5, AD=3, $AA_1=8$. Точка R принадлежит ребру AA_1 и делит его в отношении $3\!:\!5$, считая от вершины A. Найдите площадь сечения этого параллелепипеда плоскостью, проходящей через точки B, R и D_1 .

4.2. Призмы

1. Дана правильная треугольная призма $ABCA_1B_1C_1$, стороны основания которой равны $2\sqrt{7}$. Сечение, содержащее боковое ребро AA_1 и проходящее через середину M ребра B_1C_1 , является квадратом. Найдите расстояние между прямыми A_1B и AM.

Решение.

Пусть данное сечение призмы — квадрат AA_1ML . Тогда его диагонали перпендикулярны: $AM \perp A_1L$, а по теореме о трёх перпендикулярах $AM \perp BC$. Следовательно, $AM \perp A_1BC$. Отсюда следует, что искомым расстоянием между прямыми A_1B и AM является длина перпендикуляра OP, опущенного из точки O пересечения диагоналей квадрата AA_1ML на прямую A_1B , так как $OP \perp A_1B$ и $OP \perp AM$.



Сторона квадрата AA_1ML равна высоте треугольника ABC, то есть $AL=\sqrt{21}$, а его диагональ $A_1L=\sqrt{42}$. В равнобедренном треугольнике A_1BC основание $BC=2\sqrt{7}$, боковая сторона $A_1B=7$. Отсюда, используя подобие треугольников A_1OP и A_1BL , найдём

$$OP = \frac{A_1 O \cdot LB}{A_1 B} = \frac{A_1 L \cdot BC}{4A_1 B} = \frac{\sqrt{42} \cdot 2\sqrt{7}}{4 \cdot 7} = \frac{\sqrt{6}}{2}.$$

B A_1 A_1 A_2 A_3 A_4 A_4

Omsem: $\frac{\sqrt{6}}{2}$.

2. В основании прямой призмы $ABCA_1B_1C_1$ лежит треугольник ABC, у которого AC = BC = 18 и AB = 12. Высота призмы $AA_1 = 7$. Точка K — середина ребра B_1C_1 . Найдите площадь сечения призмы плоскостью ACK.

Решение.

Плоскость сечения пересекает основания по параллельным прямым, поэтому она пересекает верхнее основание $A_1B_1C_1$ по прямой, параллельной AC. Эта прямая будет параллельна и A_1C_1 , то есть будет проходить через середину M ребра A_1B_1 . Искомое сечение — трапеция ACKM.

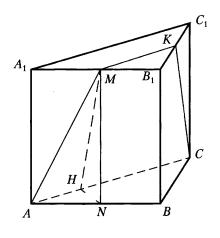
В трапеции ACKM основания AC = 18 и $KM = \frac{A_1C_1}{2} = 9$. Опустим из точки M перпендикуляр MN на плоскость ABC. Получим, что N — середина AB. Проведём из точки N перпендикуляр NH на AC. По теореме о трёх перпендикулярах MH будет высотой трапеции ACKM. Теперь найдём NH, вычислив площадь треугольника ACN двумя способами:

$$2S_{ACN} = AN \cdot CN = AC \cdot NH,$$

откуда
$$NH = \frac{AN \cdot CN}{AC} = \frac{6 \cdot \sqrt{324 - 36}}{18} = 4\sqrt{2}$$
.

Из треугольника MNH найдём $MH = \sqrt{32 + 49} = 9$. Площадь трапеции ACKM равна $\frac{1}{2} \cdot 9 \cdot (18 + 9) = \frac{243}{2}$.

Omeem: 121,5.

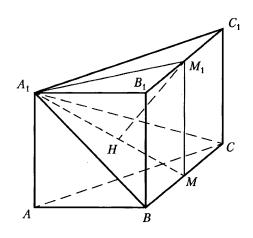


3. У правильной треугольной призмы $ABCA_1B_1C_1$ сторона основания равна AB=6, боковое ребро $AA_1=8$. Найдите синус угла между прямой BC_1 и плоскостью BCA_1 .

Решение.

Пусть M — середина BC, а M_1 — середина B_1C_1 . Тогда синус искомого угла α равен $\frac{h}{BC}$, где h — расстояние от точки C_1 до плоскости BCA_1 . Поскольку $BC_1 = \sqrt{BC^2 + CC_1^2} = 10$, задача сводится к отысканию h. Заметим, что, поскольку $B_1C_1 \parallel BCA_1$, расстояние от M_1 до данной плоскости также равно h. В плоскости AMM_1 , перпендикулярной плоскости BCA_1 , это расстояние равно высоте M_1H треугольника AMM_1 . Вычислим его катет $A_1M_1=3\sqrt{3}\,$ и гипотенузу $A_1M = \sqrt{64 + 27} = \sqrt{91}$. А теперь, вычисляя двумя способами площадь, $2S_{A_1MM_1} = 8 \cdot 3\sqrt{3} = h \cdot \sqrt{91}$, откуда $h = \frac{24\sqrt{3}}{2\sqrt{91}}$. Из формулы $\sin \alpha = \frac{h}{BC_1}$ получаем, что $\sin \alpha = \frac{12\sqrt{3}}{5\sqrt{91}}$.

Omeem:
$$\frac{12\sqrt{273}}{455}$$
.



4. В правильной треугольной призме $ABCA_1B_1C_1$ стороны основания равны 1, боковые рёбра равны 3, точка D — середина ребра CC_1 . Найдите угол между плоскостями ABC и ADB_1 .

Решение.

Прямая B_1D пересекает прямую BC в точке K. Плоскости ABC и ADB_1 пересекаются по прямой AK.

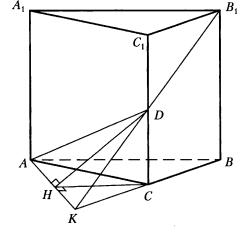
Из точки D опустим перпендикуляр DH на прямую AK, тогда отрезок CH (проекция DH) перпендикулярен прямой AK. Угол CHD является линейным углом двугранного угла, образованного плоскостями ABC и ADB_1 .

Точка D — середина ребра CC_1 , поэтому $CD = DC_1 = \frac{3}{2}.$

Из равенства треугольников B_1C_1D и KCD получаем:

$$CK = B_1C_1 = 1.$$

В равнобедренном треугольнике ACK угол C равен 120° , AC = CK = 1, высота CH является биссектрисой, откуда



$$CH = AC \cdot \cos 60^{\circ} = \frac{1}{2}.$$

Из прямоугольного треугольника CDH с прямым углом C получаем:

$$tg\angle CHD = \frac{CD}{CH} = 3.$$

Omeem: arctg3.

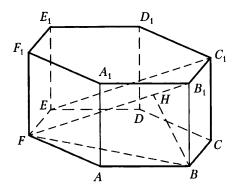
5. В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$ все рёбра равны 1. Найдите расстояние от точки B до плоскости FB_1C_1 .

Решение.

Прямые BB_1 и FB перпендикулярны прямой EF. Плоскость FB_1C_1 , содержащая прямую EF, перпендикулярна плоскости BB_1F , значит, искомое расстояние равно высоте BH прямоугольного треугольника BB_1F , в котором $BB_1=1$, $BF=\sqrt{3}$, $B_1F=2$.

$$BH = \frac{BB_1 \cdot BF}{B_1 F} = \frac{1 \cdot \sqrt{3}}{2} = \frac{\sqrt{3}}{2}.$$

Omsem: $\frac{\sqrt{3}}{2}$.



Задания для самостоятельного решения

- **1.** Дана правильная треугольная призма $ABCA_1B_1C_1$, стороны основания которой равны 2. Сечение, содержащее боковое ребро AA_1 и проходящее через середину M ребра B_1C_1 , является квадратом. Найдите расстояние между прямыми A_1B и AM.
- **2.** В основании прямой призмы $ABCA_1B_1C_1$ лежит треугольник ABC, у которого AC = BC = 10 и AB = 12. Высота призмы $AA_1 = 9$. Точка K середина ребра B_1C_1 . Найдите площадь сечения призмы плоскостью ACK.

- **3.** У правильной треугольной призмы $ABCA_1B_1C_1$ сторона основания AB=5, боковое ребро $AA_1=12$. Найдите синус угла между прямой BC_1 и плоскостью BCA_1 .
- **4.** В правильной треугольной призме $ABCA_1B_1C_1$ стороны основания равны 3, боковые рёбра равны 4, точка D середина ребра CC_1 . Найдите угол между плоскостями ABC и ADB_1 .
- **5.** В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$ все рёбра равны 2. Найдите расстояние от точки B до плоскости FB_1C_1 .

4.3. Треугольные пирамиды

1. Высота SO правильной треугольной пирамиды SABC составляет $\frac{5}{7}$ от высоты SM боковой грани SAB. Найдите угол между плоскостью основания пирамиды и её боковым ребром. **Решение.**

Пусть
$$SO = 5x$$
 и $SM = 7x$. Тогда

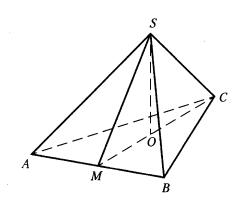
$$OM = x\sqrt{49 - 25} = x\sqrt{24} = 2x\sqrt{6},$$

а $OC = 2 \cdot OM = 4x\sqrt{6}$. Из треугольника COS находим

$$tg \angle SCO = \frac{OS}{OC} = \frac{5x}{4x\sqrt{6}} = \frac{5\sqrt{6}}{24}.$$

Тогда искомый угол равен $\arctan \frac{5\sqrt{6}}{24}$.

Omeem:
$$arctg \frac{5\sqrt{6}}{24}$$
.



2. В правильной треугольной пирамиде SABC с основанием ABC боковые ребра равны 5, а стороны основания равны 6. Найдите расстояние от вершины A до плоскости SBC.

Решение.

Пусть SO — высота пирамиды. Тогда

$$AO = \frac{AB}{\sqrt{3}} = 2\sqrt{3},$$
 $SO = \sqrt{SA^2 - AO^2} = \sqrt{25 - 12} = \sqrt{13}.$

Пусть V — объём пирамиды, тогда

$$V = \frac{1}{3} \cdot SO \cdot \frac{AB^2 \sqrt{3}}{4} = 3\sqrt{39}.$$

C другой стороны, $V=\frac{1}{3}\cdot h\cdot S_{SBC}$, где h — искомое расстояние.

В треугольнике SBC высота SM равна

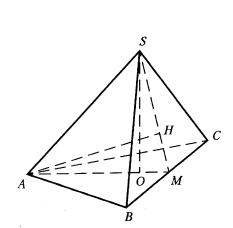
$$\sqrt{SB^2 - MB^2} = \sqrt{25 - 9} = 4.$$

Площадь треугольника SBC равна $S_{SBC} = \frac{1}{2} \cdot SM \cdot BC = 12$.

Получаем, что

$$h = \frac{3V}{S_{SRC}} = \frac{9\sqrt{39}}{12} = \frac{3\sqrt{39}}{4}.$$

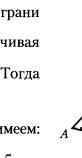
Omsem:
$$\frac{3\sqrt{39}}{4}$$
.



3. Косинус угла между боковой гранью и основанием правильной треугольной пирамиды равен $\frac{\sqrt{3}}{4}$. Найдите угол между двумя боковыми гранями пирамиды с общим боковым ребром.

Решение.

Пусть SABC — данная пирамида, SH — высота, M — середина ребра BC. Тогда косинус угла наклона боковой грани к основанию равен $\cos \angle HMS = \frac{HM}{MS} = \frac{\sqrt{3}}{4}$. Не ограничивая общности, можно считать, что $HM = \sqrt{3}$ и SM = 4. Тогда $AM = 3 \cdot HM = 3\sqrt{3}$ и $BM = CM = \frac{AM}{\sqrt{3}} = 3$.



По теореме Пифагора в треугольниках *SHM* и *SHA* имеем:

$$SH = \sqrt{SM^2 - MH^2} = \sqrt{13}; \quad SA = \sqrt{AH^2 + SH^2} = 5.$$

Заметим, что искомый угол равен 2ϕ , где ϕ — угол между плоскостями ASB и ASM. Найдём этот угол. Для этого проведём высоту ME в треугольнике ASM. Вычислим площадь треугольника ASM двумя способами:

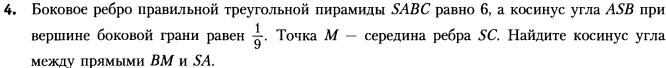
$$2S_{ASM} = SH \cdot AM = AS \cdot ME,$$

откуда
$$ME=rac{SH\cdot AM}{SA}=rac{\sqrt{13}\cdot 3\sqrt{3}}{5}=rac{3\sqrt{39}}{5}.$$

По теореме о трёх перпендикулярах $AS \perp BE$, так что $\angle BEM = \varphi$ и

$$tg\phi = \frac{BM}{ME} = \frac{3 \cdot 5}{3\sqrt{39}} = \frac{5}{\sqrt{39}}.$$

Omeem: $2 \operatorname{arctg} \frac{5\sqrt{39}}{39}$.



Решение.

Пусть N — середина AC. Поскольку $MN \parallel SA$ по теореме о средней линии треугольника, искомый угол — угол BMN.

По теореме о средней линии треугольника

$$MN = \frac{SA}{2} = 3.$$

В треугольнике *BSM* по теореме косинусов получаем:

$$BM = \sqrt{36 + 9 - 2 \cdot 6 \cdot 3 \cdot \frac{1}{9}} = \sqrt{41}$$
.

В треугольнике *BSC* по теореме косинусов получаем:

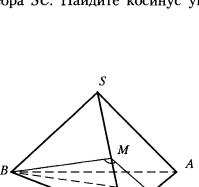
$$BC = \sqrt{36 + 36 - 2 \cdot 6 \cdot 6 \cdot \frac{1}{9}} = \sqrt{64} = 8.$$

Треугольник ABC равносторонний, значит, медиана $BN = 4\sqrt{3}$.

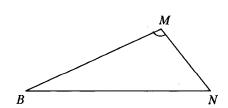
В треугольнике ВМN по теореме косинусов получаем:

$$\cos \angle NMB = \frac{9 + 41 - 48}{2 \cdot 3 \cdot \sqrt{41}} = \frac{1}{3\sqrt{41}}.$$

Omeem: $\frac{\sqrt{41}}{123}$.



В



5. В правильной треугольной пирамиде MABC с основанием ABC стороны основания равны 6, а боковые рёбра равны 10. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM — точка E. Известно, что AD = AE = LM = 4. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и E.

Решение.

Пусть O — центр основания пирамиды. В треугольнике ABC имеем:

$$AE:EB = AD:DC = 2:1,$$

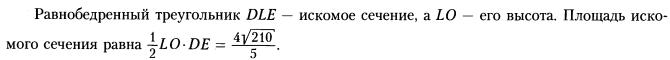
значит, $DE = \frac{2}{3}BC = 4$, отрезок DE делит медиану, проведённую из вершины A, в отношении 2:1, то есть содержит точку O. Кроме того, O — середина DE.

Рассмотрим прямоугольный треугольник AMO. В нём $AO = 2\sqrt{3}$. Опустим из точки L перпендикуляр LK на сторону AO. Тогда

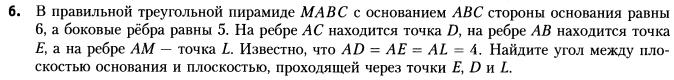
$$AK = \frac{3}{5}AO = \frac{6\sqrt{3}}{5}, \quad KO = \frac{2}{5}AO = \frac{4\sqrt{3}}{5}.$$

Значит,

$$LK = \sqrt{LA^2 - AK^2} = \frac{6\sqrt{22}}{5}; \quad LO = \sqrt{LK^2 + KO^2} = \frac{2\sqrt{210}}{5}.$$



Ombem:
$$\frac{4\sqrt{210}}{5}$$
.



Решение.

Пусть O — центр основания пирамиды. В треугольнике ABC имеем AE:EB=AD:DC=2:1, значит, отрезок DE делит медиану, проведённую из вершины A, в отношении 2:1, то есть содержит точку O. Кроме того, AO и DE перпендикулярны.

Прямая DE перпендикулярна MO и AO, поэтому искомый угол между плоскостями равен углу AOL. Рассмотрим прямоугольный треугольник AMO. В нём $AO=2\sqrt{3}$. Опустим из точки L перпендикуляр LK на сторону AO. Тогда

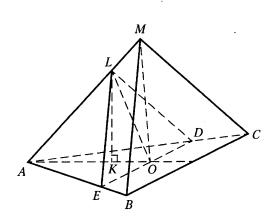
$$OK = \frac{1}{5}AO = \frac{2\sqrt{3}}{5},$$

$$LK = \frac{4}{5}MO = \frac{4}{5}\sqrt{MA^2 - AO^2} = \frac{4\sqrt{13}}{5}.$$

Значит,

$$\operatorname{tg} \angle AOL = \frac{LK}{OK} = \frac{2\sqrt{39}}{3}.$$

Omeem: $arctg \frac{2\sqrt{39}}{3}$.



M

7. В треугольной пирамиде MABC основанием является правильный треугольник ABC, ребро MB перпендикулярно плоскости основания, стороны основания равны 3, а ребро MA равно 5. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM — точка E. Известно, что E0 на E1. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E1. E2. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E3.

Решение.

Пусть N — середина BC, K — основание перпендикуляра, опущенного из L на плоскость основания, P — основание перпендикуляра, опущенного из K на DE. Отрезок LK параллелен MB, поэтому точка K лежит на ребре AB и делит его в отношении 3:2,

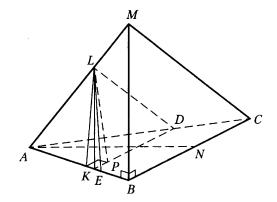
$$LK = \frac{3}{5}MB = \frac{3}{5}\sqrt{MA^2 - AB^2} = \frac{12}{5}.$$

В треугольнике АВС имеем:

$$AE:EB = AD:DC = 2:1,$$

откуда $DE = \frac{2}{3}BC = 2$ и прямые DE и BC параллельны. Значит, треугольники ABN и KEP подобны и

$$KP = \frac{KE}{AB} \cdot AN = \frac{1}{15} \cdot \frac{\sqrt{3}}{2} \cdot 3 = \frac{\sqrt{3}}{10}$$



Прямая DE перпендикулярна KP и LK, поэтому эта прямая перпендикулярна плоскости KPL, следовательно, LP — высота треугольника DLE, являющегося искомым сечением. Площадь искомого сечения равна

$$\frac{1}{2}LP \cdot DE = \frac{1}{2}\sqrt{LK^2 + KP^2} \cdot DE = \frac{\sqrt{579}}{10}.$$

Ombem: $\frac{\sqrt{579}}{10}$.

8. В треугольной пирамиде MABC основанием является правильный треугольник ABC, ребро MB перпендикулярно плоскости основания, стороны основания равны 3, а ребро MA равно $\sqrt{13}$. На ребре AC находится точка D, а на ребре AB находится точка E. Известно, что AD=2, BE=1. Найдите угол между плоскостью основания и плоскостью, проходящей через точки E, D и середину ребра MA.

Решение.

Пусть L — середина AM, K — середина AB, N — середина BC, P — основание перпендикуляра, опущенного из K на DE. Отрезок LK — средняя линия треугольника ABM, поэтому LK перпендикулярен плоскости ABC и

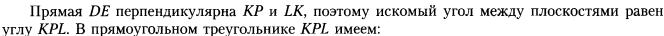
$$LK = \frac{1}{2}MB = \frac{1}{2}\sqrt{MA^2 - AB^2} = 1.$$

В треугольнике АВС имеем:

$$AE:EB = AD:DC = 2:1,$$

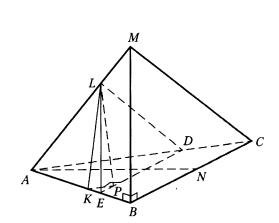
значит, прямые DE и BC параллельны. Следовательно, треугольники ABN и KEP подобны и

$$KP = \frac{KE}{AB} \cdot AN = \frac{1}{6} \cdot \frac{\sqrt{3}}{2} \cdot 3 = \frac{\sqrt{3}}{4}.$$



$$\operatorname{tg} \angle KPL = \frac{KL}{LP} = \frac{4\sqrt{3}}{3}.$$

Omeem: $arctg \frac{4\sqrt{3}}{3}$.



Задания для самостоятельного решения

- **1.** Высота SO правильной треугольной пирамиды SABC составляет $\frac{4}{5}$ от высоты SM боковой грани SAB. Найдите угол между плоскостью основания пирамиды и её боковым ребром.
- **2.** В правильной треугольной пирамиде SABC с основанием ABC боковые рёбра равны 3, а стороны основания равны 2. Найдите расстояние от вершины A до плоскости SBC.
- **3.** Боковое ребро правильной треугольной пирамиды SABC равно 10, а косинус угла ASB при вершине боковой грани равен $\frac{17}{25}$. Точка M середина ребра SC. Найдите косинус угла между прямыми BM и SA.
- **4.** Косинус угла между боковой гранью и основанием правильной треугольной пирамиды равен $\frac{1}{2\sqrt{6}}$. Найдите угол между двумя боковыми гранями пирамиды.
- **5.** В правильной треугольной пирамиде MABC с основанием ABC стороны основания равны 6, а боковые рёбра равны 8. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM точка E. Известно, что E0 = E1 E2. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E1 E2 и E3.
- **6.** В правильной треугольной пирамиде MABC с основанием ABC стороны основания равны 6, а боковые рёбра равны 8. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM точка E. Известно, что E0 = E1 E2. Найдите угол между плоскостью основания и плоскостью, проходящей через точки E3 и E4.
- 7. В треугольной пирамиде MABC основанием является правильный треугольник ABC, ребро MB перпендикулярно плоскости основания, стороны основания равны 6, а ребро MA равно $6\sqrt{2}$. На ребре AC находится точка D, а на ребре AB находится точка E. Известно, что AD = 4, BE = 2. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и середину ребра MA.
- **8.** В треугольной пирамиде MABC основанием является правильный треугольник ABC, ребро MB перпендикулярно плоскости основания, стороны основания равны 3, а ребро MA равно 5. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM точка L. Известно, что AD = AL = 2 и BE = 1. Найдите угол между плоскостью основания и плоскостью, проходящей через точки E, D и E.

4.4. Четырёхугольные пирамиды

1. В правильной четырёхугольной пирамиде *SABCD* угол наклона бокового ребра к основанию *ABCD* равен 30°. Найдите угол между соседними боковыми гранями пирамиды.

Решение.

Пусть SO — высота пирамиды SABCD.

Не ограничивая общности, можно считать, что SO = 1.

Тогда $\angle SBO=30^\circ$, поэтому SB=2 и $BO=\sqrt{3}$. Очевидно, что требуемый угол вдвое больше угла ϕ между SAB и SBO.

Пусть OH- высота в треугольнике SOB. Тогда по теореме о трёх перпендикулярах $AH \perp SB$, и $\angle AHO = \varphi$.

Вычисляя площадь треугольника SOB двумя способами, получим

$$2S_{SOB} = SO \cdot OB = OH \cdot SB$$

откуда
$$OH = \frac{SO \cdot OB}{SB} = \frac{1 \cdot \sqrt{3}}{2}.$$

Тогда
$$\operatorname{tg} \varphi = \frac{AO}{OH} = \frac{BO}{OH} = \sqrt{3} : \frac{\sqrt{3}}{2} = 2.$$

Получаем, что искомый угол равен 2 arctg 2.

Omeem: 2arctg2.

2. У правильной четырёхугольной пирамиды SABCD сторона основания AB = 4, а боковое ребро SA = 5. На ребре AB отмечена точка K так, что сечение SKC пирамиды является равнобедренным треугольником (SK = KC). Найдите периметр этого сечения.

Решение.

Пусть SM — высота в грани SAB, тогда

$$\cos \angle SBK = \frac{MB}{SB} = \frac{2}{5}.$$

Пусть BK = x. Тогда в треугольнике BKS по теореме косинусов получаем:

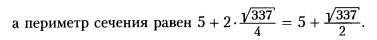
$$SK^2 = BK^2 + BS^2 - 2 \cdot BK \cdot BS \cdot \cos \angle SBK = x^2 + 25 - 4x.$$

В треугольнике ВКС по теореме Пифагора имеем:

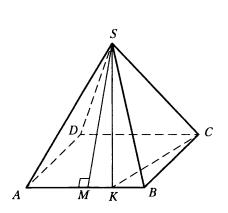
$$CK^2 = BK^2 + BC^2 = x^2 + 16.$$

Из условия SK = KC находим, что $x = \frac{9}{4}$. Тогда

$$SK = CK = \sqrt{x^2 + 16} = \frac{\sqrt{337}}{4}$$



Omeem:
$$5 + \frac{\sqrt{337}}{2}$$
.



- **3.** В основании четырёхугольной пирамиды SABCD лежит квадрат со стороной 2, а боковое ребро SA, равное 4, перпендикулярно плоскости основания.
- а) Постройте сечение пирамиды плоскостью, перпендикулярной ребру SC и проходящей через точку A.
 - б) Найдите площадь этого сечения.

а) Опустим перпендикуляр AH к прямой SC. В треугольнике SAC имеем:

$$SA = 4;$$
 $AC = 2\sqrt{2},$ $SC = \sqrt{SA^2 + AC^2} = 2\sqrt{6};$ $SH = \frac{SA^2}{SC} = \frac{4\sqrt{2}}{\sqrt{3}};$ $AH = \sqrt{SA^2 - SH^2} = \frac{4}{\sqrt{3}}.$

В точке H построим два перпендикуляра HM и HK к ребру SC, причём точка M лежит на прямой SB, а точка K — на прямой SD (см. рис.).

В треугольниках SHK и SDC угол S — общий, $\angle SHK = \angle SDC = 90^\circ$, следовательно, эти прямоугольные

треугольники подобны, значит, $\frac{SK}{SC} = \frac{SH}{SD}$, откуда

$$SK = \frac{SC \cdot SH}{SD} = \frac{8}{\sqrt{5}} < 2\sqrt{5} = SD,$$

следовательно, точка K лежит на ребре SD.

Аналогично, точка M лежит на ребре SB.

Таким образом, искомое сечение — четырёхугольник *АМНК*.

б) Из прямоугольного треугольника SHK получаем:

$$HK = \sqrt{SK^2 - SH^2} = \frac{4\sqrt{2}}{\sqrt{15}}.$$

Аналогично, $MH = \frac{4\sqrt{2}}{\sqrt{15}}$.

В прямоугольном треугольнике *ASD* имеем:

$$\cos \angle ASD = \frac{AS}{SD} = \frac{4}{2\sqrt{5}} = \frac{2}{\sqrt{5}}.$$

По теореме косинусов в треугольнике *ASK* получаем:

$$AK = \sqrt{AS^2 + SK^2 - 2 \cdot AS \cdot SK \cdot \cos \angle ASK} = \frac{4}{\sqrt{5}}.$$

Аналогично, $AM = \frac{4}{\sqrt{5}}$.

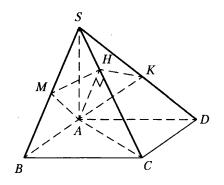
Рассмотрим треугольник AHK. В нём $AH^2 = \frac{16}{3} = \frac{32}{15} + \frac{16}{5} = HK^2 + AK^2$, значит, он прямоугольный, откуда получаем:

$$S_{AHK} = \frac{1}{2} \cdot \frac{4\sqrt{2}}{\sqrt{15}} \cdot \frac{4}{\sqrt{5}} = \frac{8\sqrt{6}}{15}.$$

Аналогично, $S_{AHM} = \frac{8\sqrt{6}}{15}$.

Таким образом, $S_{AMHK} = S_{AHK} + S_{AHM} = \frac{16\sqrt{6}}{15}$.

Ответ: 6) $\frac{16\sqrt{6}}{15}$.



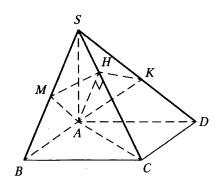
4. В основании четырёхугольной пирамиды SABCD лежит квадрат со стороной 2, а боковое ребро SA, равное 3, перпендикулярно плоскости основания. Плоскость, перпендикулярная ребру SC и проходящая через точку A, пересекает прямые SB, SC и SD в точках M, H и K соответственно. Найдите угол MHK.

Решение.

Из условия следует, что отрезок AH перпендикулярен прямой SC. В треугольнике SAC имеем:

$$SA = 3; \quad AC = 2\sqrt{2};$$

 $SC = \sqrt{SA^2 + AC^2} = \sqrt{17};$
 $SH = \frac{SA^2}{SC} = \frac{9}{\sqrt{17}};$
 $AH = \sqrt{SA^2 - SH^2} = \frac{6\sqrt{2}}{\sqrt{17}}.$



Также из условия следует, что HM и HK перпендикулярны прямой SC.

Прямоугольные треугольники SHK и SDC подобны, значит, $\frac{SK}{SC} = \frac{SH}{SD}$, откуда

$$SK = \frac{SC \cdot SH}{SD} = \frac{9}{\sqrt{13}} < \sqrt{13} = SD,$$

следовательно, точка K лежит на ребре SD.

Аналогично, точка M лежит на ребре SB.

Таким образом, сечение пирамиды плоскостью, перпендикулярной ребру SC и проходящей через точку A — четырёхугольник AMHK.

Из прямоугольного треугольника SHK получаем:

$$HK = \sqrt{SK^2 - SH^2} = \frac{18}{\sqrt{221}}.$$

Аналогично, $MH = \frac{18}{\sqrt{221}}$.

В прямоугольном треугольнике *ASD* имеем:

$$\cos \angle ASD = \frac{AS}{SD} = \frac{3}{\sqrt{13}}.$$

По теореме косинусов в треугольнике ASK получаем:

$$AK = \sqrt{AS^2 + SK^2 - 2 \cdot AS \cdot SK \cdot \cos \angle ASK} = \frac{6}{\sqrt{13}}.$$

Аналогично, $AM = \frac{6}{\sqrt{13}}$.

Получаем, что $\angle MHK = 2\angle AHK$.

Рассмотрим треугольник AHK. В нём $AH^2=\frac{72}{17}=\frac{324}{221}+\frac{36}{13}=HK^2+AK^2$, значит, он прямоугольный, откуда:

$$\sin \angle AHK = \frac{6}{\sqrt{13}} : \frac{6\sqrt{2}}{\sqrt{17}} = \sqrt{\frac{17}{26}}.$$

Omeem: $2\arcsin\sqrt{\frac{17}{26}}$.

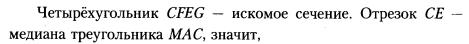
5. В правильной четырёхугольной пирамиде MABCD с вершиной M стороны основания равны 6, а боковые рёбра равны 12. Найдите площадь сечения пирамиды плоскостью, проходящей через точку C и середину ребра MA параллельно прямой BD.

Решение.

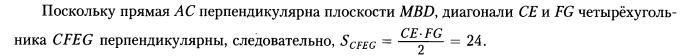
Пусть точка E — середина ребра MA. Отрезок CE пересекает плоскость MBD в точке P. В треугольнике MAC точка P является точкой пересечения медиан, следовательно, MP:PO=2:1, где O — центр основания пирамиды. Отрезок FG параллелен BD и проходит через точку P (точка F принадлежит ребру MB, G — ребру MD), откуда

$$MF: FB = MG: GD = MP: PO = 2:1;$$

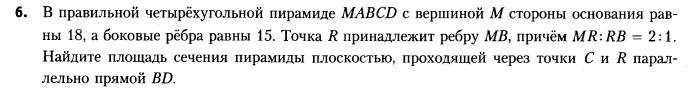
 $FG = \frac{2}{3}BD = \frac{2\sqrt{2} \cdot AB}{3} = 4\sqrt{2}.$



$$CE = \frac{\sqrt{2AC^2 + 2MC^2 - MA^2}}{2} = \frac{\sqrt{4AB^2 + MC^2}}{2} = 6\sqrt{2}.$$



Ответ: 24.

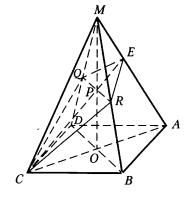


Решение.

Отрезок QR параллелен BD (точка Q принадлежит ребру MD). Пусть QR пересекает MO в точке P (O — центр основания пирамиды), причём MP:PO=MR:RB=2:1, тогда точка P является точкой пересечения медиан треугольника MAC. Прямая CP пересекает ребро MA в точке E — середине MA. Четырёхугольник CQER — искомое сечение.

Отрезок СЕ — медиана треугольника МАС, значит,

$$CE = \frac{\sqrt{2AC^2 + 2MC^2 - 2MA^2}}{2} = \frac{\sqrt{4AB^2 + MC^2}}{2} = \frac{39}{2},$$
 $RQ = \frac{2}{3}BD = 12\sqrt{2}.$



Поскольку прямая AC перпендикулярна плоскости MBD, диагонали CE и QR четырёхугольника CQER перпендикулярны, следовательно,

$$S_{CQER} = \frac{CE \cdot QR}{2} = 117\sqrt{2}.$$

Omeem: $117\sqrt{2}$.

Задания для самостоятельного решения

- **1.** В правильной четырёхугольной пирамиде *SABCD* угол наклона бокового ребра к основанию равен 60°. Найдите угол между соседними боковыми гранями пирамиды.
- **2.** У правильной четырёхугольной пирамиды SABCD сторона основания AB = 6, а боковое ребро SA = 8. На ребре AB отмечена точка K так, что сечение SKC пирамиды является равнобедренным треугольником (SK = KC). Найдите периметр этого сечения.
- **3.** В основании четырёхугольной пирамиды SABCD лежит квадрат со стороной 1, а боковое ребро SA, равное 3, перпендикулярно плоскости основания.
- а) Постройте сечение пирамиды плоскостью, перпендикулярной ребру SC и проходящей через точку A.
 - б) Найдите площадь этого сечения.
- **4.** В основании четырёхугольной пирамиды лежит квадрат со стороной 3, а боковое ребро SA, равное 4, перпендикулярно плоскости основания. Плоскость, перпендикулярная ребру SC и проходящая через точку A, пересекает прямые SB, SC и SD в точках M, H и K соответственно. Найдите угол MHK.
- **5.** В правильной четырёхугольной пирамиде MABCD с вершиной M стороны основания равны 4, а боковые рёбра равны 8. Найдите площадь сечения пирамиды плоскостью, проходящей через точку B и середину ребра MD параллельно прямой AC.
- **6.** В правильной четырёхугольной пирамиде MABCD с вершиной M стороны основания равны 12, а боковые рёбра равны 24. Точка G принадлежит ребру MA, причём MG:GA=2:1. Найдите площадь сечения пирамиды плоскостью, проходящей через точки B и G параллельно прямой AC.

4.5. Тела вращения

1. Правильная четырёхугольная пирамида SABCD, каждое ребро которой равно 2, расположена внутри цилиндра таким образом, что стороны AB и CD основания являются образующими цилиндра, а вершина S — серединой образующей PQ. Найдите объём цилиндра.

Решение.

Так как AB=2 — образующая цилиндра, для вычисления объёма осталось найти его радиус. Пусть точки P, B и C лежат на окружности одного и того же основания, тогда искомый радиус — это радиус описанной окружности треугольника PBC.

В прямоугольном треугольнике *SPC* имеем:

$$PC = \sqrt{SC^2 - SP^2} = \sqrt{3}.$$

Аналогично, $PB = \sqrt{3}$.

Треугольник PBC равнобедренный. Пусть PM — его высота, тогда

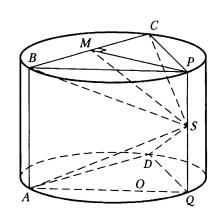
$$PM = \sqrt{PC^2 - CM^2} = \sqrt{2},$$

а площадь этого треугольника равна

$$S_{PBC} = PM \cdot MC = \sqrt{2}$$
.

Воспользуемся формулой радиуса описанной окружности треугольника:

$$R = \frac{PB \cdot PC \cdot BC}{4S_{PBC}} = \frac{\sqrt{3} \cdot \sqrt{3} \cdot 2}{4\sqrt{2}} = \frac{3}{2\sqrt{2}}.$$



По формуле объёма цилиндра получаем:

$$V = 2 \cdot \pi \cdot \left(\frac{3}{2\sqrt{2}}\right)^2 = \frac{9\pi}{4}.$$

Omeem: $\frac{9\pi}{4}$.

2. Отрезок AB = 24 — диаметр верхнего основания цилиндра, а C — точка на окружности нижнего основания. Найдите угол между плоскостью ABC и плоскостью основания цилиндра, если AC = 10 и BC = 22.

Решение.

Пусть CH = h — образующая цилиндра.

Так как AB диаметр, угол AHB прямой. По теореме Пифагора в треугольнике AHB получим: $AB^2 = 576 = AH^2 + HB^2$.

Из треугольников АСН и ВСН имеем:

$$AH^2 = 10^2 - h^2$$
; $BH^2 = 22^2 - h^2$.

С учётом предыдущего равенства получаем уравнение:

$$576 = 484 - h^2 + 100 - h^2,$$

откуда h=2.

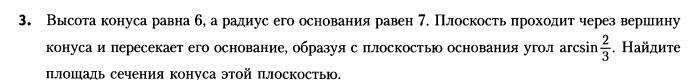
Пусть HE — высота прямоугольного треугольника AHB. По теореме о трёх перпендикулярах $CE \perp AB$ и поэтому угол CEH искомый. Вычисляя двумя способами площадь треугольника AHB, находим:

$$HE = \frac{AH \cdot BH}{AB} = \frac{\sqrt{480} \cdot \sqrt{96}}{24} = 4\sqrt{5}.$$

Из прямоугольного треугольника СЕН получаем:

$$tg\angle CEH = \frac{CH}{HE} = \frac{2}{4\sqrt{5}} = \frac{1}{2\sqrt{5}}.$$

Omeem: $arctg \frac{\sqrt{5}}{10}$.



Решение.

Пусть S — вершина конуса, SAB — искомое сечение. Треугольник SAB равнобедренный, так как SA = SB — образующие конуса. Пусть M — середина AB, тогда по условию $\sin \angle SMO = \frac{2}{3}$, а OS = 6.

Из прямоугольного треугольника SMO находим:

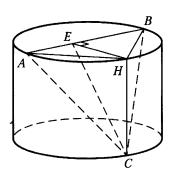
$$SM = 6: \frac{2}{3} = 9; \quad OM = \sqrt{81 - 36} = \sqrt{45} = 3\sqrt{5}.$$

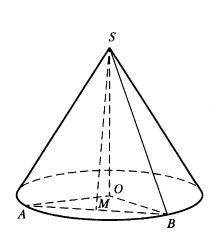
Из прямоугольного треугольника МАО получаем:

$$AM = \sqrt{49 - 45} = 2$$

откуда $S_{SAB} = \frac{1}{2} \cdot AB \cdot SM = 18.$

Omeem: 18.





4. Высота конуса равна 1, а радиус его основания равен 7. Плоскость проходит через вершину конуса таким образом, что сечение конуса этой плоскостью является прямоугольным треугольником. Найдите синус угла, который эта плоскость образует с плоскостью основания.

Решение.

Пусть S — вершина конуса, SAB — указанное сечение. Треугольник SAB равнобедренный, так как SA = SB — образующие конуса. По условию он также прямоугольный, поэтому $\angle ASB = 90^\circ$.

Пусть M — середина AB и O — центр основания конуса. Обозначим OM = x и

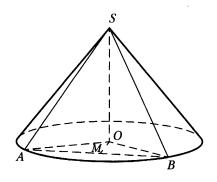
$$AM = BM = SM = y$$
.

Применяя теорему Пифагора к треугольникам SOM и AOM, запишем: $y^2 - x^2 = 1$ и $y^2 + x^2 = 49$. Сложив уравнения, найдём y = 5 (искать x не обязательно).

Из прямоугольного треугольника *SOM* находим:

$$\sin \angle SMO = \frac{SO}{SM} = 0.2.$$

Ответ: 0,2.



5. Радиус основания конуса с вершиной P равен 6, а длина его образующей равна 9. На окружности основания конуса выбраны точки A и B, делящие окружность на две дуги, длины которых относятся как 1:3. Найдите площадь сечения конуса плоскостью ABP.

Решение.

Пусть O — центр основания конуса, M — середина хорды AB. Дуга AB составляет четверть окружности основания, поэтому $\angle AOB = 90^\circ$. Треугольник равнобедренный, следовательно,

$$AB = 2AM = 2AO \cdot \sin \frac{\angle AOB}{2} = 6\sqrt{2}$$
.

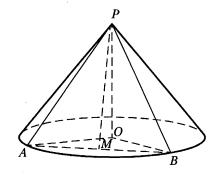
Равнобедренный треугольник APB — искомое сечение. Отрезок PM — его высота,

$$PM = \sqrt{AP^2 - AM^2} = 3\sqrt{7}.$$

Площадь искомого сечения равна

$$\frac{1}{2}PM\cdot AB = 9\sqrt{14}.$$

Ответ: $9\sqrt{14}$.



6. Две параллельные плоскости, расстояние между которыми равно 6, пересекают шар таким образом, что центр шара лежит между плоскостями. Площади сечений шара этими плоскостями равны 25π и 49π . Найдите радиус шара.

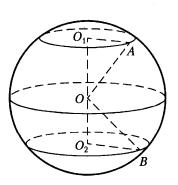
Решение.

Пусть O — центр шара, O_1 и O_2 — центры первого и второго сечений. Тогда OO_1 и OO_2 — перпендикуляры к плоскостям сечений, а так как плоскости параллельны, то O лежит на отрезке $O_1O_2=6$.

Пусть $OO_1 = x$, тогда $OO_2 = 6 - x$. Выберем на окружностях сечений точки A (на окружности первого сечения) и B (на окружности второго сечения). Радиусы сечений можно вычислить, зная их площади: они равны 5 и 7 соответственно.

Применяя теорему Пифагора к треугольникам OO_1A и OO_2B , запишем:

$$OA^2 = 25 + x^2$$
; $OB^2 = 49 + (6 - x)^2$.



Но OA = OB как радиусы шара, поэтому $25 + x^2 = 49 + (6 - x)^2$, откуда x = 5. Из треугольника OO_1A находим радиус шара:

$$OA = \sqrt{25 + x^2} = \sqrt{50} = 5\sqrt{2}$$
.

Omeem: $5\sqrt{2}$.

7. Диаметр шара перпендикулярен некоторой плоскости и делится ею в отношении 2:3. Площадь сечения шара указанной плоскостью равна 54π . Найдите радиус шара.

Решение.

Пусть AB — данный диаметр, O — центр шара, O_1 — центр круга, являющегося сечением, причём $O_1A < O_1B$.

Площадь данного сечения шара равна 54π , значит, радиус круга $3\sqrt{6}$.

Пусть $OO_1 = x$, тогда из условия следует, что $AO_1 = 4x$, $BO_1 = 6x$.

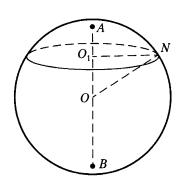
Пусть N — точка на границе круга, тогда из треугольника O_1ON находим по теореме Пифагора:

$$ON^2 = OO_1^2 + NO_1^2; \quad (3\sqrt{6})^2 + x^2 = 25x^2;$$

откуда $x = \frac{3}{2}$.

Радиус шара равен $R = \frac{AO_1 + BO_1}{2} = 5x = 7,5.$

Ответ: 7,5.



Задания для самостоятельного решения

- **1.** Правильная четырёхугольная пирамида SABCD, стороны основания которой равны 2, а боковые рёбра равны 3, расположена внутри цилиндра таким образом, что стороны AB и CD основания являются образующими цилиндра, а вершина S серединой образующей PQ. Найдите объём цилиндра.
- **2.** Отрезок AB = 8 диаметр верхнего основания цилиндра, а C точка на окружности нижнего основания. Найдите угол между плоскостью ABC и плоскостью основания цилиндра, если AC = 9 и BC = 11.
- **3.** Высота конуса равна 5, а радиус его основания равен 4. Плоскость проходит через вершину конуса и пересекает его основание, образуя с плоскостью основания угол $\frac{5}{6}$. Найдите площадь сечения конуса этой плоскостью.
- **4.** Высота конуса равна 1, а радиус его основания равен 3. Плоскость проходит через вершину конуса таким образом, что сечение конуса этой плоскостью является прямоугольным треугольником. Найдите синус угла, который эта плоскость образует с плоскостью основания.
- **5.** Радиус основания конуса с вершиной P равен 6, а длина его образующей равна 9. На окружности основания конуса выбраны точки A и B, делящие окружность на две дуги, длины которых относятся как 1:5. Найдите площадь сечения конуса плоскостью ABP.
- **6.** Две параллельные плоскости, расстояние между которыми равно 7, пересекают шар таким образом, что центр шара лежит между плоскостями. Площади сечений шара этими плоскостями равны 18π и 25π . Найдите радиус шара.
- **7.** Диаметр шара перпендикулярен некоторой плоскости и делится ею в отношении 1:6. Площадь сечения шара указанной плоскостью равна 150 π . Найдите радиус шара.

5. ПЛАНИМЕТРИЯ

5.1. Планиметрические задачи (одна конфигурация с окружностью)

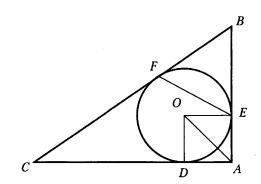
- **1.** В треугольник ABC вписана окружность радиуса R, касающаяся стороны AC в точке D, причём AD = R.
 - а) Докажите, что треугольник АВС прямоугольный.
- б) Вписанная окружность касается сторон AB и BC в точках E и F. Найдите площадь треугольника BEF, если известно, что R=5 и CD=15.

Решение.

а) Пусть O — центр вписанной окружности треугольника ABC (см. рис.).

Центр окружности, вписанной в угол, лежит на его биссектрисе, значит, AO — биссектриса угла BAC. Треугольник AOD прямоугольный и равнобедренный, поэтому $\angle AOD = 45^{\circ}$. Следовательно, $\angle BAC = 90^{\circ}$.

б) Пусть BF = x. По теореме о равенстве отрезков касательных, проведённых к окружности из одной точки, AE = AD = 5, CF = CD = 15 и BE = BF = x. По теореме Пифагора



$$BC^2 = AC^2 + AB^2;$$

или $(15+x)^2=20^2+(5+x)^2$. Из этого уравнения находим, что x=10. Тогда

$$BC = 25$$
, $\sin \angle ABC = \frac{AC}{BC} = \frac{20}{25} = \frac{4}{5}$.

Следовательно,

$$S_{\Delta BEF} = \frac{1}{2}BE \cdot BF \cdot \sin \angle ABC = \frac{1}{2} \cdot 10 \cdot 10 \cdot \frac{4}{5} = 40.$$

Omeem: 40.

- **2.** На гипотенузу AB прямоугольного треугольника ABC опустили высоту CH. Из точки H на катеты опустили перпендикуляры HK и HE.
 - а) Докажите, что точки А, В, К и Е лежат на одной окружности.
 - б) Найдите радиус этой окружности, если AB = 12, CH = 5.

Решение.

а) Пусть точка E лежит на катете BC, а точка K — на катете AC (см. рис.). Проведём отрезок KE и заметим, что он является гипотенузой прямоугольного треугольника KCE, подобного треугольнику BCA.

Рассмотрим углы четырёхугольника ABEK. Пусть $\angle ABE = \alpha$, тогда

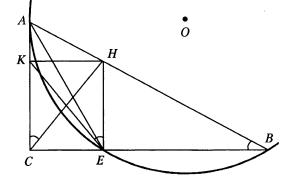
$$\angle BEK = \angle BEH + \angle HEK = 90^{\circ} + \alpha$$

$$a \angle KAB = 90^{\circ} - \alpha$$
.

Значит,

$$\angle BEK + \angle KAB = 90^{\circ} + \alpha + 90^{\circ} - \alpha = 180^{\circ}.$$

Сумма двух противоположных углов в четырёхугольнике 180°, следовательно, четырёхугольник вписан в окружность.



б) Радиус окружности, проходящей через точки А, В и Е, по теореме синусов равен

$$\frac{AB}{2\sin \angle BEA} = \frac{AE}{2\sin \angle ABC}.$$

Четырёхугольник CKHE является прямоугольником, значит, треугольники HEC и KCE равны. Из подобия треугольников BCA и KCE получаем, что $\frac{CE}{CH} = \frac{AC}{AB}$, откуда $CE = \frac{CH \cdot AC}{AB}$.

Тогда

$$AE = \sqrt{CE^2 + AC^2} = AC \cdot \sqrt{\frac{CH^2 + AB^2}{AB^2}} = \frac{AC}{AB} \cdot \sqrt{CH^2 + AB^2}.$$

Поэтому $\sin \angle AEC = \frac{AC}{AE} = \frac{AB}{\sqrt{CH^2 + AB^2}}$.

Следовательно, искомый радиус равен

$$AB: \frac{2AB}{\sqrt{CH^2 + AB^2}} = \frac{1}{2}\sqrt{CH^2 + AB^2} = \frac{13}{2}.$$

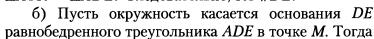
Ответ: 6,5.

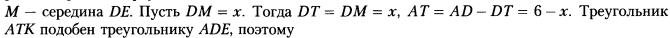
- **3.** Биссектриса угла ADC параллелограмма ABCD пересекает прямую AB в точке E. В треугольник ADE вписана окружность, касающаяся стороны AE в точке K и стороны AD в точке T.
 - а) Докажите, что прямые KT и DE параллельны.
 - б) Найдите угол BAD, если известно, что AD = 6 и KT = 3.

Решение.

а) Прямые AE и CD параллельны (см. рис.), а DE — биссектриса угла ADC, поэтому $\angle AED = \angle CDE = \angle ADE$. Значит, треугольник ADE равнобедренный, AD = AE. Отрезки AK и AT касательных, проведённых к окружности из точки A, равны, значит, треугольник ATK также равнобедренный.

Угол при вершине A у треугольников ATK и ADE общий, поэтому они подобны, а значит, $\angle ATK = \angle ADE$. Следовательно, $KT \parallel DE$.





$$\frac{AT}{AD} = \frac{TK}{DE}; \quad \frac{6-x}{6} = \frac{3}{2x},$$

откуда x = 3.

Получаем, что DE = 2x = 6, значит, треугольник ADE равносторонний. Следовательно, $\angle BAD = 60^{\circ}$.

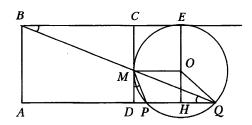
Ответ: 60°.

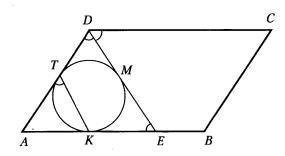
- **4.** Сторона CD прямоугольника ABCD касается некоторой окружности в точке M. Продолжение стороны AD пересекает окружность в точках P и Q, причём точка P лежит между точками B и Q. Прямая BC касается окружности, а точка Q лежит на прямой BM.
 - а) Докажите, что $\angle DPM = \angle CBM$.
 - б) Известно, что CM = 5 и CD = 8. Найдите сторону AD.

Решение.

а) Поскольку DMP — угол между касательной MD и хордой MP, а MQP — угол, вписанный в окружность, то $\angle DMP = \angle MQP = \angle MQD$.

Поскольку $\angle MQD = \angle CBM$ как накрест лежащие углы при пересечении двух параллельных прямых третьей, получаем, что $\angle DMP = \angle CBM$.





б) Пусть окружность с центром O касается прямой BC в точке E (см. рис.), а H — основание перпендикуляра, опущенного из точки O на PQ. Тогда H — середина хорды PQ. Так как CEOM — квадрат, OE = CM. Из прямоугольного треугольника OHQ находим, что

$$HQ = \sqrt{OQ^2 - OH^2} = \sqrt{OE^2 - DM^2} = \sqrt{5^2 - (8 - 5)^2} = \sqrt{25 - 9} = 4.$$

Поскольку $OE \perp PQ$, точки O, E и H лежат на одной прямой, CDHE — прямоугольник, а так как CE = CM = 5, получаем:

$$DQ = DH + HQ = CE + HQ = CM + HQ = 5 + 4 = 9.$$

Треугольник BCM подобен треугольнику QDM с коэффициентом $\frac{CM}{DM} = \frac{5}{3}$, следовательно,

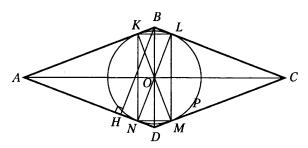
 $AD = BC = \frac{5}{3}DQ = \frac{5}{3} \cdot 9 = 15.$

Ответ: 15.

- 5. В параллелограмм вписана окружность.
 - а) Докажите, что этот параллелограмм ромб.
- б) Эта окружность, касающаяся стороны ромба, делит её на отрезки, равные 4 и 1. Найдите площадь четырёхугольника с вершинами в точках касания окружности со сторонами ромба.

Решение.

а) Пусть ABCD — данный параллелограмм. Если в четырёхугольник можно вписать окружность, то суммы его противоположных сторон равны, поэтому AB + CD = AD + BC, а т. к. противоположные стороны параллелограмма попарно равны, то 2AB = 2BC, или AB = BC. Значит, все стороны четырёхугольника ABCD равны. Следовательно, это ромб.



б) Пусть K, L, M и N- точки касания окружности радиуса R со сторонами соответственно AB, BC, CD и AD ромба (см. рис.), O- точка пересечения диагоналей ромба, AK=4, BK=1. Поскольку AO и BO- биссектрисы углов при вершинах A и B ромба, имеем:

$$\angle OAB + \angle OBA = \frac{1}{2}\angle DAB + \frac{1}{2}\angle ABC = \frac{1}{2}(\angle DAB + \angle ABC) = \frac{1}{2} \cdot 180^{\circ} = 90^{\circ},$$

значит, $\angle AOB = 90^{\circ}$.

Отрезок OK = R — высота прямоугольного треугольника AOB, проведённая из вершины прямого угла, поэтому

$$R^2 = AK \cdot BK = 4 \cdot 1 = 4,$$

откуда R=2.

Пусть $\angle BAD = \alpha$. Будем считать, что $\alpha < 90^\circ$. Пусть BH — высота ромба, опущенная на сторону AD. Тогда

$$KM = LN = BH = 2R = 4$$
; $\sin \alpha = \sin \angle BAD = \sin \angle BAH = \frac{BH}{AB} = \frac{4}{5}$.

Угол между диагоналями *KM* и *LN* четырёхугольника *KLMN* равен углу *BAD* (углы с соответственно перпендикулярными сторонами). По формуле площади четырёхугольника получаем:

$$S_{KLMN} = \frac{1}{2}KM \cdot LN \sin \alpha = \frac{1}{2} \cdot 4 \cdot 4 \cdot \frac{4}{5} = \frac{32}{5} = 6.4.$$

Ответ: 6,4.

- **6.** Около остроугольного треугольника ABC описана окружность с центром O. На продолжении отрезка AO за точку O отмечена точка K так, что $\angle BAC + \angle AKC = 90^{\circ}$.
 - а) Докажите, что четырёхугольник ОВКС вписанный.
- 6) Найдите радиус окружности, описанной около четырёхугольника OBKC, если $\cos \angle BAC = \frac{3}{5}$, а BC = 48.

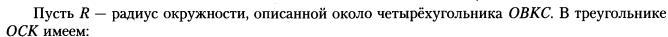
а) Пусть $\angle BAC = \alpha$, тогда $\angle OKC = \angle AKC = 90^{\circ} - \alpha$ и $\angle BOC = 2\angle BAC = 2\alpha$. Треугольник BOC равнобедренный, следовательно,

$$\angle OBC = \angle OCB = \frac{180^{\circ} - 2\alpha}{2} = 90^{\circ} - \alpha; \quad \angle OBC = \angle OKC.$$

Получаем, что точки *O*, *B*, *K* и *C* лежат на одной окружности. Следовательно, четырёхугольник вписанный.

6) По условию $\cos \angle BAC = \frac{3}{5}$, поэтому $\sin \angle BAC = \frac{4}{5}$. Радиус окружности, описанной около треугольника ABC, равен

$$OC = \frac{BC}{2\sin \angle BAC} = \frac{48}{2 \cdot \frac{4}{5}} = 30.$$



$$R = \frac{OC}{2\sin \angle OKC} = \frac{OC}{2\sin(90^{\circ} - \alpha)} = \frac{OC}{2\cos \alpha} = \frac{30}{2 \cdot \frac{3}{5}} = 25.$$

Ответ: 25.

- **7.** Высоты BB_1 и CC_1 остроугольного треугольника ABC пересекаются в точке H.
 - а) Докажите, что $\angle BB_1C_1 = \angle BAH$.
- 6) Найдите расстояние от центра окружности, описанной около треугольника ABC, до стороны BC, если $B_1C_1 = 10\sqrt{3}$ и $\angle BAC = 60^\circ$.

Решение.

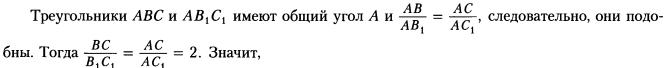
- а) В четырёхугольнике AC_1HB_1 углы C_1 и B_1 прямые, следовательно, около этого четырёхугольника можно описать окружность, причём AH её диаметр. Вписанные углы HB_1C_1 и HAC_1 опираются на одну дугу, следовательно, они равны, а значит, $\angle BB_1C_1 = \angle BAH$.
 - б) В прямоугольном треугольнике BB_1A_1 имеем:

$$AB_1 = AB \cdot \cos \angle BAB_1 = AB \cdot \cos 60^\circ = \frac{1}{2}AB.$$

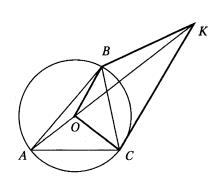
В прямоугольном треугольнике CC_1A имеем:

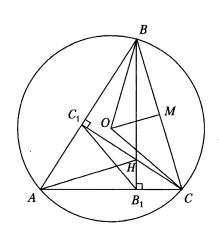
$$AC_1 = AC \cdot \cos \angle CAC_1 = AC \cdot \cos 60^\circ = \frac{1}{2}AC.$$

Получаем, что $\frac{AB}{AB_1} = \frac{AC}{AC_1}$.



$$BC = 2B_1C_1 = 20\sqrt{3}$$
.





Пусть O — центр окружности, описанной около треугольника ABC, M — середина стороны BC. Тогда расстояние от точки O до стороны BC равно длине отрезка OM. Треугольник BOC — равнобедренный, следовательно,

$$\angle COM = \frac{1}{2} \angle BOC = \angle BAC = 60^{\circ}.$$

В прямоугольном треугольнике ОМС имеем:

$$OM = MC \cdot \operatorname{ctg} \angle MOC = \frac{BC}{2} \cdot \operatorname{ctg} 60^{\circ} = \frac{20\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{3} = 10.$$

Ответ: 10.

Задания для самостоятельного решения

- **1.** В треугольник ABC вписана окружность радиуса R, касающаяся стороны AC в точке D, причём AD=R.
 - а) Докажите, что треугольник АВС прямоугольный.
- б) Вписанная окружность касается сторон AB и BC в точках E и F. Найдите площадь треугольника BEF, если известно, что R=2 и CD=10.
- **2.** На гипотенузу AB прямоугольного треугольника ABC опустили высоту CH. Из точки H на катеты опустили перпендикуляры HK и HE.
 - а) Докажите, что точки А, В, К и Е лежат на одной окружности.
 - б) Найдите радиус этой окружности, если AB = 24, CH = 7.
- **3.** Биссектриса угла ADC параллелограмма ABCD пересекает прямую AB в точке E. В треугольник ADE вписана окружность, касающаяся стороны AE в точке K и стороны AD в точке T.
 - а) Докажите, что прямые KT и DE параллельны.
 - б) Найдите угол BAD, если известно, что сторона AD = 8 и KT = 4.
- **4.** Сторона CD прямоугольника ABCD касается некоторой окружности в точке M. Продолжение стороны AD последовательно пересекает окружность в точках P и Q, прямая BC касается окружности, а точка Q лежит на прямой BM.
 - а) Докажите, что $\angle DMP = \angle CBM$.
 - б) Известно, что CM = 13 и CD = 18. Найдите сторону AD.
- **5.** В параллелограмм вписана окружность.
 - а) Докажите, что этот параллелограмм ромб.
- б) Эта окружность, касающаяся стороны ромба, делит её на отрезки, равные 5 и 1. Найдите площадь четырёхугольника с вершинами в точках касания окружности со сторонами ромба.
- **6.** Около остроугольного треугольника ABC описана окружность с центром O. На продолжении отрезка AO за точку O отмечена точка K так, что $\angle BAC + \angle AKC = 90^{\circ}$.
 - а) Докажите, что четырёхугольник ОВКС вписанный.
- 6) Найдите радиус окружности, описанной около четырёхугольника OBKC, если $\cos \angle BAC = \frac{4}{5}$, а BC = 96.
- **7.** Высоты BB_1 и CC_1 остроугольного треугольника ABC пересекаются в точке H.
 - а) Докажите, что $\angle BB_1C_1 = \angle BAH$.
- б) Найдите расстояние от центра окружности, описанной около треугольника ABC, до стороны BC, если $B_1C_1=9\sqrt{3}$ и $\angle BAC=30^\circ$.

5.2. Планиметрические задачи (одна конфигурация без окружности)

- **1.** На диагонали параллелограмма взяли точку, отличную от её середины. Из неё на все стороны параллелограмма (или их продолжения) опустили перпендикуляры.
- а) Докажите, что четырёхугольник, образованный основаниями этих перпендикуляров, является трапецией.
- б) Найдите площадь полученной трапеции, если площадь параллелограмма равна 16, а один из его углов равен 60°.

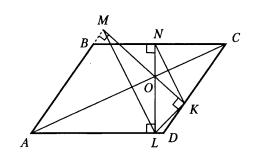
Решение.

а) Возьмём на диагонали AC параллелограмма ABCD точку O, отличную от её середины, и проведём через неё перпендикуляры NL и KM к сторонам параллелограмма (см. рис.). Прямоугольные треугольники CKO и AMO подобны. Точно так же подобны треугольники CNO и ALO, откуда

$$OK:OM = OC:OA = ON:OL.$$

Отсюда следует подобие треугольников ONK и OLM. Тогда накрест лежащие углы OML и OKN равны, а поэтому прямые NK и ML параллельны. Следовательно, четырёхугольник KLMN — параллелограмм или трапеция.

Докажем, что это трапеция. Если KLMN — параллелограмм, то ON = OL. В этом случае OC = OA, то есть O — середина AC. Противоречие. Значит, KLMN — трапеция.



б) Пусть S — площадь параллелограмма, а его острый угол — α . Угол между диагоналями NL и KM трапеции KLMN равен углу между перпендикулярными им прямыми BC и CD, то есть этот угол равен α . Поэтому площадь трапеции равна:

$$\frac{1}{2} \cdot NL \cdot KM \cdot \sin \alpha = \frac{1}{2} \cdot \frac{S}{AD} \cdot \frac{S}{AB} \cdot \sin \alpha = \frac{S \cdot AD \cdot AB \cdot \sin^2 \alpha}{2 \cdot AD \cdot AB} = \frac{S \sin^2 \alpha}{2}.$$

Подставляя $\alpha = 60^{\circ}$ и S = 16, получаем, что площадь трапеции равна

$$\frac{16\sin^2 60^\circ}{2} = \frac{16 \cdot 3}{8} = 6.$$

Ответ: 6.

- **2.** Дан четырёхугольник *АВСD*.
- а) Докажите, что отрезки LN и KM, соединяющие середины его противоположных сторон, делят друг друга пополам.
 - б) Найдите площадь четырёхугольника ABCD, если $LM=3\sqrt{3},~KM=6\sqrt{3},~\angle KML=60^{\circ}.$

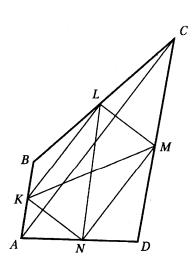
Решение.

- а) Пусть K, L, M и N середины сторон соответственно AB, BC, CD и AD четырёхугольника ABCD (см. рис.). Тогда KL и MN средние линии треугольников ABC и ADC соответственно. Значит, $KL = \frac{1}{2}AC = MN$ и $KL \parallel AC \parallel MN$, поэтому KLMN параллелограмм. Его диагонали KM и LN делят друг друга пополам.
 - б) В треугольнике КLМ имеем:

$$KL^2 = KM^2 + ML^2 - 2KM \cdot ML \cdot \cos 60^\circ = 81.$$

Получаем, что $KM^2 = KL^2 + LM^2$, поэтому треугольник KLM прямоугольный с прямым углом при вершине L. Значит, KLMN — прямоугольник, поэтому

$$S_{KLMN} = KL \cdot LM = 9 \cdot 3\sqrt{3} = 27\sqrt{3}.$$



Пусть искомая площадь четырёхугольника ABCD равна S. Поскольку KL — средняя линия треугольника ABC, то $S_{\Delta KBL}=\frac{1}{4}S_{\Delta ABC}$. Аналогично $S_{\Delta MDN}=\frac{1}{4}S_{\Delta ADC}$. Значит,

$$S_{\Delta KBL} + S_{\Delta MDN} = \frac{1}{4} S_{\Delta ABC} + \frac{1}{4} S_{\Delta ADC} = \frac{1}{4} \left(S_{\Delta ABC} + S_{\Delta ADC} \right) = \frac{1}{4} S.$$

Аналогично $S_{\Delta CML} + S_{\Delta AKN} = \frac{1}{4}S$. Поэтому

$$S_{KLMN} = S - \frac{1}{4}S - \frac{1}{4}S = \frac{1}{2}S.$$

Следовательно, $S = 2S_{KLMN} = 2 \cdot 27\sqrt{3} = 54\sqrt{3}$.

Ответ: $54\sqrt{3}$.

- **3.** На отрезке BD взята точка C. Биссектриса BL равнобедренного треугольника ABC с основанием BC является боковой стороной равнобедренного треугольника BLD с основанием BD.
 - а) Докажите, что треугольник DCL равнобедренный.
 - б) Известно, что $\cos \angle ABC = \frac{1}{3}$. В каком отношении прямая *DL* делит сторону *AB*?

Решение.

а) Пусть $\angle ABL = \angle CBL = \alpha$. Тогда

$$\angle ACB = \angle ABC = 2\alpha; \quad \angle BDL = \angle DBL = \alpha.$$

Угол ACB — внешний угол треугольника DCL, значит,

$$\angle DLC = \angle ACB - \angle CDL = 2\alpha - \alpha = \alpha.$$

Получаем, что $\angle DLC = \angle CDL$, следовательно, треугольник DCL равнобедренный.

6) Пусть AH — высота равнобедренного треугольника ABC (см. рис.). Тогда H — середина BC. Биссектриса треугольника делит его сторону на отрезки, пропорциональные двум другим сторонам, поэтому $\frac{CL}{AL} = \frac{BC}{AB}$.

Из прямоугольного треугольника АВН имеем:

$$\frac{BH}{AB} = \cos \angle ABC = \cos 2\alpha = \frac{1}{3}$$

значит,
$$\frac{CL}{AL}=\frac{BC}{AB}=\frac{2BH}{AB}=\frac{2}{3}$$
, откуда $AL=\frac{3}{5}AC=\frac{3}{5}AB$.

Пусть прямая DL пересекает сторону AB в точке M. Тогда

$$\angle AML = 180^{\circ} - \angle MAL - \angle ALM = 180^{\circ} - (180^{\circ} - 4\alpha) - \alpha = 3\alpha.$$

Применив теорему синусов к треугольнику AML, получим, что $\frac{AM}{\sin\alpha} = \frac{AL}{\sin3\alpha}$, откуда

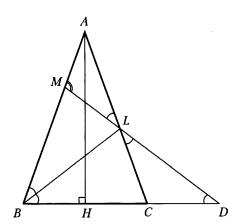
$$AM = \frac{AL\sin\alpha}{\sin3\alpha} = \frac{AL\sin\alpha}{\sin(\alpha + 2\alpha)} = \frac{AL\sin\alpha}{\sin\alpha\cos2\alpha + \cos\alpha\sin2\alpha} =$$

$$= \frac{AL\sin\alpha}{\sin\alpha(\cos2\alpha + 2\cos^2\alpha)} = \frac{AL}{\cos2\alpha + 1 + \cos2\alpha} = \frac{AL}{2\cos2\alpha + 1} =$$

$$= \frac{3}{5}AL = \frac{3}{5} \cdot \frac{3}{5}AB = \frac{9}{25}AB.$$

Значит,
$$MB=AB-AM=\frac{16}{25}AB$$
. Следовательно, $\frac{AM}{MB}=\frac{9}{16}$.

Ответ: 9:16.



- **4.** На сторонах AD и BC параллелограмма ABCD взяты соответственно точки M и N, причём M середина AD, а BN:NC=1:3.
 - а) Докажите, что прямые AN и AC делят отрезок BM на три равные части.
- б) Найдите площадь четырёхугольника, вершины которого находятся в точках C, N и точках пересечения прямой BM с прямыми AN и AC, если площадь параллелограмма ABCD равна 48.

а) Обозначим точки пересечения прямой BM с прямыми AN и AC буквами P и R соответственно.

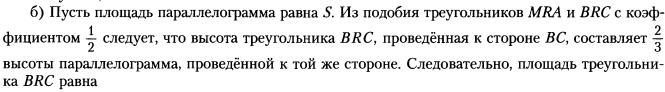
Пусть O — точка пересечения диагоналей параллелограмма (см. рис.). Тогда AO и BM — медианы треугольника ABD, значит, $MR=\frac{1}{3}BM$.

Треугольники BPN и MPA подобны. Следовательно, находим, что

$$\frac{BP}{PM} = \frac{BN}{AM} = \frac{1}{2}.$$

Значит, $BP = \frac{1}{3}BM$.

Получаем, что BP = PR = RM.



$$S_{BRC} = \frac{1}{2} \cdot \frac{2}{3} \cdot S = \frac{S}{3}.$$

Аналогично найдём площадь треугольника BNP. Его высота, проведённая к BN, составляет $\frac{1}{3}$ высоты параллелограмма, проведённой к стороне BC, а сама сторона BN в четыре раза меньше стороны параллелограмма BC.

Поэтому

$$S_{BNP} = \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} S = \frac{1}{24} S.$$

Следовательно, площадь четырёхугольника PRCN равна

$$S_{BRC} - S_{BNP} = \frac{1}{3}S - \frac{1}{24}S = \frac{7}{24}S = \frac{7}{24} \cdot 48 = 14.$$

Ответ: 14.

- **5.** Высоты BB_1 и CC_1 остроугольного треугольника ABC пересекаются в точке H.
 - а) Докажите, что $\angle AHB_1 = \angle ACB$.
 - б) Найдите BC, если $AH=8\sqrt{3}$ и $\angle BAC=60^{\circ}$.

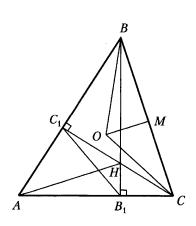
Решение.

а) В четырёхугольнике AC_1HB_1 углы C_1 и B_1 — прямые, следовательно, около этого четырёхугольника можно описать окружность, причём AH — её диаметр. Вписанные углы AC_1B_1 и AHB_1 опираются на одну дугу, следовательно, $\angle AHB_1 = \angle AC_1B_1$.

Углы BC_1C и BB_1C прямые, значит, точки B, C, B_1 и C_1 лежат на окружности с диаметром BC. Следовательно,

$$\angle AC_1B_1 = 180^{\circ} - \angle BC_1B_1 = \angle BCB_1.$$

Получаем, что $\angle ACB = \angle AHB_1$.



3x

2x

б) В треугольнике AB_1C_1 диаметр описанной окружности $AH=8\sqrt{3}$, откуда

$$B_1C_1 = AH \cdot \sin \angle BAC = AH \cdot \sin 60^\circ = 12.$$

В прямоугольном треугольнике BB_1A имеем:

$$AB_1 = AB \cdot \cos \angle BAB_1 = AB \cdot \cos 60^\circ = \frac{1}{2}AB.$$

В прямоугольном треугольнике CC_1A имеем:

$$AC_1 = AC \cdot \cos \angle CAC_1 = AC \cdot \cos 60^\circ = \frac{1}{2}AC.$$

Получаем, что $\frac{AB}{AB_1} = \frac{AC}{AC_1}$.

Треугольники ABC и AB_1C_1 имеют общий угол A и $\frac{AB}{AB_1}=\frac{AC}{AC_1}$, следовательно, они подобны. Тогда $\frac{BC}{B_1C_1}=\frac{AC}{AC_1}=2$. Значит,

$$BC = 2B_1C_1 = 24.$$

Ответ: 24.

- **6.** В остроугольном треугольнике ABC провели высоту BH. Из точки H на стороны AB и AC опустили перпендикуляры HK и HM соответственно.
 - а) Докажите, что треугольник МВК подобен треугольнику АВС.
- б) Найдите отношение площади треугольника MBK к площади четырёхугольника AKMC, если BH=3, а радиус окружности, описанной около треугольника ABC, равен 4.

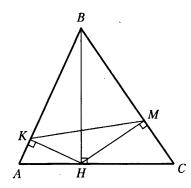
Решение.

а) В четырёхугольнике KBMH углы K и M — прямые, следовательно, около этого четырёхугольника можно описать окружность, причём BH — её диаметр. Вписанные углы BKM и BHM опираются на одну дугу, следовательно,

$$\angle BKM = \angle BHM = 90^{\circ} - \angle HBM = \angle BCA$$
.

Треугольники MBK и ABC имеют общий угол B и $\angle BKM = \angle BCA$. Значит, эти треугольники подобны.

6) Радиус окружности, описанной около треугольника MBK, равен $\frac{1}{2}BH=\frac{3}{2}$. Радиус окружности, описанной около треугольника ABC, равен 4. Значит, треугольники MBK и ABC подобны с коэффициентом подобия $\frac{3}{8}$. Получаем, что



$$\frac{S_{MBK}}{S_{ABC}} = \left(\frac{3}{8}\right)^2 = \frac{9}{64}.$$

Следовательно, искомое отношение равно

$$\frac{S_{MBK}}{S_{AKMC}} = \frac{S_{MBK}}{S_{ABC} - S_{MBK}} = \frac{\frac{S_{MBK}}{S_{ABC}}}{1 - \frac{S_{MBK}}{S_{ABC}}} = \frac{\frac{9}{64}}{1 - \frac{9}{64}} = \frac{9}{55}.$$

Omeem: $\frac{9}{55}$.

Задания для самостоятельного решения

- **1.** На диагонали параллелограмма взяли точку, отличную от её середины. Из неё на все стороны параллелограмма (или их продолжения) опустили перпендикуляры.
- а) Докажите, что четырёхугольник, образованный основаниями этих перпендикуляров, является трапецией.
- б) Найдите площадь полученной трапеции, если площадь параллелограмма равна 24, а один из его углов равен 45°.
- **2.** Дан четырёхугольник *ABCD*.
- а) Докажите, что отрезки LN и KM, соединяющие середины его противоположных сторон, делят друг друга пополам.
 - б) Найдите площадь четырёхугольника ABCD, если KL=6, $KM=4\sqrt{3}$, $\angle MKL=30^\circ$.
- **3.** На отрезке BD взята точка C. Биссектриса BL равнобедренного треугольника ABC с основанием BC является боковой стороной равнобедренного треугольника BLD с основанием BD.
 - а) Докажите, что треугольник DCL равнобедренный.
 - б) Известно, что $\cos \angle ABC = \frac{2}{3}$. В каком отношении прямая DL делит сторону AB?
- **4.** Точка M середина стороны AD параллелограмма ABCD. Из вершины A проведены два луча, которые разбивают отрезок BM на три равные части.
 - а) Докажите, что один из лучей содержит диагональ параллелограмма.
- б) Найдите площадь четырёхугольника, ограниченного двумя проведёнными лучами и прямыми *BD* и *BC*, если площадь параллелограмма *ABCD* равна 40.
- **5.** Высоты BB_1 и CC_1 остроугольного треугольника ABC пересекаются в точке H.
 - а) Докажите, что $\angle AHB_1 = \angle ACB$.
 - б) Найдите BC, если $AH = 10\sqrt{3}$ и $\angle BAC = 30^{\circ}$.
- **6.** В остроугольном треугольнике ABC провели высоту BH. Из точки H на стороны AB и BC опустили перпендикуляры HK и HM соответственно.
 - а) Докажите, что треугольник МВК подобен треугольнику АВС.
- б) Найдите отношение площади треугольника MBK к площади четырёхугольника AKMC, если BH=2, а радиус окружности, описанной около треугольника ABC, равен 3.

5.3. Планиметрические задачи (две конфигурации)

1. В треугольнике ABC известны стороны: AB = 7, BC = 9, AC = 10. Окружность, проходящая через точки A и C, пересекает прямые AB и BC соответственно в точках K и L, отличных от вершин треугольника. Отрезок KL касается окружности, вписанной в треугольник ABC. Найдите длину отрезка KL.

Решение.

Обе точки K и L не могут лежать вне треугольника, поскольку в этом случае отрезок KL не может касаться вписанной окружности. Значит, по крайней мере одна из этих точек лежит на стороне треугольника.

Пусть обе точки K и L лежат на сторонах треугольника (рис. 1). Четырёхугольник AKLC — вписанный, следовательно,

$$\angle KAC = 180^{\circ} - \angle KLC = \angle BLK$$
.

Значит, треугольник ABC подобен треугольнику LBK, так как угол ABC — общий. Пусть коэффициент подобия равен k, тогда BL = kAB, BK = kBC, KL = kAC. Суммы противоположных сторон описанного четырёхугольника AKLC равны:

$$AK + LC = KL + AC;$$

$$AB(1-k) + BC(1-k) = AC(1+k);$$

$$k = \frac{AB + BC - AC}{AC + AB + BC}.$$

Подставляя известные значения сторон, находим $k=\frac{7+9-10}{7+9+10}=\frac{3}{13}.$ Следовательно, $KL=\frac{3}{13}AC=\frac{30}{13}.$

Пусть точка K лежит на продолжении стороны AB (рис. 2). Углы AKL и ACL равны, поскольку опираются на одну дугу. Значит, треугольник ABC подобен треугольнику LBK, так как угол ABC — общий. Более того, они описаны около одной и той же окружности. Следовательно, коэффициент подобия равен 1, то есть треугольники LBK и ABC равны, поэтому KL = AC = 10. Заметим, что BK = BC > AB и точка K действительно лежит на продолжении стороны AB.

Если точка L лежит на продолжении стороны BC, то BL > BC, но аналогично предыдущему случаю получаем BL = AB < BC. Значит, этот случай не достигается.

Ответ:
$$\frac{30}{13}$$
 или 10.

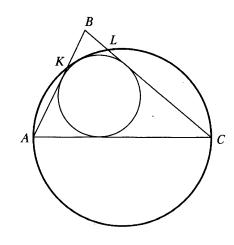


Рис. 1

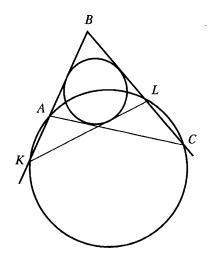


Рис. 2

2. Дан треугольник со сторонами 26, 26 и 20. Внутри него расположены две равные касающиеся окружности, каждая из которых касается двух сторон треугольника. Найдите радиусы окружностей.

Решение.

Рассмотрим равнобедренный треугольник ABC, в котором AB = AC = 26, BC = 20. Пусть AH — высота треугольника ABC. Тогда H — середина BC.

Обозначим $\angle ABC = \angle ACB = \alpha$. Тогда

$$\cos \alpha = \frac{BH}{AB} = \frac{5}{13}$$
, $\sin \alpha = \frac{12}{13}$, $tg\alpha = \frac{12}{5}$.

Предположим, что окружность радиуса r с центром O_1 вписана в угол ACB и касается основания BC в точке N, а окружность того же радиуса с центром O_2 вписана в угол ABC, касается основания BC в точке M, а первой окружности — в точке D (рис. 1).

Центр окружности, вписанной в угол, лежит на его биссектрисе, поэтому

$$\angle O_2BM = \operatorname{tg} \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{2}{3}.$$

Из прямоугольного треугольника BMO_2 находим:

$$BM = O_2 M \cdot \operatorname{ctg} \angle MBO_2 = r \cdot \operatorname{ctg} \frac{\alpha}{2} = \frac{3}{2}r.$$

Аналогично, $CN = BM = \frac{3}{2}r$.

Линия центров касающихся окружностей проходит через точку их касания, поэтому $O_1O_2=2r$, значит, $MN=O_1O_2=2r$, поскольку O_1O_2MN — прямоугольник. Следовательно,

$$20 = BC = BM + MN + CN = \frac{3}{2}r + 2r + \frac{3}{2}r = 5r,$$
откуда находим $r = 4$.

Пусть теперь окружность радиуса r с центром O_1 вписана в угол BAC и касается боковой стороны AB в точке P, вторая окружность радиуса r с центром O_2 вписана в угол ABC, касается боковой стороны AB в точке Q, а также касается первой окружности (рис. 2).

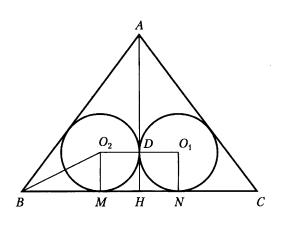


Рис. 1

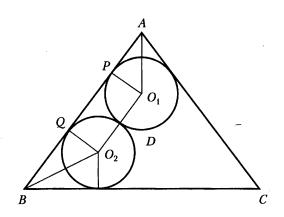


Рис. 2

Из прямоугольных треугольников APO_1 и BQO_2 находим:

$$AP = O_1 P \cdot \operatorname{ctg} \angle PAO_1 = r \cdot \operatorname{tg} \alpha = \frac{12}{5}r,$$

$$BQ = O_2Q \cdot \operatorname{ctg} \angle QBO_2 = r \cdot \operatorname{ctg} \frac{\alpha}{2} = \frac{3}{2}r.$$

Следовательно, аналогично предыдущему случаю,

$$26 = AB = AP + PQ + QB = AP + O_1O_2 + QB = \frac{12}{5}r + 2r + \frac{3}{2}r = \frac{59}{10}r,$$

откуда находим $r = \frac{260}{59}$.

В случае, когда окружности вписаны в углы ВАС и АСВ, получим тот же результат.

Ответ: 4 или $\frac{260}{59}$.

3. Боковые стороны KL и MN трапеции KLMN равны 8 и 17 соответственно. Отрезок, соединяющий середины диагоналей, равен 7,5, средняя линия трапеции равна 17,5. Прямые KL и MN пересекаются в точке A. Найдите радиус окружности, вписанной в треугольник ALM.

Решение.

В любой трапеции отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований трапеции, а средняя линия — полусумме оснований трапеции. В нашем случае полуразность оснований равна 7,5, а полусумма оснований равна 17,5, поэтому основания трапеции равны 10 и 25.

Предположим, что LM=25, KN=10 (рис. 1). Стороны LM и KN треугольников ALM и AKN параллельны, поэтому эти треугольники подобны с коэффициентом $k=\frac{2}{5}$. Значит,

$$AL = \frac{KL}{1-k} = \frac{40}{3}, \quad AM = \frac{MN}{1-k} = \frac{85}{3}.$$

Заметим, что $AL^2 + LM^2 = AM^2$, поэтому треугольник ALM — прямоугольный с гипотенузой AM. Радиус его вписанной окружности равен:

$$r = \frac{AL + LM - AM}{2} = 5.$$

Пусть теперь KN=25, LM=10 (рис. 2). Аналогично предыдущему случаю можно показать, что радиус вписанной окружности треугольника AKN равен 5. Треугольники AKN и ALM подобны с коэффициентом $k=\frac{2}{5}$. Значит, радиус вписанной окружности треугольника ALM равен r=5k=2.

Ответ: 2 или 5.

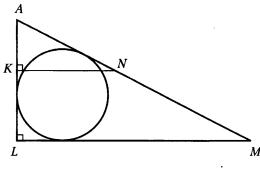
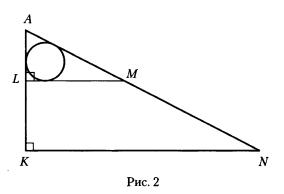


Рис. 1



4. На прямой, содержащей биссектрису AD прямоугольного треугольника ABC с прямым углом C, взята точка E, удалённая от вершины A на расстояние, равное $\sqrt{26}$. Найдите площадь треугольника BCE, если BC = 5, AC = 12.

Решение.

По теореме Пифагора AB = 13.

Пусть точка E лежит на луче AD. Биссектриса AD длиннее катета AC, AE < AC, поэтому AD длиннее AE и точка E лежит внутри треугольника ABC (рис. 1).

Опустим из точки E перпендикуляр EF на прямую AC и рассмотрим подобные прямоугольные треугольники AFE и ACD. Точка D делит BC на отрезки, пропорциональные AB и AC. Поэтому

$$DC = \frac{AC \cdot BC}{AC + AB} = \frac{12}{5};$$

 $AD = \sqrt{AC^2 + DC^2} = \frac{12}{5}\sqrt{26}.$

Из подобия треугольников AFE и ACD находим:

$$AF = \frac{AE}{AD} \cdot AC = 5.$$

Следовательно, CF = AC - AF = 7. Тогда

$$S_{BCE} = \frac{1}{2} \cdot BC \cdot CF = 17,5.$$

Пусть теперь точка A лежит между E и D (рис. 2). В этом случае

$$CF = AC + AF = 17.$$

Тогда
$$S_{BCE}=\frac{1}{2}\cdot BC\cdot CF=42,5.$$

Ответ: 17,5 или 42,5.

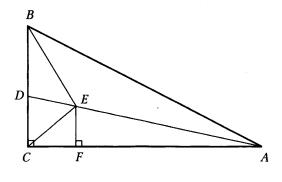


Рис. 1

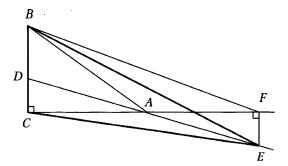


Рис. 2

- **5.** Одна окружность вписана в прямоугольную трапецию, а вторая касается большей боковой стороны и продолжений оснований.
- а) Докажите, что расстояние между центрами окружностей равно большей боковой стороне трапеции.
- б) Найдите расстояние от вершины одного из прямых углов трапеции до центра второй окружности, если точка касания первой окружности с большей боковой стороной трапеции делит её на отрезки, равные 2 и 8.

а) Пусть O — центр окружности, вписанной в прямоугольную трапецию ABCD с основаниями AD и BC, O_1 — центр окружности, касающейся большей боковой стороны и продолжений оснований трапеции (рис. 1).

Точка O лежит на биссектрисах углов BCD и ADC, следовательно,

$$\angle COD = 180^{\circ} - \frac{1}{2} \angle BCD - \frac{1}{2} \angle ADC = 90^{\circ}.$$

Точка O_1 лежит на биссектрисе угла, смежного с углом BCD, значит, $\angle OCO_1 = 90^\circ$. Аналогично, углы CO_1D и ODO_1 — прямые.

Значит, OCO_1D — прямоугольник, поэтому

$$CD = OO_1$$
.

б) Пусть окружность, вписанная в трапецию ABCD, касается стороны AD в точке P, а стороны CD — в точке M, вторая окружность касается прямой AD в точке Q (рис. 2).

Радиусы окружностей OP и O_1Q равны половине расстояния между параллельными прямыми AD и BC. Получаем, что OO_1QP — прямоугольник, следовательно, $OO_1=PQ$.

В прямоугольном треугольнике СОД имеем:

$$OM = \sqrt{CM \cdot MD} = 4.$$

 $AQ = AP + PQ = OP + OO_1 = OM + CD = 14.$

В прямоугольном треугольнике AQO_1 имеем:

$$AO_1 = \sqrt{AQ^2 + QO_1^2} = 2\sqrt{53}.$$

Расстояние от вершины прямого угла трапеции до центра второй окружности равно

$$BO_1 = AO_1 = 2\sqrt{53}$$
.

Ответ: 6) $2\sqrt{53}$.

6. Окружности радиусов 2 и 3 с центрами O_1 и O_2 соответственно касаются в точке A. Прямая, проходящая через точку A, вторично пересекает меньшую окружность в точке B, а большую — в точке C. Найдите площадь треугольника BCO_2 , если $\angle ABO_1 = 30^\circ$.

Решение.

Точки O_1 , O_2 и A лежат на одной прямой. Поскольку треугольники BO_1A и CO_2A равнобедренные,

$$\angle ABO_1 = \angle BAO_1 = \angle CAO_2 = \angle ACO_2 = 30^\circ$$

откуда $AB = 2O_1A \cdot \cos 30^\circ = 2\sqrt{3}$, $AC = 2O_2A \cdot \cos 30^\circ = 3\sqrt{3}$.

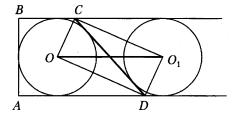


Рис. 1

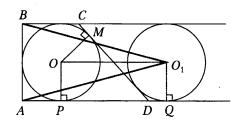


Рис. 2

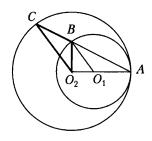


Рис. 1

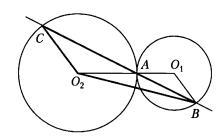


Рис. 2

Возможны два случая. Первый случай: окружности касаются внутренним образом (рис. 1), тогда точка B лежит между точками A и C, откуда $BC = AC - AB = \sqrt{3}$.

$$S_{BCO_2} = \frac{BC \cdot CO_2 \cdot \sin \angle BCO_2}{2} = \frac{3\sqrt{3}}{4}.$$

Второй случай: окружности касаются внешним образом (рис. 2), тогда точка A лежит между точками B и C, $BC = AC + AB = 5\sqrt{3}$.

$$S_{BCO_2} = \frac{BC \cdot CO_2 \cdot \sin \angle BCO_2}{2} = \frac{15\sqrt{3}}{4}.$$

$$Omsem: \frac{3\sqrt{3}}{4}$$
 или $\frac{15\sqrt{3}}{4}.$

7. Окружности радиусов 4 и 13 с центрами O_1 и O_2 соответственно касаются в точке L. Прямая, проходящая через точку L, вторично пересекает меньшую окружность в точке K, а большую — в точке M. Найдите площадь треугольника KMO_1 , если $\angle LMO_2 = 22,5^{\circ}$.

Решение.

Точки O_1 , O_2 и L лежат на одной прямой. Поскольку треугольники KO_1L и MO_2L равнобедренные,

$$\angle LKO_1 = \angle KLO_1 = \angle MLO_2 = \angle LMO_2 = 22,5^{\circ},$$

откуда

$$KL = 2O_1L \cdot \cos 22,5^\circ = 8 \cdot \cos 22,5^\circ,$$

 $LM = 2O_2L \cdot \cos 22,5^\circ = 26 \cdot \cos 22,5^\circ.$

Возможны два случая. Первый случай: окружности касаются внутренним образом (рис. 1), тогда точка K лежит между точками L и M, откуда $MK = LM - KL = 18 \cdot \cos 22,5^{\circ}$.

$$\begin{split} S_{KMO_1} &= \frac{MK \cdot KO_1 \cdot \sin \angle MKO_1}{2} = \frac{MK \cdot KO_1 \cdot \sin \angle LKO_1}{2} = \\ &= 36 \cdot \cos 22, 5^\circ \cdot \sin 22, 5^\circ = 9\sqrt{2}. \end{split}$$

Второй случай: окружности касаются внешним образом (рис. 2), тогда точка L лежит между точками K и M, $MK = LM + KL = 34 \cdot \cos 22,5^{\circ}$.

$$S_{KMO_1} = \frac{MK \cdot KO_1 \cdot \sin \angle MKO_1}{2} = 68 \cdot \cos 22,5^{\circ} \cdot \sin 22,5^{\circ} = 17\sqrt{2}.$$

Ответ: $9\sqrt{2}$ или $17\sqrt{2}$.

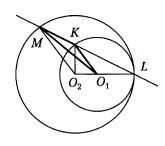


Рис. 1

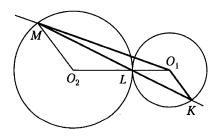


Рис. 2

8. Окружности радиусов 13 и 20 с центрами O_1 и O_2 соответственно касаются внешним образом в точке C, AO_1 и BO_2 — параллельные радиусы этих окружностей, причём $\angle AO_1O_2=60^\circ$. Найдите AB.

Решение.

Точки O_1 , O_2 и C лежат на одной прямой.

Возможны два случая. Первый случай: точки A и B лежат по одну сторону от прямой O_1O_2 (рис. 1). Отрезок AM параллелен отрезку O_1O_2 (точка M принадлежит радиусу BO_2), следовательно, O_1O_2MA — параллелограмм:

$$AM = O_1O_2 = 33, \quad O_1A = O_2M = 13,$$

 $\angle O_2MA = \angle AO_1O_2 = 60^{\circ}.$

B треугольнике AMB имеем MB=7, AM=33, $\angle AMB=120^{\circ},$ откуда

$$AB = \sqrt{AM^2 + MB^2 - 2 \cdot AM \cdot MB \cdot \cos \angle AMB} = 37.$$

Второй случай: точки A и B лежат по разные стороны от прямой O_1O_2 (рис. 2). Отрезок AM параллелен отрезку O_1O_2 (точка M лежит на продолжении радиуса BO_2 за точку O_2), следовательно, O_1O_2MA — параллелограмм:

$$AM = O_1O_2 = 33$$
, $O_1A = O_2M = 13$,
 $\angle O_2MA = \angle AO_1O_2 = 60^\circ$.

В треугольнике AMB имеем MB=33, AM=33, $\angle AMB=60^\circ$, значит, треугольник AMB — правильный, откуда AB=33.

Ответ: 33 или 37.

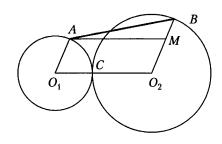


Рис. 1

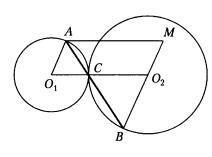


Рис. 2

9. Окружности радиусов 13 и 20 с центрами O_1 и O_2 соответственно касаются внутренним образом в точке K, MO_1 и NO_2 — параллельные радиусы этих окружностей, причём $\angle MO_1O_2=120^\circ$. Найдите MN.

Решение.

Точки O_1 , O_2 и K лежат на одной прямой.

Возможны два случая. Первый случай: точки M и N лежат по одну сторону от прямой O_1O_2 (рис. 1). Отрезок ML параллелен отрезку O_1O_2 (точка L принадлежит радиусу NO_2), следовательно, O_1O_2LM — параллелограмм:

$$ML = O_1O_2 = 7$$
, $O_1M = O_2L = 13$, $\angle O_2LM = \angle MO_1O_2 = 120^\circ$.

В треугольнике LMN имеем LM = 7, LN = 7, $\angle MLN = 60^{\circ}$, значит, треугольник LMN — правильный, откуда MN = 7.

Второй случай: точки M и N лежат по разные стороны от прямой O_1O_2 (рис. 2). Отрезок ML параллелен отрезку O_1O_2 (точка L лежит на продолжении радиуса NO_2 за точку $O_{2)$, следовательно, O_1O_2LM — параллелограмм:

$$ML = O_1O_2 = 7$$
, $O_1M = O_2L = 13$,
 $\angle O_2LM = \angle MO_1O_2 = 120^\circ$.

В треугольнике LMN имеем LM = 7, LN = 33, $\angle MLN = 120^{\circ}$, откуда

$$MN = \sqrt{LM^2 + LN^2 - 2 \cdot LM \cdot LN \cdot \cos \angle MLN} = 37.$$

Ответ: 7 или 37.

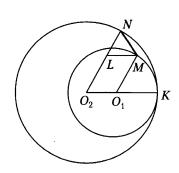


Рис. 1

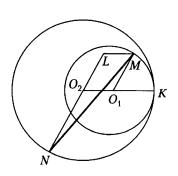


Рис. 2

Задания для самостоятельного решения

- **1.** В треугольнике ABC известны стороны: AB = 6, BC = 7, AC = 9. Окружность, проходящая через точки A и C, пересекает прямые BA и BC соответственно в точках K и L, отличных от вершин треугольника. Отрезок KL касается окружности, вписанной в треугольник ABC. Найдите длину отрезка KL.
- **2.** Дан треугольник со сторонами 20, 20 и 24. Внутри него расположены две равные касающиеся окружности, каждая из которых касается двух сторон треугольника. Найдите радиусы окружностей.
- **3.** Боковые стороны *KL* и *MN* трапеции *KLMN* равны 7 и 25 соответственно. Отрезок, соединяющий середины диагоналей, равен 12, средняя линия трапеции равна 18. Прямые *KL* и *MN* пересекаются в точке *A*. Найдите радиус окружности, вписанной в треугольник *ALM*.
- **4.** На прямой, содержащей биссектрису AD прямоугольного треугольника ABC с прямым углом C, взята точка E, удалённая от вершины A на расстояние, равное $\sqrt{17}$. Найдите площадь треугольника BCE, если BC = 8, AC = 15.
- **5.** Одна окружность вписана в прямоугольную трапецию, а вторая касается большей боковой стороны и продолжений оснований.
- а) Докажите, что расстояние между центрами окружностей равно большей боковой стороне трапеции.
- б) Найдите расстояние от вершины одного из прямых углов трапеции до центра второй окружности, если точка касания первой окружности с большей боковой стороной трапеции делит её на отрезки, равные 4 и 36.
- **6.** Окружности радиусов 5 и 8 с центрами O_1 и O_2 соответственно касаются в точке A. Прямая, проходящая через точку A, вторично пересекает меньшую окружность в точке B, а большую в точке C. Найдите площадь треугольника BCO_2 , если $\angle ABO_1 = 15^\circ$.
- 7. Окружности радиусов 9 и 15 с центрами O_1 и O_2 соответственно касаются в точке L. Прямая, проходящая через точку L, вторично пересекает меньшую окружность в точке K, а большую в точке M. Найдите площадь треугольника KMO_1 , если $\angle LMO_2 = 15^\circ$.
- **8.** Окружности радиусов 13 и 35 с центрами O_1 и O_2 соответственно касаются внешним образом в точке C, AO_1 и BO_2 параллельные радиусы этих окружностей, причём $\angle AO_1O_2=60^\circ$. Найдите AB.
- **9.** Окружности радиусов 1 и 15 с центрами O_1 и O_2 соответственно касаются внутренним образом в точке K, MO_1 и NO_2 параллельные радиусы этих окружностей, причём $\angle MO_1O_2=120^\circ$. Найдите MN.

6. АРИФМЕТИКА И АЛГЕБРА

- **1.** Каждый из группы учащихся сходил в кино или в театр, при этом возможно, что кто-то из них мог сходить и в кино, и в театр. Известно, что в театре мальчиков было не более $\frac{4}{13}$ от общего числа учащихся группы, посетивших театр, а в кино мальчиков было не более $\frac{2}{5}$ от общего числа учащихся группы, посетивших кино.
- а) Могло ли быть в группе 10 мальчиков, если дополнительно известно, что всего в группе было 20 учащихся?
- б) Какое наибольшее количество мальчиков могло быть в группе, если дополнительно известно, что всего в группе было 20 учащихся?
- в) Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительных условий пунктов a и 6?

Решение.

- а) Если группа состоит из 4 мальчиков, посетивших только театр, 6 мальчиков, посетивших только кино, и 10 девочек, сходивших и в театр, и в кино, то условие задачи выполнено. Значит, в группе из 20 учащихся могло быть 10 мальчиков.
- 6) Предположим, что мальчиков было 11 или больше. Тогда девочек было 9 или меньше. Театр посетило не более 4 мальчиков, поскольку если бы их было 5 или больше, то доля мальчиков в театре была бы не меньше $\frac{5}{5+9} = \frac{5}{14}$, что больше $\frac{4}{13}$. Аналогично, кино посетило не более 6 мальчиков, поскольку $\frac{7}{7+9} = \frac{7}{16} > \frac{2}{5}$, но тогда хотя бы один мальчик не посетил ни театра, ни кино, что противоречит условию.

В предыдущем пункте было показано, что в группе из 20 учащихся могло быть 10 мальчиков. Значит, наибольшее количество мальчиков в группе -10.

в) Предположим, что некоторый мальчик сходил и в театр, и в кино. Если бы вместо него в группе присутствовало два мальчика, один из которых посетил только театр, а другой — только кино, то доля мальчиков и в театре, и в кино осталась бы прежней, а общая доля девочек стала бы меньше. Значит, для оценки наименьшей доли девочек в группе можно считать, что каждый мальчик сходил или только в театр, или только в кино.

Пусть в группе m_1 мальчиков, посетивших театр, m_2 мальчиков, посетивших кино, и d девочек. Оценим долю девочек в этой группе. Будем считать, что все девочки ходили и в театр, и в кино, поскольку их доля в группе от этого не изменится, а доля в театре и в кино не уменьшится.

По условию $\frac{m_1}{m_1+d}\leqslant \frac{4}{13}, \ \frac{m_2}{m_2+d}\leqslant \frac{2}{5}, \$ значит, $\frac{m_1}{d}\leqslant \frac{4}{9}, \ \frac{m_2}{d}\leqslant \frac{2}{3}. \$ Тогда $\frac{m_1+m_2}{d}\leqslant \frac{10}{9}, \$ поэтому доля девочек в группе:

$$\frac{d}{m_1 + m_2 + d} = \frac{1}{\frac{m_1 + m_2}{d} + 1} \geqslant \frac{1}{\frac{10}{9} + 1} = \frac{9}{19}.$$

Если группа состоит из 4 мальчиков, посетивших только театр, 6 мальчиков, посетивших только кино, и 9 девочек, сходивших и в театр, и в кино, то условие задачи выполнено, а доля девочек в группе равна $\frac{9}{19}$.

Ответ: а) да; б) 10; в) $\frac{9}{19}$.

- **2.** Моток верёвки режут без остатка на куски длиной не меньше 115 см, но не больше 120 см (назовём такие куски стандартными).
- а) Некоторый моток верёвки разрезали на 23 стандартных куска, среди которых есть куски разной длины. На какое наибольшее число одинаковых стандартных кусков можно было бы разрезать тот же моток верёвки?
- б) Найдите такое наименьшее число l, что любой моток верёвки, длина которого больше l см, можно разрезать на стандартные куски.

Решение каждого пункта состоит из двух частей: оценка и пример.

Рассмотрим моток верёвки длиной x см. Условие того, что его можно разрезать на n стандартных кусков, записывается в виде $115n \leqslant x \leqslant 120n$ или $115 \leqslant \frac{x}{n} \leqslant 120$.

а) В данном случае имеем $115 \cdot 23 < x < 120 \cdot 23$ (неравенства строгие, поскольку среди кусков есть неравные). Пусть эту верёвку можно разрезать на n стандартных кусков, тогда $115 < \frac{x}{n} \le 120$. При $n \ge 24$ получаем $\frac{x}{n} \le \frac{x}{24} < \frac{120 \cdot 23}{24} = 115$, то есть этот моток верёвки нельзя разрезать больше чем на 23 стандартных куска.

При n=23 получаем $115<\frac{x}{23}<120$. Значит, эту верёвку можно разрезать на 23 одинаковых стандартных куска, но нельзя разрезать на большее количество стандартных кусков.

б) Отрезки [115n; 120n] и [115(n+1); 120(n+1)], являющиеся решениями неравенств $115n \le x \le 120n$ и $115(n+1) \le x \le 120(n+1)$, имеют общие точки для всех n, при которых $115(n+1) \le 120n$, то есть при n > 23. Значит, любую верёвку длиной $115 \cdot 23 = 2645$ см или более можно разрезать на стандартные куски.

Докажем, что верёвку, длина которой x см больше $120 \cdot 22 = 2640$ см, но меньше $115 \cdot 23 = 2645$ см, нельзя разрезать на n стандартных кусков ни для какого n. При $n \ge 23$ получаем $x < 115 \cdot 23 \le 115 n$, что противоречит условию $115 n \le x$. При $n \le 22$ получаем $x > 120 \cdot 22 \ge 120 n$, что противоречит условию $x \le 120 n$. Таким образом, искомое число равно 2645.

Omeem: a) 23; 6) 2645.

- **3.** Имеется 8 карточек. На них записывают по одному каждое из чисел 1, -2, -3, 4, -5, 7, -8, 9. Карточки переворачивают и перемешивают. На их чистых сторонах заново пишут по одному каждое из чисел 1, -2, -3, 4, -5, 7, -8, 9. После этого числа на каждой карточке складывают, а полученные восемь сумм перемножают.
 - а) Может ли в результате получиться 0?
 - б) Может ли в результате получиться 1?
 - в) Какое наименьшее целое неотрицательное число может в результате получиться?

Решение.

- а) Среди восьми данных чисел нет противоположных. Значит, сумма чисел на каждой карточке не равна 0. Поэтому всё произведение не может равняться нулю.
- б) Среди восьми данных чисел пять нечётных. Значит, на какой-то карточке попадётся два нечётных числа, и их сумма чётная. Поэтому всё произведение чётно и не может равняться 1.
- в) Среди восьми данных чисел пять нечётных. Значит, хотя бы на двух карточках с обеих сторон написаны нечётные числа, и сумма чисел на каждой из этих карточек чётная. Поэтому всё произведение делится на 4.

Наименьшее целое положительное число, делящееся на 4, это 4. Оно получается при следующем наборе пар чисел на карточках: (1; -2), (-2; 1), (-3; 4), (4; -3), (-5; 7), (7; -5), (-8; 9), (9; -8).

Ответ: а) нет; б) нет; в) 4.

- **4.** Максим должен был умножить двузначное число на трёхзначное число (числа с нуля начинаться не могут). Вместо этого он просто приписал трёхзначное число справа к двузначному, получив пятизначное число, которое оказалось в N раз (N натуральное число) больше правильного результата.
 - а) Могло ли N равняться 2?
 - б) Могло ли N равняться 10?
 - в) Каково наибольшее возможное значение N?

Обозначим двузначное число a, а трёхзначное — b.

а) Для чисел 63 и 504 условие выполняется:

$$63504 = 2 \cdot 63 \cdot 504$$
.

- б) Пусть N=10. Тогда выполняется равенство 10ab=1000a+b, откуда получаем: 1000a=b(10a-1). Числа 1000 и 10a-1 не имеют общих делителей, значит, число b должно делиться на 1000, но оно меньше 1000. Полученное противоречие доказывает, что N не может равняться 10.
 - в) По условию Nab = 1000a + b, откуда получаем:

$$N = \frac{1000a + b}{ab} = \frac{1000}{b} + \frac{1}{a} < \frac{1000}{100} + 1 = 11.$$

Поскольку $N \neq 10$ и N < 11, получаем, что наибольшее возможное значение N не превосходит 9.

Для чисел 14 и 112 условие выполняется:

$$14112 = 9 \cdot 14 \cdot 112$$
.

Таким образом, наибольшее возможное значение N- это 9.

Ответ: а) да; б) нет; в) 9.

- **5.** На окружности некоторым образом расставили натуральные числа от 1 до 21 (каждое число поставлено по одному разу). Затем для каждой пары соседних чисел нашли разность большего и меньшего.
 - а) Могли ли все полученные разности быть не меньше 11?
 - б) Могли ли все полученные разности быть не меньше 10?
- в) Помимо полученных разностей, для каждой пары чисел, стоящих через одно, нашли разность большего и меньшего. Для какого наибольшего целого числа k можно так расставить числа, чтобы все разности были не меньше k?

Решение.

- а) При любой расстановке разность числа 11 и любого соседнего с ним числа меньше 11. Значит, всегда найдутся хотя бы две разности меньше 11.
- б) Например, для расстановки 1, 12, 2, 13, 3, 14, 4, 15, 5, 16, 6, 17, 7, 18, 8, 19, 9, 20, 10, 21, 11 все разности не меньше 10.
- в) Оценим значение k. Рассмотрим числа от 1 до 7. Если какие-то два из них стоят рядом или через одно, то найдётся разность меньше 7. Иначе они стоят через два, поскольку всего чисел 21. В этом случае число 8 стоит рядом или через одно с каким-то числом от 2 до 7 и найдется разность меньше 7.

Таким образом, всегда найдётся разность меньше 7. Все разности могут быть не меньше 6. Например, для расстановки 1, 8, 15, 2, 9, 16, 3, 10, 17, 4, 11, 18, 5, 12, 19, 6, 13, 20, 7, 14, 21 все разности не меньше 6.

Ответ: а) нет; б) да; в) 6.

- 6. Семь экспертов оценивают кинофильм. Каждый из них выставляет оценку целое число баллов от 0 до 10 включительно. Известно, что все эксперты выставили различные оценки. По старой системе оценивания рейтинг кинофильма это среднее арифметическое всех оценок экспертов. По новой системе оценивания рейтинг кинофильма вычисляется следующим образом: отбрасываются наименьшая и наибольшая оценки и подсчитывается среднее арифметическое пяти оставшихся оценок.
- а) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться $\frac{1}{30}$?
- б) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться $\frac{1}{35}$?
- в) Найдите наибольшее возможное значение разности рейтингов, вычисленных по старой и новой системам оценивания.

Обозначим рейтинг кинофильма, вычисленный по старой системе оценивания, через A, а рейтинг кинофильма, вычисленный по новой системе оценивания, через B.

- а) Заметим, что $A=\frac{m}{7},\ B=\frac{n}{5},\$ где m и n некоторые натуральные числа. Значит, $A-B=\frac{m}{7}-\frac{n}{5}=\frac{5m-7n}{35}.$ Если $A-B=\frac{1}{30},\$ то $5m-7n=\frac{35}{30},\$ что невозможно. Таким образом, разность рейтингов, вычисленных по старой и новой системам оценивания, не может равняться $\frac{1}{30}$.
- б) Например, для оценок экспертов 0, 1, 2, 4, 7, 8, 9 разность рейтингов, вычисленных по старой и новой системам оценивания, равна

$$\frac{0+1+2+4+7+8+9}{7} - \frac{1+2+4+7+8}{5} = \frac{31}{7} - \frac{22}{5} = \frac{1}{35}.$$

в) Пусть x — наименьшая из оценок, z — наибольшая, а y — сумма остальных пяти оценок. Тогда

$$A - B = \frac{x + y + z}{7} - \frac{y}{5} = \frac{5x - 2y + 5z}{35} \leqslant \frac{5x + 5z - 2((x + 1) + (x + 2) + \dots + (x + 5))}{35} = \frac{5z - 5x - 30}{35} \leqslant \frac{5 \cdot 10 - 5 \cdot 0 - 30}{35} = \frac{4}{7}.$$

Для оценок экспертов 0, 1, 2, 3, 4, 5, 10 разность A-B равна $\frac{4}{7}$. Значит, наибольшее возможное значение разности рейтингов, вычисленных по старой и новой системам оценивания, равно $\frac{4}{7}$.

Ответ: а) нет; б) да; в) $\frac{4}{7}$.

- 7. Из 40 последовательных нечётных чисел 1, 3, 5, ... , 79 выбрали 7 различных чисел, которые записали в порядке возрастания. Пусть A четвёртое по величине среди этих чисел, а B среднее арифметическое выбранных семи чисел.
 - а) Может ли B-A равняться $\frac{2}{7}$?
 - б) Может ли B-A равняться $\frac{3}{7}$?
 - в) Найдите наибольшее возможное значение B A.

Решение.

а) Например, для чисел 1, 3, 5, 7, 9, 11, 15 разность B-A равна

$$\frac{1+3+5+7+9+11+15}{7}-7=\frac{51}{7}-7=\frac{2}{7}.$$

б) Пусть выбраны числа $a_1, a_2, ..., a_7$. Тогда

$$B-A=\frac{a_1+a_2+a_3-6a_4+a_5+a_6+a_7}{7}.$$

Заметим, что числитель этой дроби — чётное число. Значит, B-A не может равняться $\frac{3}{7}$.

в) Представим выбранные числа в виде $A-c_1$, $A-c_2$, $A-c_3$, A, $A+d_1$, $A+d_2$, $A+d_3$, где $c_1>c_2>c_3>0$ и $0< d_1< d_2< d_3$. Заметим, что числа c_1 , c_2 , c_3 , d_1 , d_2 , d_3 — чётные, поэтому $c_1+c_2+c_3\geqslant 6+4+2=12$. Поскольку $a_4\geqslant 7$ и $a_7\leqslant 79$, получаем:

$$d_1 + d_2 + d_3 \le 68 + 70 + 72 = 210.$$

Значит,

$$B-A = \frac{(d_1+d_2+d_3)-(c_1+c_2+c_3)}{7} \leqslant \frac{210-12}{7} = \frac{198}{7}.$$

Для чисел 1, 3, 5, 7, 75, 77, 79 разность B-A равна $\frac{198}{7}$. Значит, наибольшее возможное значение B-A равно $\frac{198}{7}$.

Ответ: а) да; б) нет; в) $\frac{198}{7}$.

- **8.** На сайте проводится опрос, кого из футболистов посетители сайта считают лучшим по итогам сезона. Каждый посетитель голосует за одного футболиста. На сайте отображается рейтинг каждого футболиста доля голосов, отданных за него, в процентах, округлённая до целого числа. Например, числа 9,3, 10,5 и 12,7 округляются до 9, 11 и 13 соответственно.
- а) Всего проголосовало 13 посетителей сайта. Мог ли рейтинг некоторого футболиста быть равным 29?
- б) Пусть посетители сайта отдавали голоса за одного из трёх футболистов. Могла ли сумма рейтингов быть больше 100?
- в) На сайте отображалось, что рейтинг некоторого футболиста равен 7. Это число не изменилось и после того, как Вася отдал свой голос за этого футболиста. При каком наименьшем числе отданных за всех футболистов голосов, включая Васин голос, такое возможно?

Решение.

- а) Если рейтинг футболиста на сайте равен 29, то доля голосов, отданных за него, находится в границах от 0,285 до 0,295. Поскольку всего проголосовало 13 посетителей сайта, получаем, что количество голосов, отданных за этого футболиста, не меньше $13 \cdot 0,285 = 3,705$, но меньше $13 \cdot 0,295 = 3,835$. Это противоречит целочисленности количества отданных голосов.
- б) Например, если за одного футболиста было отдано три голоса, а за остальных двух по два голоса, то доли голосов, отданных за этих футболистов, равны $\frac{3}{7} = 0.428...$ и $\frac{2}{7} = 0.285...$ соответственно. Значит, их рейтинги равны 43, 29 и 29 соответственно. Сумма этих чисел превосходит 100.
- в) Пусть проголосовало N посетителей сайта, включая Васю, среди которых k предпочли того же футболиста, что и Вася. Условие задачи выполняется тогда и только тогда, когда N и k удовлетворяют системе неравенств

$$\begin{cases} \frac{6.5}{100} \leqslant \frac{k}{N} < \frac{7.5}{100}, \\ \frac{6.5}{100} \leqslant \frac{k-1}{N-1} < \frac{7.5}{100}; \end{cases} \begin{cases} 13N \leqslant 200k < 15N, \\ 13N + 187 \leqslant 200k < 15N + 185; \end{cases} 13N + 187 \leqslant 200k < 15N.$$

Значит, 13N + 187 < 15N; $N \ge 94$.

Пусть N=94+x, где x- неотрицательное целое число. Тогда $1409+13x\leqslant 200k<1410+15x$.

Имеем $k \ge 8$, поэтому 1600 < 1410 + 15x; $x \ge 13$; $N = 94 + x \ge 107$.

Для чисел $N=107\,$ и $k=8\,$ выполнено условие задачи. Значит, наименьшее число, удовлетворяющее условию задачи, — это 107.

Ответ: а) нет; б) да; в) 107.

- 9. На сайте проводится опрос, кого из 146 футболистов посетители сайта считают лучшим по итогам сезона. Каждый посетитель голосует за одного футболиста. На сайте отображается рейтинг каждого футболиста доля голосов, отданных за него, в процентах, округлённая до целого числа. Например, числа 9,3, 10,5 и 12,7 округляются до 9, 11 и 13 соответственно.
- а) Всего проголосовало 13 посетителей сайта, и рейтинг первого футболиста стал равен 31. Увидев это, Вася отдал свой голос за другого футболиста. Чему теперь равен рейтинг первого футболиста?
- б) Вася проголосовал за некоторого футболиста. Могла ли после этого сумма рейтингов всех футболистов уменьшиться не менее чем на 30?
 - в) Какое наибольшее значение может принимать сумма рейтингов всех футболистов?

Решение.

- а) Если рейтинг футболиста на сайте равен 31, то доля голосов, отданных за него, находится в границах от 0,305 до 0,315. Поскольку всего проголосовало 13 посетителей сайта, получаем, что количество голосов, отданных за этого футболиста, не меньше $13 \cdot 0,305 = 3,965$, но меньше $13 \cdot 0,315 = 4,095$, то есть равно 4. После того, как Вася проголосовал, доля голосов за первого футболиста стала равна $\frac{4}{14} = 0,285$... Значит, его рейтинг стал равен 29.
- б) Пусть за 145 футболистов было отдано по одному голосу, а за оставшегося 55. В этом случае 145 футболистов имеют рейтинг 1, а последний 28; сумма рейтингов равна 173. Если Вася отдаст свой голос за последнего футболиста, то его рейтинг останется равным 28, а рейтинги всех остальных футболистов станут равны 0. В этом случае сумма рейтингов станет равна 28, то есть уменьшится на 145.
- в) Заметим, что для каждого из 146 футболистов доля отданных за него голосов, выраженная в процентах, отличается от рейтинга не более чем на 0,5. Поэтому сумма рейтингов всех футболистов отличается от 100 не более чем на $0.5 \cdot 146 = 73$. В частности, эта сумма не может превосходить 173.

Пример, приведённый в предыдущем пункте, показывает, что сумма рейтингов может равняться 173. Значит, наибольшее значение суммы рейтингов всех футболистов — это 173.

Ответ: а) 29; б) да; в) 173.

- **10.** Про некоторый набор, состоящий из 11 различных натуральных чисел, известно, что сумма любых двух различных чисел этого набора меньше суммы любых трёх различных чисел этого набора.
 - а) Может ли одним из этих чисел быть число 3000?
 - б) Может ли одним из этих чисел быть число 16?
 - в) Какое наименьшее возможное значение может принимать сумма чисел такого набора?

Решение.

- а) Например, набор чисел 3000, 3001, 3002, ..., 3010 содержит число 3000 и удовлетворяет условию задачи.
- б) Занумеруем числа в порядке возрастания: a_1 , a_2 , ..., a_{11} . Если среди этих чисел есть число 16, то выполнены неравенства $a_1 \le 16$, $a_2 + 8 \le a_{10}$, $a_3 + 8 \le a_{11}$. Складывая эти неравенства, получаем:

$$a_1 + a_2 + 8 + a_3 + 8 \le 16 + a_{10} + a_{11}; \quad a_1 + a_2 + a_3 \le a_{10} + a_{11}.$$

Последнее полученное неравенство противоречит условию задачи. Значит, среди чисел нет числа 16.

в) Аналогично предыдущему пункту можно показать, что в наборе нет чисел, меньших 17. Следовательно, 17, 18, ..., 27 — это наименьшие возможные значения первого, второго, ..., одиннадцатого чисел из набора.

Рассмотрим набор 17, 18, ..., 27. Сумма любых трёх чисел этого набора не меньше 17 + 18 + 19 - 54, а сумма любых двух не превосходит 26 + 27 = 53. Значит, этот набор удовлетворяет условию и имеет наименьшую сумму чисел среди таких наборов. Эта сумма равна 242.

Ответ: а) да; б) нет; в) 242.

- **11.** Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и все их возможные суммы (по 2, по 3 и т.д.) выписывают на доске в порядке неубывания. Если какое-то число *n*, выписанное на доске, повторяется несколько раз, то на доске оставляется одно такое число *n*, а остальные числа, равные *n*, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.
 - а) Приведите пример задуманных чисел, для которых на доске будет записан набор 3, 6, 9, 12, 15.
- 6) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 17, 18, 19, 21, 23?
- в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 8, 9, 10, 17, 18, 19, 20, 27, 28, 29, 30, 37, 38, 39, 47.

Решение.

- а) Для задуманных чисел 3, 3, 3, 3, 3 на доске будет записан набор 3, 6, 9, 12, 15.
- б) Поскольку задуманные числа натуральные, наименьшее число в наборе это наименьшее из задуманных чисел, а наибольшее число в наборе это сумма всех задуманных чисел. Среди чисел записанного набора должна быть сумма всех чисел, кроме наименьшего, то есть 23-1=22. Но этого числа нет в наборе, поэтому не существует примера таких задуманных чисел, для которого на доске будет выписан набор из условия.
- в) Число 8 наименьшее число в наборе является наименьшим из задуманных чисел, а наибольшее число в наборе это сумма всех задуманных чисел. Поэтому количество задуманных чисел не превосходит целой части числа $\frac{47}{8}$, то есть 5.

Кроме того, числа 9 и 10 меньше, чем сумма двух восьмёрок, поэтому они также являются задуманными. Значит, сумма оставшихся задуманных чисел равна 47 - 8 - 9 - 10 = 20. Таким образом, так как наименьшее задуманное число равно 8, оставшиеся задуманные числа — это 10 и 10 или 20 (если бы 20 получалось как 8 + 12 или 9 + 11, то были бы выписаны числа 12 или 11, но их нет).

Для задуманных чисел 8, 9, 10, 10, 10 и 8, 9, 10, 20 на доске будет записан набор, данный в условии.

Ответ: а) 3, 3, 3, 3, 3; б) нет; в) 8, 9, 10, 10, 10 или 8, 9, 10, 20.

- **12.** Задумано несколько целых чисел. Набор этих чисел и их все возможные суммы (по 2, по 3 и т.д.) выписывают на доску в порядке неубывания. Например, если задуманы числа 2, 3, 5, то на доске будет выписан набор 2, 3, 5, 5, 7, 8, 10.
 - а) На доске выписан набор -9, -6, -4, -3, -1, 2, 5. Какие числа были задуманы?
- б) Для некоторых различных задуманных чисел в наборе, выписанном на доске, число 0 встречается ровно 5 раз. Какое наименьшее количество чисел могло быть задумано?
- в) Для некоторых задуманных чисел на доске выписан набор. Всегда ли по этому набору можно однозначно определить задуманные числа?

Решение.

- а) Если было задумано 4 числа или более, то на доске должно быть записано не менее 15 чисел. Если было задумано 2 числа или меньше, то на доске должно быть записано не более 3 чисел. Значит, было задумано 3 числа. Если бы было задумано 2 положительных числа, то на доске было бы выписано не менее трёх положительных чисел. Значит, положительное число одно, и это число наибольшее число в наборе, то есть 5. Наименьшее число в наборе —9 является суммой двух отрицательных задуманных чисел. Из отрицательных выписанных чисел только —6 и —3 дают в сумме —9. Значит, были задуманы числа —6, —3 и 5.
- б) Рассмотрим различные задуманные числа, среди которых нет нуля. Пусть для этих чисел в наборе на доске оказалось ровно k нулей. Если добавить к задуманным числам нуль, то на доске окажется ровно 2k+1 нулей: k нулей, получающихся как суммы ненулевых задуманных чисел, k нулей, получающихся как суммы ненулевых задуманных чисел и задуманного нуля, и задуманный нуль. Таким образом, если среди задуманных чисел есть нуль, то в наборе на доске окажется нечётное количество нулей.

Пусть задумано четыре или меньше ненулевых числа. Нуль получается тогда, когда сумма некоторого количества положительных чисел равна по модулю сумме некоторого количества

отрицательных чисел. Одно задуманное число даёт одну сумму; два различных задуманных числа одного знака дают три различные суммы; три различных задуманных числа дают семь сумм, среди которых не более двух (задуманное число, наибольшее по модулю, и сумма двух других задуманных чисел) совпадают. Значит, среди сумм положительных и отрицательных чисел совпадают по модулю не более трёх. Таким образом, если было задумано не более четырёх различных ненулевых чисел, то на доске окажется не более трёх нулей.

Аналогично, если было задумано не более трёх различных ненулевых чисел, то на доске окажется не более одного нуля. Значит, если было задумано не более четырёх различных чисел, среди которых есть нуль, то на доске окажется не более трёх нулей.

Если были задуманы числа -3; 0; 1; 2; 3, то на доске окажется ровно пять нулей. Значит, наименьшее количество задуманных чисел -5.

в) Нет, не всегда. Например, для задуманных чисел -3, 1, 2 и -2, -1, 3 на доске будет выписан один и тот же набор -3, -2, -1, 0, 1, 2, 3.

Ответ: a) -6, -3, 5; б) 5; в) нет.

- **13.** По кругу в некотором порядке по одному разу написаны числа от 9 до 18. Для каждой из десяти пар соседних чисел нашли их наибольший общий делитель.
 - а) Могло ли получиться так, что все наибольшие общие делители равны 1?
 - б) Могло ли получиться так, что все наибольшие общие делители попарно различны?
- в) Какое наибольшее количество попарно различных наибольших общих делителей могло при этом получиться?

Решение.

- а) Да, могло. Например, если числа записаны в порядке 9, 16, 15, 14, 13, 12, 11, 18, 17, 10.
- 6) Всего по кругу записано 10 чисел. Для каждой пары соседних чисел мы ищем наибольший общий делитель, следовательно, получим 10 наибольших общих делителей. Если они все попарно различны, то хотя бы один из них не меньше 10. Но такого быть не может, так как для данных чисел наибольший из всевозможных наибольших общих делителей есть HOJ(18,9) = 9.
- в) Числа 11, 13 и 17 являются простыми, наибольшие общие делители этих чисел со всеми остальными числами равняются 1. Каждое из чисел имеет двух соседей, следовательно, хотя бы два числа из этих трёх будут иметь по крайней мере одного соседа, отличного от этих трёх чисел. Таким образом, хотя бы четыре из всех наибольших общих делителей будут равняться 1, то есть совпадать. Следовательно, не может быть больше, чем семь попарно различных наибольших общих делителей, поскольку всего их десять, причем четыре совпадают. Для расстановки 9, 18, 12, 16, 14, 13, 11, 17, 10, 15 получается ровно 7 попарно различных наибольших общих делителей.

Ответ: а) да; б) нет; в) 7.

- **14.** а) Приведите пример такого натурального числа n, что числа n^2 и $(n+24)^2$ дают одинаковый остаток при делении на 100.
 - б) Сколько существует трёхзначных чисел n с указанным в пункте a) свойством?
- в) Сколько существует двузначных чисел m, для каждого из которых существует ровно 36 трёхзначных чисел n, таких, что n^2 и $(n+m)^2$ дают одинаковый остаток при делении на 100?

Решение

- а) Например, n=13. Имеем $13^2=169$, $(13+24)^2=37^2=1369$. Эти числа дают остаток 69 при делении на 100.
- 6) Пусть n^2 и $(n+24)^2$ дают одинаковый остаток при делении на 100. Тогда число $(n+24)^2-n^2=24(2n+24)=48(n+12)$ должно делиться на 100. Это будет выполнено тогда и только тогда, когда n+12 делится на 25. Значит, все искомые n имеют вид n=25p+13, где p натуральное число, и удовлетворяют неравенствам $100 \le n < 1000$. Решая неравенства относительно p, получаем $4-\frac{13}{25} \le p < 40-\frac{13}{25}, \ p=4, \ 5, \dots$, 39 ровно 36 различных решений, каждому из которых соответствует единственное искомое число n.

в) Пусть n^2 и $(n+m)^2$ дают одинаковый остаток при делении на 100. Тогда число $(n+m)^2-n^2=m(2n+m)$ должно делиться на 100. Наибольший общий делитель d чисел m и 100 может равняться 1, 2, 4, 5, 10, 20, 25 или 50. Чтобы m(2n+m) делилось на 100 необходимо и достаточно, чтобы число 2n+m делилось на $\frac{100}{d}$.

Если d=1, 5 или 25, то m нечётно и таких n не существует. Если m чётно, то для некоторого натурального k имеем m=2k и условию удовлетворяют те и только те трёхзначные n, для которых 2(n+k) делится на $\frac{100}{d}$.

При d=2 и d=4 таких n существует ровно 36, так как подходящими будут те и только те n, при которых n+k делится на 25 (решение аналогично решению из пункта δ). При d=10, d=20, d=50 таких чисел n будет существенно больше, так как подойдут все трёхзначные числа, для которых n+k делится на 10. Значит, условию задачи удовлетворяют чётные двузначные числа m, не кратные 5. Так как чётных двузначных чисел существует 45 и 9 из них кратно 5, то подходящих чисел m существует ровно 36.

Ответ: а) например, 13; б) 36; в) 36.

15. а) Чему равно число способов записать число 1193 в виде

$$1193 = a_3 \cdot 10^3 + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0,$$

где числа a_i — целые, $0 \le a_i \le 99$, i = 0; 1; 2; 3?

- б) Существуют ли 10 различных чисел N таких, что их можно представить в виде $N=a_3\cdot 10^3+a_2\cdot 10^2+a_1\cdot 10+a_0$, где числа a_i целые, $0\leqslant a_i\leqslant 99$, $i=0;\;1;\;2;\;3$ ровно 120 способами?
- в) Сколько существует чисел N таких, что их можно представить в виде $N=a_3\cdot 10^3+a_2\cdot 10^2+a_1\cdot 10+a_0$, где числа a_i целые, $0\leqslant a_i\leqslant 99$, i=0; 1; 2; 3 ровно 120 способами?

Решение.

Каждое число $0 \le a_i \le 99$ однозначно представляется в виде $a_i = 10b_i + c_i$, где $0 \le b_i \le 9$ и $0 \le c_i \le 9$ (i = 0; 1; 2; 3). Значит, для каждого представления некоторого числа N в виде $N = a_3 \cdot 10^3 + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$ имеет место единственное представление N в виде N = 10n + m, где $n = b_3 \cdot 10^3 + b_2 \cdot 10^2 + b_1 \cdot 10 + b_0$ и $m = c_3 \cdot 10^3 + c_2 \cdot 10^2 + c_1 \cdot 10 + c_0$ — произвольные целые числа от 0 до 9999. Число способов записать число N в виде $N = a_3 \cdot 10^3 + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$ равно числу способов записать число N в виде N = 10n + m.

- а) Для представления числа 1193 в виде 1193 = 10n + m в качестве n можно взять любое целое число от 0 до 119. При этом m = 1193 10n определено однозначно. Таким образом, искомое число способов равно 120.
- б) Повторяя рассуждения предыдущего пункта, несложно показать, что каждое из чисел от 1190 до 1199 представимо в требуемом виде ровно 120 способами.
- в) Рассмотрим представление некоторого числа N в виде N=10n+m, где n и m- некоторые целые числа от 0 до 9999. Представим m в виде m=10k+l, где l- цифра единиц числа m, а k- некоторое целое число от 0 до 999. Тогда выполнено:

$$N = 10n + 10k + l;$$
 $N - l = 10(n + k);$ $\frac{N - l}{10} = n + k.$

Найдём все числа K, представимые ровно 120 способами в виде K=n+k, где n- некоторое целое число от 0 до 9999, а k- некоторое целое число от 0 до 999.

Пусть для некоторого числа K представления $K=n_1+k_1$ и $K=n_2+k_2$ таковы, что n_1 — наименьшее возможное n, а n_2 — наибольшее возможное n. Тогда $n_1=0$ или $k_1=K-n_1=999$, иначе бы было представление $K=(n_1-1)+(k_1+1)$. Аналогично, $n_2=9999$ или $k_2=K-n_2=0$.

Заметим, что для любого целого n_0 такого, что $n_1 < n_0 < n_2$, имеется представление $K = n_0 + k_0$, поскольку $0 \le n_1 < n_0 < n_2 \le 9999$, $0 \le k_2 < k_0 < k_1 \le 999$. Таким образом, количество представлений равно $n_2 - n_1 + 1$. Если $n_1 = 0$; $n_2 = 9999$ или $k_1 = 999$, $k_2 = 0$, то представлений больше. Значит, или $n_1 = 0$; $n_2 = 119$; $k_2 = 0$; K = 119; N = 1190 + l, или $N_2 = 1190$; N = 11879; N = 118790 на произвольная цифра. Таким образом, искомое количество чисел равно N = 118790.

Ответ: а) 120; б) да; в) 20.

Задания для самостоятельного решения

- **1.** Каждый из группы учащихся сходил в кино или в театр, при этом возможно, что кто-то из них мог сходить и в кино, и в театр. Известно, что в театре мальчиков было не более $\frac{4}{5}$ от общего числа учащихся группы, посетивших театр, а в кино мальчиков было не более $\frac{3}{10}$ от общего числа учащихся группы, посетивших кино.
- а) Могло ли быть в группе 11 мальчиков, если дополнительно известно, что всего в группе было 22 учащихся?
- б) Какое наибольшее количество мальчиков могло быть в группе, если дополнительно известно, что всего в группе было 22 учащихся?
- в) Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительных условий пунктов *а* и *6*?
- 2. Моток верёвки режут без остатка на куски длиной не меньше 75 см, но не больше 80 см (назовём такие куски стандартными).
- а) Некоторый моток верёвки разрезали на 15 стандартных кусков, среди которых есть куски разной длины. На какое наибольшее число одинаковых стандартных кусков можно было бы разрезать тот же моток верёвки?
- б) Найдите такое наименьшее число l, что любой моток верёвки, длина которого больше l см, можно разрезать на стандартные куски.
- **3.** Имеется 10 карточек. На них записывают по одному каждое из чисел 1, -2, -3, 4, -5, 6, 7, -9, 10, -11. Карточки переворачивают и перемешивают. На их чистых сторонах заново пишут по одному каждое из чисел 1, -2, -3, 4, -5, 6, 7, -9, 10, -11. После этого числа на каждой карточке складывают, а полученные десять сумм перемножают.
 - а) Может ли в результате получиться 0?
 - б) Может ли в результате получиться 1?
 - в) Какое наименьшее целое неотрицательное число может в результате получиться?
- **4.** Максим должен был перемножить два двузначных числа (числа с нуля начинаться не могут). Вместо этого он просто приписал одно из чисел справа к другому, получив четырёхзначное число, которое оказалось в N раз (N натуральное число) больше правильного результата.
 - а) Могло ли N равняться 2?
 - б) Могло ли N равняться 10?
 - в) Каково наибольшее возможное значение N?
- **5.** На окружности некоторым образом расставили натуральные числа от 1 до 27 (каждое число поставлено по одному разу). Затем для каждой пары соседних чисел нашли разность большего и меньшего.
 - а) Могли ли все полученные разности быть не меньше 14?
 - б) Могли ли все полученные разности быть не меньше 13?
- в) Помимо полученных разностей, для каждой пары чисел, стоящих через одно, нашли разность большего и меньшего. Для какого наибольшего целого числа k можно так расставить числа, чтобы все разности были не меньше k?

- 6. Семь экспертов оценивают кинофильм. Каждый из них выставляет оценку целое число баллов от 1 до 15 включительно. Известно, что все эксперты выставили различные оценки. По старой системе оценивания рейтинг кинофильма это среднее арифметическое всех оценок экспертов. По новой системе оценивания рейтинг кинофильма вычисляется следующим образом: отбрасываются наименьшая и наибольшая оценки и подсчитывается среднее арифметическое пяти оставшихся оценок.
- а) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться $\frac{2}{45}$?
- б) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться $\frac{2}{35}$?
- в) Найдите наибольшее возможное значение разности рейтингов, вычисленных по старой и новой системам оценивания.
- 7. Из 25 последовательных нечётных чисел 1, 3, 5, ... , 49 выбрали 9 различных чисел, которые записали в порядке возрастания. Пусть A- пятое по величине среди этих чисел, а B- среднее арифметическое выбранных девяти чисел.
 - а) Может ли B-A равняться $\frac{1}{9}$?
 - б) Может ли B-A равняться $\frac{2}{9}$?
 - в) Найдите наибольшее возможное значение B A.
- 8. На сайте проводится опрос, кого из футболистов посетители сайта считают лучшим по итогам сезона. Каждый посетитель голосует за одного футболиста. На сайте отображается рейтинг каждого футболиста — доля голосов, отданных за него, в процентах, округлённая до целого числа. Например, числа 9,3, 10,5 и 12,7 округляются до 9, 11 и 13 соответственно.
- а) Всего проголосовало 15 посетителей сайта. Мог ли рейтинг некоторого футболиста быть равным 41?
- б) Пусть посетители сайта отдавали голоса за одного из трёх футболистов. Могло ли быть так, что все три футболиста получили разное число голосов, но их рейтинги одинаковы?
- в) На сайте отображалось, что рейтинг некоторого футболиста равен 3. Это число не изменилось и после того, как Вася отдал свой голос за этого футболиста. При каком наименьшем числе отданных за всех футболистов голосов, включая Васин голос, такое возможно?
- **9.** На сайте проводится опрос, кого из футболистов посетители сайта считают лучшим по итогам сезона. Каждый посетитель голосует за одного футболиста. На сайте отображается рейтинг каждого футболиста доля голосов, отданных за него, в процентах, округлённая до целого числа. Например, числа 9,3, 10,5 и 12,7 округляются до 9, 11 и 13 соответственно.
- а) Всего проголосовало 15 посетителей сайта, и рейтинг некоторого футболиста был равен 47. Увидев это, Вася отдал свой голос за этого футболиста. Чему теперь равен рейтинг этого футболиста?
- б) Пусть посетители сайта отдавали голоса за одного из трёх футболистов. Могла ли сумма рейтингов быть меньше 100?
- в) На сайте отображалось, что рейтинг некоторого футболиста равен 6. После того, как Вася отдал свой голос за этого футболиста, его рейтинг на сайте стал равен 8. При каком наибольшем числе отданных за всех футболистов голосов, включая Васин голос, такое возможно?
- **10.** Про некоторый набор, состоящий из 15 различных натуральных чисел, известно, что сумма любых двух различных чисел этого набора меньше суммы любых трёх различных чисел этого набора.
 - а) Может ли одним из этих чисел быть число 2015?
 - б) Может ли одним из этих чисел быть число 24?
 - в) Какое наименьшее возможное значение может принимать сумма чисел такого набора?

- **11.** Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т. д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.
- а) Приведите пример задуманных чисел, для которых на доске будет записан набор 1, 2, 3, 4, 5, 6, 7, 8.
- б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22?
- в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 5, 6, 8, 10, 11, 13, 14, 15, 16, 18, 19, 21, 23, 24, 29.
- **12.** Задумано несколько целых чисел. Набор этих чисел и их все возможные суммы (по 2, по 3 и т.д.) выписывают на доску в порядке неубывания. Например, если задуманы числа 2, 3, 5, то на доске будет выписан набор 2, 3, 5, 5, 7, 8, 10.
 - а) На доске выписан набор -3, -1, 1, 2, 3, 4, 6. Какие числа были задуманы?
- б) Для некоторых различных задуманных чисел в наборе, выписанном на доске, число 0 встречается ровно 5 раз. Какое наименьшее количество чисел могло быть задумано?
- в) Для некоторых задуманных чисел на доске выписан набор. Всегда ли по этому набору можно однозначно определить задуманные числа?
- **13.** По кругу в некотором порядке по одному разу написаны числа от 10 до 21. Для каждой из двенадцати пар соседних чисел нашли их наибольший общий делитель.
 - а) Могло ли получиться так, что все наибольшие общие делители равны 1?
 - б) Могло ли получиться так, что все наибольшие общие делители попарно различны?
- в) Какое наибольшее количество попарно различных наибольших общих делителей могло при этом получиться?
- **14.** а) Приведите пример такого натурального числа n, что числа n^2 и $(n+16)^2$ дают одинаковый остаток при делении на 200.
 - б) Сколько существует трёхзначных чисел n с указанным в пункте a) свойством?
- в) Сколько существует двузначных чисел m, для каждого из которых существует ровно 36 трёхзначных чисел n, таких, что n^2 и $(n+m)^2$ дают одинаковый остаток при делении на 200?
- 15. а) Чему равно число способов записать число 1595 в виде

$$1595 = a_3 \cdot 10^3 + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0,$$

где числа a_i — целые, $0 \le a_i \le 99$, i = 0; 1; 2; 3?

- б) Существуют ли 10 различных чисел N таких, что их можно представить в виде $N=a_3\cdot 10^3+a_2\cdot 10^2+a_1\cdot 10+a_0$, где числа a_i целые, $0\leqslant a_i\leqslant 99$, i=0; 1; 2; 3, ровно 160 способами?
- в) Сколько существует чисел таких, что их можно представить в виде $N=a_3\cdot 10^3+a_2\cdot 10^2+a_1\cdot 10+a_0$, где числа a_i целые, $0\leqslant a_i\leqslant 99$, i=0; 1; 2; 3, ровно 160 способами?

7. ЭКОНОМИЧЕСКИЕ ЗАДАЧИ

- 1. В июле планируется взять кредит на сумму 6 409 000 рублей. Условия его возврата таковы:
 - каждый январь долг возрастает на 12,5% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить некоторую часть долга.

Сколько рублей нужно платить ежегодно, чтобы кредит был полностью погашен двумя равными платежами (то есть за два года)?

Решение.

Пусть сумма кредита составляет $S=6\,409\,000$ рублей, а ежегодные выплаты x рублей. По условию долг перед банком (в рублях) по состоянию на июль должен уменьшаться следующим образом:

$$S, \frac{9}{8}S - x, \left(\frac{9}{8}\right)^2 S - \left(\frac{9}{8}x + x\right) = 0,$$

откуда
$$x = \frac{\left(\frac{9}{8}\right)^2 S}{\frac{17}{8}} = \frac{9^2 \cdot 6409000}{17 \cdot 8} = 3817125$$
 руб.

Ответ: 3817 125 руб.

- 2. В июле планируется взять кредит в банке на некоторую сумму. Условия его возврата тако-
 - каждый январь долг возрастает на 20% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить часть долга, равную 2,16 млн рублей.

Сколько млн рублей было взято в банке, если известно, что он был полностью погашен тремя равными платежами (то есть за три года)?

Решение.

Пусть сумма кредита составляет S млн рублей, а ежегодные выплаты x=2,16 млн рублей. По условию долг перед банком (в млн рублей) по состоянию на июль должен уменьшаться следующим образом:

$$S$$
, $1.2S - x$, $1.2^2S - (1.2x + x)$, $1.2^3S - (1.2x + 1.2x + x) = 0$,

откуда
$$S = \frac{(1,2^3-1)x}{1,2^3\cdot(1,2-1)} = \frac{728\cdot2,16}{1728\cdot0,2} = 4,55$$
 млн рублей.

Ответ: 4,55 млн руб.

- **3.** В июле планируется взять кредит в банке на сумму 100 000 рублей. Условия его возврата таковы:
 - каждый январь долг возрастает на r% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить часть долга.

Найдите число r, если известно, что кредит был полностью погашен за два года, причём в первый год было переведено 55 000 рублей, а во второй год — 69 000 рублей.

Решение.

Пусть $k = 1 + \frac{r}{100}$. По условию долг перед банком (в рублях) по состоянию на июль должен уменьшаться следующим образом:

$$100\,000$$
, $(100\,000k - 55\,000)$, $100\,000k^2 - 55\,000k - 69\,000 = 0$,

откуда $100k^2 - 55k - 69 = 0$. Решая квадратное уравнение, получаем k = 1,15 или k = -0,6. Последнее решение не удовлетворяет условию задачи. Значит, r = 15.

Omeem: 15.

- 4. В июле планируется взять кредит на сумму 5005000 рублей. Условия его возврата таковы:
 - каждый январь долг возрастает на 20% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить некоторую часть долга.

На сколько рублей больше придётся отдать в случае, если кредит будет полностью погашен тремя равными платежами (то есть за три года), по сравнению со случаем, если кредит будет полностью погашен двумя равными платежами (то есть за 2 года)?

Решение.

Пусть сумма кредита составляет $S=5\,005\,000$ рублей, ежегодные выплаты в случае погашения кредита за 3 года составляют x рублей, а в случае погашения кредита за 2 года — y рублей. По условию долг перед банком (в рублях) по состоянию на июль должен уменьшаться следующим образом:

$$S$$
, $1.2S - x$, $1.2^2S - (1.2x + x)$, $1.2^3S - (1.2^2x + 1.2x + x) = 0$,

откуда $x = \frac{1,2^3 \cdot (1,2-1)S}{1,2^3-1} = \frac{1728 \cdot 0,2 \cdot 5\,005\,000}{728} = 2\,376\,000$ рублей. В этом случае придётся отдать 7 128 000 рублей.

Если отдавать погасить кредит двумя равными платежами, то долг перед банком (в рублях) по состоянию на июль должён уменьшаться следующим образом:

$$S$$
, $1.2S - y$, $1.2^2S - (1.2y + y) = 0$,

откуда $y = \frac{1,2^2 S}{2,2} = \frac{1,44 \cdot 5\,005\,000}{2,2} = 3\,276\,000$ рублей. В этом случае придётся отдать 6 552 000 рублей, то есть на 576 000 рублей меньше, чем в предыдущем случае.

Ответ: 576 000 руб.

- 5. В июле планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:
 - каждый январь долг возрастает на r% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить некоторую часть долга. Найдите число r, если известно, что если каждый год выплачивать по 1 464 100 рублей, то кредит будет полностью погашен за 4 года, а если ежегодно выплачивать по 2 674 100 рублей, то кредит будет полностью погашен за 2 года.

Решение.

Пусть $k=1+\frac{r}{100}$ сумма кредита составляет S рублей, ежегодные выплаты в случае погашения кредита за 4 года составляют $x=1\,464\,100$ рублей, а в случае погашения кредита за 2 года $y=2\,674\,100$ рублей. По условию долг перед банком (в рублях) в случае погашения долга за 4 года по состоянию на июль должен уменьшаться следующим образом:

$$S, kS-x, k^2S-(kx+x), k^3S-(k^2x+kx+x), k^4S-(k^3x+k^2x+kx+x)=0,$$

откуда
$$S = \frac{(k^4 - 1)x}{k^4(k - 1)}$$
.

Если отдавать кредит двумя равными платежами, то долг перед банком (в рублях) по состоянию на июль должен уменьшаться следующим образом:

$$S, kS-y, k^2S-(ky+y)=0,$$

откуда
$$S=\frac{(k+1)\,y}{k^2}$$
 рублей. Таким образом, получаем $\frac{(k^4-1)x}{k^4\,(k-1)}=\frac{(k+1)\,y}{k^2}$, откуда $k^2\,x+x=k^2\,y;\;k^2=\frac{x}{y-x}=1,\!21;\;k=1,\!1;\;r=10.$

Ответ: 10.

- 6. В июле планируется взять кредит на сумму 1300000 рублей. Условия его возврата таковы:
 - каждый январь долг возрастает на 10% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить некоторую часть долга.

На какое минимальное количество лет можно взять кредит при условии того, чтобы ежегодные выплаты были не более 350 000 рублей?

Решение.

Посмотрим, каким образом, будет изменяться долг перед банком (в рублях) по состоянию на июль, если ежегодно платить по 350 000 рублей:

 $1\,300\,000,\ 1\,080\,000,\ 838\,000,\ 571\,800,\ 278\,980,$

то есть пятым платежом, равным 306 878 рублей, кредит будет полностью погашен.

Ответ: 5.

- 7. 15 июля планируется взять кредит на сумму 900 000 рублей. Условия его возврата таковы: 31-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца:
 - со 2-го по 14-е число каждого месяца необходимо выплатить некоторую часть долга. На какое минимальное количество месяцев можно взять кредит при условии того, чтобы ежемесячные выплаты были не более 100 000 рублей?

Решение.

Заметим, что меньше, чем за 10 месяцев погасить не удастся, поскольку за 9 месяцев суммарно будет выплачено не более $900\,000$ рублей, что покроет первоначальную сумму долга, но не покроет процентов. Будем считать, что долг на 15-е число каждого месяца уменьшается по сравнению с предыдущим месяцем. За 10 месяцев долг составит не более, чем $1,01^{10}\cdot 900\,000 \leqslant 995\,000$ рублей, то есть возрастёт не более, чем на $95\,000$ рублей, а, значит, десятый платёж полностью погасит кредит.

Ответ: 10.

- **8.** В июле планируется взять кредит в банке на сумму 5 млн рублей на 10 лет. Условия его возврата таковы:
 - каждый январь долг возрастает на 20% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить часть долга;
 - в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года.

Сколько млн рублей составила общая сумма выплат после погашения кредита?

Решение.

По условию долг перед банком (в млн рублей) по состоянию на июль должен уменьшаться до нуля равномерно:

По условию каждый январь долг возрастает на 20%. Значит, последовательность размеров долга (в млн рублей) в январе такова:

Таким образом, первый платёж должен уменьшить долг с 6 млн рублей до 4,5 млн рублей, то есть он составит 1,5 млн рублей, и так далее.

Следовательно, выплаты (в млн рублей) должны быть следующими:

Всего следует выплатить 1,5 + 1,4 + ... + 0,7 + 0,6 = $\frac{10 \cdot 2,1}{2}$ (млн рублей).

Omeem: 10,5.

- **9.** В июле планируется взять кредит в банке на сумму 6 млн рублей на некоторый срок. Условия его возврата таковы:
 - каждый январь долг возрастает на 20% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить часть долга;
 - в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года.

На какой минимальный срок следует брать кредит, чтобы наибольший годовой платёж по кредиту не превысил 1,8 млн руб.?

Решение.

Пусть кредит взят на n лет. По условию долг перед банком (в млн рублей) по состоянию на июль должен уменьшаться до нуля равномерно:

$$6, \frac{6(n-1)}{n}, \dots, \frac{6\cdot 2}{n}, \frac{6}{n}, 0.$$

По условию каждый январь долг возрастает на 20%. Значит, последовательность размеров долга (в млн рублей) в январе такова:

7,2,
$$\frac{7,2(n-1)}{n}$$
, ..., $\frac{7,2\cdot 2}{n}$, $\frac{7,2}{n}$.

Следовательно, наибольшая выплата составляет $7.2 - \frac{6(n-1)}{n} = 1.2 + \frac{6}{n}$. Получаем, $1.2 + \frac{6}{n} \leqslant 1.8$, откуда $n \geqslant 10$.

Ответ: 10.

10. Производство некоторого товара облагалось налогом в размере t_0 рублей за единицу товара. После того как государство, стремясь увеличить сумму налоговых поступлений, увеличило налог вдвое (до $t_1 = 2t_0$), сумма налоговых поступлений не изменилась. На сколько процентов государству следует изменить налог после этого, чтобы добиться максимальных налоговых сборов, если известно, что при налоге равном t рублей за единицу товара объём производства товара составляет $10\,000-2t$ единиц, если это число положительно?

Решение.

Заметим, что налоговые сборы составляют $f(t)=t(10\,000-2t)=10\,000t-2t^2$ рублей при t<5000. Графиком функции y=f(t) является парабола, ветви которой направлены вниз. При этом $f(t_0)=f(2t_0)$, значит, функция f(t) достигает своего максимума при $t=\frac{3t_0}{2}$. Поскольку $\frac{3t_0}{2}$ составляет 75% от $2t_0$, государству следует понизить налог на 25%.

Ответ: 25.

Задания для самостоятельного решения

- 1. В июле планируется взять кредит на сумму 8 052 000 рублей. Условия его возврата таковы:
 - каждый январь долг возрастает на 20% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить некоторую часть долга.

Сколько рублей нужно платить ежегодно, чтобы кредит был полностью погашен четырьмя равными платежами (то есть за четыре года)?

- 2. В июле планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:
 - каждый январь долг возрастает на 10% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить часть долга, равную 1,4641 млн рублей.

Сколько млн рублей было взято в банке, если известно, что он был полностью погашен четырьмя равными платежами (то есть за четыре года)?

- **3.** В июле планируется взять кредит в банке на сумму 100 000 рублей. Условия его возврата таковы:
 - каждый январь долг возрастает на r % по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить часть долга.

Найдите число r, если известно, что кредит был полностью погашен за два года, причём в первый год было переведено $66\,000$ рублей, а во второй год $-58\,000$ рублей.

- 4. В июле планируется взять кредит на сумму 4026000 рублей. Условия его возврата таковы:
 - каждый январь долг возрастает на 20% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить некоторую часть долга.

На сколько рублей больше придётся отдать в случае, если кредит будет полностью погашен четырьмя равными платежами (то есть за четыре года), по сравнению со случаем, если кредит будет полностью погашен двумя равными платежами (то есть за 2 года)?

- 5. В июле планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:
 - каждый январь долг возрастает на r% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить некоторую часть долга.

Найдите число r, если известно, что если каждый год выплачивать по 777 600 рублей, то кредит будет полностью погашен за 4 года, а если ежегодно выплачивать по 1317 600 рублей, то кредит будет полностью погашен за 2 года.

- 6. В июле планируется взять кредит на сумму 1300000 рублей. Условия его возврата таковы:
 - каждый январь долг возрастает на 10% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить некоторую часть долга.

На какое минимальное количество лет можно взять кредит при условии того, чтобы ежегодные выплаты были не более 300 000 рублей?

- 7. 15 июля планируется взять кредит на сумму 800 000 рублей. Условия его возврата таковы:
 - 31-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
 - со 2-го по 14-е число каждого месяца необходимо выплатить некоторую часть долга.

На какое минимальное количество месяцев можно взять кредит при условии того, чтобы ежемесячные выплаты были не более 200 000 рублей?

- **8.** В июле планируется взять кредит в банке на сумму 10 млн рублей на 5 лет. Условия его возврата таковы:
 - каждый январь долг возрастает на 10% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить часть долга;
 - в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года.

Сколько млн рублей составила общая сумма выплат после погашения кредита?

- **9.** В июле планируется взять кредит в банке на сумму 8 млн рублей на некоторый срок. Условия его возврата таковы:
 - каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить часть долга;
 - в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года.
 - На какой минимальный срок следует брать кредит, чтобы наибольший годовой платёж по кредиту не превысил 3,6 млн руб.?
- **10.** Производство некоторого товара облагалось налогом в размере t_0 рублей за единицу товара. После того как государство, стремясь увеличить сумму налоговых поступлений за счёт увеличения производства товара, уменьшило налог вдвое (до $t_1 = \frac{t_0}{2}$), сумма налоговых поступлений не изменилась. На сколько процентов государству следует изменить налог после этого, чтобы добиться максимальных налоговых сборов, если известно, что при налоге, равном t рублей за единицу товара, объём производства товара составляет $10\,000-2t$ единиц, если это число положительно?

ОТВЕТЫ

1.1. Тригонометрические уравнения

1. a) $\frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$; $\frac{2\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; $-\frac{2\pi}{3} + 2\pi m$, $m \in \mathbb{Z}$; 6) $-\frac{5\pi}{2}$; $-\frac{3\pi}{2}$; $-\frac{4\pi}{3}$. 2. a) πk ; $k \in \mathbb{Z}$; $-\frac{\pi}{4} + \pi n$, $n \in \mathbb{Z}$; 6) -3π ; $-\frac{9\pi}{4}$; -2π . 3. a) $\pm \frac{\pi}{6} + \pi n$, $n \in \mathbb{Z}$; 6) $\frac{13\pi}{6}$; $\frac{17\pi}{6}$. 4. a) $\arctan \frac{12}{5} + \pi + 2\pi n$, $n \in \mathbb{Z}$; 6) $5\pi + \arctan \frac{12}{5}$. 5. a) $\frac{\pi}{2} + 2\pi n$, $n \in \mathbb{Z}$; 6) $-\frac{3\pi}{2}$. 6. a) $2\pi n$, $n \in \mathbb{Z}$; 6) 2π . 7. a) $\frac{\pi}{2} + \pi n$, $n \in \mathbb{Z}$; $-\frac{3\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$; $-\frac{\pi}{4} + 2\pi m$, $m \in \mathbb{Z}$; 6) $\frac{5\pi}{2}$; $\frac{13\pi}{4}$; $\frac{7\pi}{2}$. 8. a) $\frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$; $\frac{2\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; 6) $-\frac{5\pi}{3}$; $-\frac{4\pi}{3}$. 9. a) $-\frac{5\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; 6) $-\frac{5\pi}{6}$. 10. a) $2\pi n$, $n \in \mathbb{Z}$; $\frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$; 6) 0; $\frac{\pi}{3}$.

1.2. Показательные уравнения

1. a) $-\frac{1}{2}$; 7; 6) $-\frac{1}{2}$. **2.** a) 3; $1 + \log_3 5$; 6) $1 + \log_3 5$. **3.** a) $1 - \sqrt{2}$; $1 + \sqrt{2}$; 6) $1 + \sqrt{2}$. **4.** a) -3; $\frac{1}{4}$; 6) $\frac{1}{4}$. **5.** a) -2; $\frac{1}{3}$; 6) $\frac{1}{3}$. **6.** a) -3; $-\frac{1}{3}$; 1; 6) $-\frac{1}{3}$. **7.** a) $-\log_3 7$; $-\log_3 5$; 6) $-\log_3 7$. **8.** a) $-\log_3 \frac{3}{2}$; $\log_3 \frac{3}{2}$; 6) $-\log_3 \frac{3}{2}$. **9.** a) $\log_3 2$; $\frac{3}{4}$; 6) $\log_3 2$.

1.3. Логарифмические уравнения

1. a) -2; 1; 6) 1. **2.** a) -7; 4; 6) -7. **3.** a) -4; 3; 6) -4. **4.** a) -1; $-\frac{1}{2}$; 6) $-\frac{1}{2}$. **5.** a) -7; 1; 6) -7. **6.** a) -4; 7; 6) 7. **7.** a) $-\frac{3}{4}$; 63; 6) 63. **8.** a) $3 - \sqrt{5}$; $3 + \sqrt{5}$; 6) $3 - \sqrt{5}$. **9.** a) $\frac{4}{3}$; $\frac{5}{3}$; 6) $\frac{5}{3}$. **10.** a) -3; -1; 1; 6) -1.

1.4. Комбинированные уравнения

1. a) $\pm \frac{\pi}{3} + 2\pi m$, $m \in \mathbb{Z}$; 6) $-\frac{7\pi}{3}$. 2. a) $\frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$; $-\frac{\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; $\frac{2\pi}{3} + 2\pi m$, $m \in \mathbb{Z}$; $-\frac{2\pi}{3} + 2\pi l$, $l \in \mathbb{Z}$; 6) $-\frac{8\pi}{3}$; $-\frac{7\pi}{3}$; $-\frac{5\pi}{3}$. 3. a) $\frac{\pi}{2} + \pi n$, $n \in \mathbb{Z}$; $\frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$; $\frac{2\pi}{3} + 2\pi m$, $m \in \mathbb{Z}$; 6) $\frac{3\pi}{2}$; $\frac{7\pi}{3}$; $\frac{5\pi}{2}$. 4. a) $\frac{\pi}{2} + \pi n$, $n \in \mathbb{Z}$; $\frac{\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$; $\frac{3\pi}{4} + 2\pi m$, $m \in \mathbb{Z}$; 6) $\frac{9\pi}{2}$; $\frac{19\pi}{4}$; $\frac{11\pi}{2}$. 5. a) $\pm \frac{\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; 6) $-\frac{5\pi}{3}$; $-\frac{\pi}{3}$; $\frac{\pi}{3}$. 6. a) $-\frac{\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$; $-\frac{5\pi}{6} + 2\pi m$, $m \in \mathbb{Z}$; 6) $-\frac{5\pi}{6}$; $-\frac{\pi}{6}$. 7. a) $-\frac{\pi}{4} + \pi n$, $n \in \mathbb{Z}$; 6) $\frac{23\pi}{4}$; $\frac{27\pi}{4}$; $\frac{31\pi}{4}$. 8. a) $\frac{\pi k}{2}$, $k \in \mathbb{Z}$; 6) 2π ; $\frac{5\pi}{2}$; 3π ; $\frac{7\pi}{2}$. 9. a) πk , $k \in \mathbb{Z}$; $-\frac{2\pi}{3} + 2\pi m$, $m \in \mathbb{Z}$; 6) -3π ; $-\frac{8\pi}{3}$; -2π . 10. a) $\frac{\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$; 6) $\frac{9\pi}{4}$. 11. a) $\frac{2\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; $2\pi m$, $m \in \mathbb{Z}$; 6) 0; $\frac{2\pi}{3}$. 12. a) $\pm \frac{\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$; $\pm \frac{\pi}{3} + 2\pi m$, $m \in \mathbb{Z}$; 6) $\frac{17\pi}{3}$; $\frac{23\pi}{4}$; $\frac{25\pi}{4}$; $\frac{19\pi}{3}$. 13. a) $\frac{\pi}{4} + 2\pi m$, $m \in \mathbb{Z}$; 6) $-\frac{\pi}{4}$. 15. a) $\frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$; $\frac{2\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; 6) $\frac{2\pi}{3}$; $\frac{7\pi}{3}$.

2.1. Рациональные неравенства

1.
$$\left(-2; \frac{2}{3}\right)$$
, $\left[\frac{7}{6}; 3\right]$. 2. $\left[-\frac{4}{3}; -1\right)$, $\left(-1; \frac{4}{3}\right]$, $[2; +\infty)$. 3. $(-\infty; 3]$, $[4; 5)$. 4. $\left[-1; \sqrt{7}\right]$. 5. $[3; +\infty)$. 6. $\left(-1; -\frac{\sqrt{6}}{3}\right]$, $\left[\frac{\sqrt{6}}{3}; 1\right)$. 7. $[-2; 2]$. 8. $(-\infty; -1]$, $\left[0; \frac{1}{2}\right)$, $\left(\frac{1}{2}; \frac{\sqrt{7} - 1}{2}\right]$ 9. $\left[-3; -\frac{5}{2}\right]$, $[3; +\infty)$. 10. $(-\infty; -3)$, $(-3; 0]$, $\left[\frac{\sqrt{145} - 1}{2}; +\infty\right)$. 11. $(-\infty; 0)$, $\left[\frac{5}{6}; +\infty\right)$. 12. $[-3,5; -3)$, $(1; 1,5]$. 13. $\left[-\frac{6}{5}; \frac{2}{5}\right]$. 14. $(-4; -1]$, $(-3; +\infty)$. 15. $[-3,5; 1,75]$.

Тренировочная работа

1.
$$\left(-2; -\frac{1}{3}\right)$$
, $\left[\frac{1}{10}; \frac{3}{2}\right]$. 2. $\left[-\frac{3}{2}; -1\right]$, $\left(1; \frac{3}{2}\right]$. 3. $\left[-6; -5\right)$, $\left[-\frac{9}{2}; +\infty\right)$. 4. $\left[-2\sqrt{7}; 2\right]$. 5. $\left[-\frac{9}{2}; +\infty\right)$. 6. $\left(-1; -\frac{\sqrt{3}}{2}\right]$, $\left[\frac{\sqrt{3}}{2}; 1\right)$. 7. $\left[-\frac{1}{2}; 3\right]$. 8. $\left(-\infty; -2\right]$, $\left[-1; -\frac{1}{2}\right)$, $\left(-\frac{1}{2}; \frac{\sqrt{7} - 3}{2}\right]$. 9. $\left(-\infty; 2\right]$, $\left[\frac{9}{2}; 5\right]$. 10. $\left(-\infty; -\frac{9+3\sqrt{15}}{2}\right]$, $\left[-\frac{3+3\sqrt{10}}{2}; 0\right)$, $\left(0; +\infty\right)$. 11. $\left(-\infty; 0\right)$, $\left[\frac{1}{2}; +\infty\right)$. 12. $\left(-\frac{1}{2}; \frac{1}{3}\right]$, $\left[\frac{2}{3}; \frac{3}{2}\right)$. 13. $\left[-\frac{8}{3}; \frac{2}{3}\right]$. 14. $\left(-\infty; -1\right]$, 0, [2; 6). 15. [-2; 5].

2.2. Логарифмические неравенства

1.
$$(-3; -2.5), (-2; -1.5), \left[-\frac{4}{3}; -1\right), \left(-\frac{1}{3}; 0\right].$$
 2. $[-3; 2).$ **3.** $\left[\frac{1}{81}; \frac{1}{\frac{16}{\sqrt{3}}}\right].$ **4.** $\left(0; \frac{1}{64}\right), \left[\frac{1}{4}; 16\right].$ **5.** $(-\infty; -2), \left(4; \frac{11}{2}\right].$ **6.** $(0; 0.2], [25; +\infty).$ **7.** $\left[\frac{1}{64}; \frac{1}{2}\right], (1; +\infty).$ **8.** $(-\infty; -2), \left(-2; -\sqrt{2}\right), \left[-\frac{5}{4}; -1\right), \left(1; \sqrt{2}\right).$ **9.** $(2; 3), (3; +\infty).$ **10.** $\left(\frac{\sqrt{21}-3}{2}; 1\right), (1; 2].$

Тренировочная работа

1.
$$(-\infty; -1)$$
, $\left(0; \frac{1}{6}\right)$, $\left[\frac{3}{2}; +\infty\right)$. 2. $[-1; 4)$. 3. $\left[\frac{1}{9}; \frac{1}{\sqrt[8]{3}}\right]$. 4. $\left[\frac{1}{8}; \frac{1}{2}\right]$, $[4; +\infty)$. 5. $(-\infty; -3)$, $\left[\frac{9}{7}; 2\right)$. 6. $\left(0; \sqrt{3}\right]$, $[9; +\infty)$. 7. $\left(1; \sqrt{5}\right]$, $[5; +\infty)$. 8. $(-\infty; -2)$, $\left(-2; -\sqrt{3}\right)$, $\left[-\frac{3}{2}; -\sqrt{2}\right)$, $\left(\sqrt{2}; \sqrt{3}\right)$. 9. $(-2; -1)$, $(-1; +\infty)$. 10. $\left(-\frac{1+\sqrt{17}}{4}; -1\right)$, $\left(\frac{4}{3}; 3\right]$.

2.3. Показательные неравенства

1.
$$[-4; 2]$$
. **2.** $(-\infty; -3]$, $\left[\log_2 \frac{3}{4}; -2\right)$, $(-1; +\infty)$. **3.** $(-\infty; 0]$, 2 , $\left(\frac{5}{2}; 4\right]$. **4.** $[-1; 0)$, $(0; 1)$. **5.** $(-\infty; -3]$, $\left[\frac{9}{2}; 6\right)$. **6.** $(0; 2]$. **7.** $(-\infty; -2]$, $[1; 3]$, $[5; +\infty)$. **8.** $\left(-2; \frac{1}{3}\right)$. **9.** $(0; \log_3 5]$, $[2; +\infty)$. **10.** $[-2; 3]$.

Тренировочная работа

1. [-9; -3]. **2.** $(-\infty; 3)$, $\left(4; \log_2 \frac{56}{3}\right]$, $[5; +\infty)$. **3.** [-8; -5), -4, $[0; +\infty)$. **4.** [-2; -1), (-1; 0). **5.** $\left[-\frac{3}{8}; \frac{1}{2}\right)$, $[1; +\infty)$. **6.** (0; 1]. **7.** $(-\infty; -4]$, [1; 10], $[11; +\infty)$. **8.** $\left(-\frac{1}{2}; 6\right)$. **9.** (-1; 0), $(\log_8 3; +\infty)$. **10.** [-1,5; 1,5].

2.4. Системы неравенств

1. $[-\log_5 5; -2)$, (-2; 0), (0; 2), $[3; +\infty)$. 2. $\left(0; \frac{1}{8}\right]$, $\left[\frac{1}{4}; \log_5 2\right]$. 3. [-2; -1), $\left[-\frac{1}{2}; 0\right)$, (0; 1). 4. $\left(-\frac{5}{2}; -2\right]$, 2. 5. $(2; \log_2 5]$, 4. 6. -2, $\left(2; \frac{5}{2}\right]$. 7. $\left(\frac{8}{3}; 3\right)$, 4. 8. -1, 0, $\left[4; \frac{3+\sqrt{29}}{2}\right)$. 9. -2, $\left[\frac{1}{2}; 1\right]$. 10. 0, $[\log_3 8; 2)$, (2; 4]. 11. $\left[\frac{17}{9}; 2\right)$. 12. -2, 0, [4; 6). 13. -6, (3; 4). 14. (0; 1), (2; 3). 15. (-2; -1).

3. Задания с параметром

1. $a = \frac{2}{3}$, $a = \frac{3}{4}$. 2. $\frac{4}{7} < a \le \frac{7}{10}$. 3. a = 0, $a \ge 3$. 4. $a \le -\frac{1}{24}$. 5. a = 1, a = 3. 6. $(-\infty; -3)$, $\left(\frac{3}{2}; 6\right)$, $(6; +\infty)$. 7. $\left(-2; \frac{1}{2}\right)$, $\left(\frac{1}{2}; 3\right)$. 8. $\left(-\frac{5}{7}; \frac{8}{7}\right)$, $\left(\frac{8}{7}; \frac{13}{9}\right)$. 9. -2, 0, $(1; +\infty)$. 10. 0, $\left(\frac{1}{5}; \frac{1}{3}\right)$. 11. a = 3, a = 7. 12. a = 1, x = -1. 13. $-\frac{81}{8} \le a \le -5$. 14. $\left(-\infty; 7 - 2\sqrt{6}\right]$, $\left[7 + 2\sqrt{6}; 15\right)$, $(15; +\infty)$. 15. $1 \le a \le \frac{21 - 3\sqrt{17}}{8}$. 16. a > 1,5. 17. a = -10, x = 1. 18. $a \le -\frac{9}{5}$, $a \ge 1$. 19. $a = -\frac{2}{5}$; $a = \frac{2}{5}$.

4.1. Параллелепипеды

1. 6) $\sqrt{1281}$. **2.** $\arccos \frac{\sqrt{2}}{6}$. **3.** 6) 8. **4.** $\arctan \sqrt{17}$. **5.** $\arctan \frac{\sqrt{2}}{3}$. **6.** $7\sqrt{19}$.

4.2. Призмы

1. $\frac{\sqrt{42}}{14}$. 2. 76,5. 3. $\frac{60}{13\sqrt{217}}$. 4. $\arctan \frac{4}{3}$. 5. 3.

4.3. Треугольные пирамиды

1. $\arctan \frac{2}{3}$. 2. $\frac{\sqrt{46}}{4}$. 3. $\frac{17\sqrt{57}}{285}$. 4. $\arctan \frac{3\sqrt{23}}{23}$. 5. $2\sqrt{10}$. 6. $\arctan \frac{\sqrt{39}}{9}$. 7. $\sqrt{39}$. 8. $\arctan \frac{4\sqrt{3}}{3}$.

4.4. Четырёхугольные пирамиды

1. $2 \operatorname{arctg} \frac{2\sqrt{3}}{3}$. **2.** $8 + \frac{4\sqrt{130}}{3}$. **3.** 6) $\frac{27\sqrt{11}}{110}$. **4.** $2 \operatorname{arcsin} \frac{\sqrt{17}}{5}$. **5.** $\frac{32}{3}$. **6.** 96.

4.5. Тела вращения

1. $\frac{32\pi}{7}$. **2.** $\arctan \frac{2\sqrt{23}}{\sqrt{13}}$. **3.** $6\sqrt{5}$. **4.** $\frac{\sqrt{5}}{5}$. **5.** $18\sqrt{2}$. **6.** $\sqrt{34}$. **7.** 17,5.

5.1. Планиметрические задачи (одна конфигурация с окружностью)

1. 6) $\frac{54}{13}$. **2.** 6) $\frac{25}{2}$. **3.** 6) 60°. **4.** 6) 65. **5.** 6) $\frac{10}{3}\sqrt{5}$. **6.** 6) 50. **7.** 6) $9\sqrt{3}$.

5.2. Планиметрические задачи (одна конфигурация без окружности)

1. 6) 6. **2.** 6) $24\sqrt{3}$. **3.** 6) 9:40. **4.** 6) 9. **5.** 6) 10. **6.** 6) $\frac{1}{8}$.

5.3. Планиметрические задачи (две конфигурации)

1. $\frac{18}{11}$ или 9. **2.** 4 или $\frac{15}{4}$. **3.** $\frac{3}{4}$ или $\frac{15}{4}$. **4.** 44 или 76. **5.** 6) $4\sqrt{178}$. **6.** 6 или 26. **7.** 54 или 13,5. **8.** 48 или 62. **9.** 14 или 26.

6. Арифметика и алгебра

1. а) да; б) 11; в) $\frac{10}{21}$. 2. а) 15; б) 1125. 3. а) нет; б) нет; в) 4. 4. а) да; б) нет; в) 3. 5. а) нет; б) да; в) 8. 6. а) нет; б) да; в) $\frac{8}{7}$. 7. а) нет; б) да; в) $\frac{128}{9}$. 8. а) нет; б) да; в) 115. 9. а) 50; б) да; в) 80. 10. а) да; б) нет; в) 480. 11. а) 1, 1, 1, 1, 1, 1, 1, 1; б) нет; в) 5, 5, 5, 6, 8 или 5, 6, 8, 10. 12. а) -3, 2, 4; б) 5; в) нет. 13. а) да; б) нет; в) 8. 14. а) например, 17; б) 36; в) 18. 15. а) 160; б) да; в) 20.

7. Экономические задачи

1. 3110400 py6. 2. 4,641. 3. 16. 4. 950400 py6. 5. 20. 6. 6. 7. 5. 8. 13. 9. 5. 10. 50.